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The autonomic nervous system (ANS) is an important factor in cardiac arrhythmia, and

information about ANS activity during atrial fibrillation (AF) may contribute to personalized

treatment. In this study we aim to quantify respiratory modulation in the f-wave frequency

trend from resting ECG. First, an f-wave signal is extracted from the ECG by QRST

cancelation. Second, an f-wave model is fitted to the f-wave signal to obtain a high

resolution f-wave frequency trend and an index for signal quality control (S ). Third,

respiratory modulation in the f-wave frequency trend is extracted by applying a narrow

band-pass filter. The center frequency of the band-pass filter is determined by the

respiration rate. Respiration rate is estimated from a surrogate respiration signal, obtained

from the ECG using homomorphic filtering. Peak conditioned spectral averaging, where

spectra of sufficient quality from different leads are averaged, is employed to obtain a

robust estimate of the respiration rate. The envelope of the filtered f-wave frequency trend

is used to quantify the magnitude of respiratory induced f-wave frequency modulation.

The proposed methodology is evaluated using simulated f-wave signals obtained using

a sinusoidal harmonic model. Results from simulated signals show that the magnitude of

the respiratory modulation is accurately estimated, quantified by an error below 0.01 Hz,

if the signal quality is sufficient (S > 0.5). The proposed method was applied to analyze

ECG data from eight pacemaker patients with permanent AF recorded at baseline,

during controlled respiration, and during controlled respiration after injection of atropine,

respectively. The magnitude of the respiratory induce f-wave frequency modulation was

0.15± 0.01, 0.18± 0.02, and 0.17± 0.03 Hz during baseline, controlled respiration, and

post-atropine, respectively. Our results suggest that parasympathetic regulation affects

the magnitude of respiratory induced f-wave frequency modulation.

Keywords: atrial fibrillation, autonomic nervous system, ECG processing, f-wave frequency, parasympathetic

regulation, respiratory modulation

1. INTRODUCTION

Despite progress in atrial fibrillation (AF) treatment, such as ablation procedures, stroke-
prevention procedures, and anti-arrhythmic drugs, AF still is associated with significant mortality
in middle-aged and older adults, and it constitutes a substantial burden to the health economy
(Hindricks et al., 2020). The current estimate of AF prevalence for adults in the United States is
ranged between 2 and 4% (Benjamin et al., 2019). The prevalence of AF increases with age and is
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higher in men. In a Swedish study including 30,447 individuals,
AF prevalence was 1.5% higher in men and increased from 2 per
1,000 in ages 45–49 to 29 per 1,000 in ages 70–74 (Smith et al.,
2010). There are some substantial modifiers which contribute to
the maintenance and progression of AF, such as atrial fibrosis
and aging, ion-channel dysfunction, autonomic imbalance, and
genetic background (Fabritz et al., 2016). Better understanding
and monitoring of these AF-causing factors can contribute to
personalized AF treatment.

Autonomic dysfunction is one of the main factors which
can contribute to AF (Fabritz et al., 2016). The autonomic
nervous system (ANS) plays an important role in cardiac
arrhythmogenesis. Previous research has established an
understanding of the cardiac ANS and provided evidence to
support the relationship between autonomic tone and cardiac
arrhythmia (Shen and Zipes, 2014). For example, low-level
vagal stimulation has been shown to suppress AF episodes in
ambulatory dogs (Shen et al., 2011). Further, experimental studies
has shown that changes in sympathetic or parasympathetic tone
may change the atrial action potential and refractory period (Liu
and Nattel, 1997; Sharifov et al., 2004).

The atrial electrical activity during AF can be characterized
from the f-waves in the ECG; f-wave amplitude, f-wave frequency,
f-wave morphology, f-wave regularity, and f-wave complexity
has been proposed for this purpose (Petrutiu et al., 2006; Meo
et al., 2013; Lankveld et al., 2014; Sörnmo, 2018). Such f-wave
characteristics has been suggested for prediction of treatment
outcome, e.g., a low f-wave amplitudes predicted AF recurrence
after catheter ablation in a study including 54 patients with
persistent AF (Cheng et al., 2013), and large f-wave amplitude
predicted termination of AF during catheter ablation in another
study including 90 patients with persistent AF (Nault et al., 2009).
Also, Lankveld et al. (2016) found the chances of successful in
cather ablation in patients with persistent AF can be predicted
by AF complexity and frequency parameters; the study included
91 patients for training of the prediction models and validated
by 83 patients.

The f-wave frequency, often referred to as the atrial fibrillatory
rate, has received considerable clinical attention (Platonov et al.,
2014). Low f-wave frequency can predict successful outcome in
patient with persistent AF undergoing cardioversion (Bollmann
et al., 2008) and high f-wave frequency predicts early AF
recurrence (Bollmann et al., 2003). The f-wave frequency can
increase with the progression of AF, and patients with persistent
AF often have a higher f-wave frequency than patients with
paroxysmal AF (Alcaraz et al., 2011; Park et al., 2019). Further,
it has been shown that a low f-wave frequency is associated
with spontaneous conversion of recent-onset AF (Choudhary
et al., 2013). However, the link between f-wave frequency and
progression of disease is ambiguous since a low f-wave frequency
is also associated with poor outcome in heart failure patients with
long-standing AF (Platonov et al., 2012).

Previous studies have shown that the f-wave frequency can
change in response to changes in autonomic tone. The f-wave
frequency has been shown to increase in response to head-up tilt
(Ingemansson et al., 1998; Östenson et al., 2017) and decrease
in response to head-down tilt (Östenson et al., 2017). Further,

the f-wave frequency has been shown to follow a circadian
pattern where it increases during daytime and decreases at
night (Meurling et al., 2001; Sandberg et al., 2010). Controlled
respiration can induce cyclic fluctuations in the f-wave frequency.
Holmqvist et al. (2005) found that the spectral power of the f-
wave frequency trend in the respiratory frequency band increased
in response to controlled respiration and decreased in response to
vagal blockade for eight patients with permanent AF. However,
individual variations were large. In another study using a similar
methodology, the f-wave frequency was influenced by controlled
respiration and attenuated by the vagal blockade in only two out
of eight patients with permanent AF (Stridh et al., 2003).

The aim of this study is to develop a methodology that can
be used to quantify respiratory induced variations in the f-
wave frequency from resting ECG. This is challenging, since (1)
respiratory induced f-wave frequency modulation is very small
and may be concealed by other variations and (2) the respiration
rate is unknown andmay vary over time. A preliminary version of
this work, where the respiration rate was assumed to be known,
was presented at the CinC conference 2020 (Abdollahpur et al.,
2020). In contrast, the respiration rate in the present study is
estimated from the ECG.

2. MATERIALS AND METHODS

A schematic outline of the methodology is shown in Figure 1.
An f-wave signal x(n) is extracted from the ECG by QRST
cancelation (section 2.3). A model-based approach to f-wave
characterization is applied to estimates an f-wave frequency

trend f̂ (n) and a signal quality index S from x(n) (section 2.4).

Respiratory modulation in f̂ (n) is estimated using a bandpass

filtering approach (section 2.5). A respiration rate estimate f̂r(n),
which is required for the bandpass filtering, is derived from the
ECG (section 2.6). The accuracy of the estimated respiratory
modulation magnitude 1f̄ is evaluated using simulated f-wave
signals xsim(n) (section 2.1). Finally, the method is applied to
analyse data from a clinical study (section 2.2).

2.1. Simulated Data
A modified version of the saw-tooth model (Stridh and Sörnmo,
2001) is used to simulate f-wave signals. The simulated f-waves
consists of the sum of a sinusoid with time-varying frequency and
its harmonic

xsim(n) =
2

∑

k=1

ak(n) sin(2πkf (n)n)+ v(n) (1)

The time-varying frequency is given by

f (n) = f

fs
+ 1f

2π frn
sin(2πn

fr

fs
)+ 8(n)

2πkn
(2)

where f defines the average fundamental frequency, and
respiratory f-wave frequency modulation is quantified by fr and
1f , defining the modulation frequency and the modulation
magnitude, respectively. Random phase variation, 8(n), is added

Frontiers in Physiology | www.frontiersin.org 2 April 2021 | Volume 12 | Article 653492

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Abdollahpur et al. Respiratory Induced Modulation in AF

FIGURE 1 | Schematic of the proposed method.

to account for other variations in the f-wave frequency; it is
modeled as white Gaussian noise with standard deviation σ8.
The amplitude of the kth harmonic is given by

ak(n) =
2

kπ

(

a+ 1a(n)
)

(3)

where a is the average f-wave amplitude, and 1a(n) quantifies
random amplitude variation and is assumed to have a Gaussian
distribution with mean zero and standard deviation a/5.

The following parameters are used for the simulations f-
wave signals: f = {5, 6, 7} Hz, fr = {0.1, 0.2, 0.3} Hz, 1f =
{0, 0.1, 0.2} Hz, a chosen such that standard deviation of signal
σx = 50 µV, and σ8 = {0, 0.25, 0.5, 0.75, 1}. White Gaussian
noise v(n) with standard deviation of 0.1a is added to form
realistic f-wave signals and the sampling frequency was set to
fs = 50Hz. For each parameter setting 10 realizations of xsim(n)
were considered, resulting in a total of 1,350 simulated signals.
Examples of xsim(n) with different values of σ8 are displayed in
Figure 2.

2.2. Clinical Data
The study population consists of eight pacemaker patients
with permanent AF and complete atrioventricular block that
participated in a clinical study (Holmqvist et al., 2005). The
clinical characteristics of the study population is summarized
in Table 1. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the
local Ethics Committee. All subjects gave their informed consent
for inclusion before they participated in the study. The study
protocol consisted of three phases; baseline rest (B), controlled
respiration (CR), and controlled respiration following injection

FIGURE 2 | Example of the xsim(n) with f = 5 Hz, fr = 0.2 Hz, 1f = 0.1 Hz,

and (A) σ8= 0, (B) σ8= 0.25, (C) σ8= 0.5, (D) σ8= 0.75, (E) σ8=1.

of atropine to induce full vagal blockade (PA), respectively.
Each phase lasted 5 min, and standard 12-lead ECG at 1 kHz
sampling rate was recorded throughout the study protocol.
During controlled respiration, the patients inhaled for 4 s and
exhaled for 4 s, following instructions from the study nurse.

2.3. Preprocessing and QRST Cancelation
Following preprocessing, atrial activity was extracted from
ventricular activity in the ECG using a spatiotemporal QRST
cancelation technique (Stridh and Sörnmo, 2001). Briefly, a
scaled, spatial, and temporally aligned average QRS complexes is
subtracted from each QRS complex in the ECG, the Cardiolund
ECG Parser was used for this task. Since the resulting f-wave
signal has negligible frequency content above 25 Hz, it was down-
sampled to 50 Hz. In the present study, the extracted f-wave
signal from lead V1 was subjected to analysis; this signal is
denoted x(n).

2.4. Model Based f-Wave Characterization
The harmonic f-wave model (Henriksson et al., 2018) is
employed to estimate the local f-wave frequency, phase, and
amplitude. In this model, f-waves are formulated by the complex
signal s(n; θ), defined as the sum of a complex exponential signal
with fundamental frequency f and its second harmonic,

s(n; θ) =
2

∑

m=1

Ame
j(m2π f

fs
n+φm) (4)

where Am and φm define the amplitude and phase, respectively,
of them:th harmonic, and fs is sampling frequency of x(n).

The model is fitted to the complex-valued analytic
representation of x(n), denoted xa(n), and obtained
using Hilbert transformation. The parameter vector
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TABLE 1 | Patient characteristics.

Patient Age, yr Gender EF,%
Left atrial

diameter (mm)

AF duration,

mo

Number of

cardioversions

Heart active

drugs
Comorbidity

a 62 Female 55 41 7 10 Diltiazem None

b 64 Male 45 43 5 15 None COPD

c 65 Female 35 37 9 4 Metoprolol HT, CHF

d 64 Female 55 32 30 4 None None

e 54 Male 55 46 24 7 Losartan None

f 59 Male 55 53 32 10 Losartan HT

g 68 Female 55 45 7 26 Spironolactone None

h 53 Male 55 32 24 7 Enalapril HT

Gross

average
61± 5 51± 7 41± 7 17± 11 10± 7

CHF, chronic heart failure; COPD, chronic obstructive pulmonary disease; EF, ejection fraction; HT, hypertension.

θ = [f A1 A2 φ1 φ2]T is estimated using a maximum
likelihood approach

θ̂ = argmin
θ

||xa(n)− s(n; θ)||2 (5)

The model is fitted to 20 ms overlapping 0.5 s segments of xa(n);

the local estimates f̂ results in an f-wave frequency trend f̂ (n)
sampled at 50 Hz.

In the present study, we analyse 5 min recordings obtained
during stable conditions and therefore we assume that the f-
wave frequency will not change drastically within the recording.

Hence, the local estimation of f̂ is constrained to the interval [f̂0−
1.5, f̂0 + 1.5] Hz, where f̂0 is an initial f-wave frequency estimate
determined by the maximum spectral peak in the interval [4, 12]
Hz of the Welch periodogram of the entire recording x(n).

The model error ê(n) = xa(n) − s(n; θ̂) is used to estimate a
signal quality index,

S = 1− σê

σxa
(6)

where σê and σxa denote the standard deviation of ê(n) and
xa(n), respectively (Henriksson et al., 2018). For any reasonable
estimate of s(n; θ̂), S is limited to the interval [0, 1], where one
represents the best model fit. A poor model fit, quantified by
a low value of S suggests that the parameter estimates θ̂ are
unreliable. In the present study, S is estimated based on the entire
5-min recording.

2.5. Estimation of Respiratory f-Wave
Modulation
A forth-order Butterworth band pass filter with a fixed bandwidth
β (Raja Kumar and Pal, 1985) and a center frequency determined

by the respiration rate f̂r(n) is employed to extract respiratory

modulation in f̂ (n). The bandwidth of filter is set to 0.06 Hz since
the magnitude of respiration rate estimation error is expected to

be constrained to this range (Kontaxis et al., 2020). The transfer
function of the filter is given by

H(z) = a0 + a2z
−2 + a4z

−4

1+ b1Wz−1 + (b2W2 + b2′)z−2 + b3Wz−3 + b4z−4

(7)
where the coefficients are given by

a0 = 1/(k2 +
√
2k+ 1)

a2 = −2a0

a4 = a0

b1 = −2k(2k+
√
2)a0

b2 = 4k2a0

b2′ = 2(k2 − 1)a0

b3 = 2k(−2k+
√
2)a0

b4 = (k2 −
√
2k+ 1)a0

(8)

and k andW are given by

k = cot(πβ/fs)

W = cos(2π fr/fs)

cos(πβ/fs)

(9)

respectively. The output of the filter is denoted f̃ (n). An estimate
of the magnitude of the respiratory f-wave frequency modulation

is given by the envelope of f̃ (n), obtained as the magnitude of
its analytic equivalent using Hilbert transformation. The estimate

is denoted 1f̂ (n). Since 1f̂ (n) varies over time, we use its 5
min average 1f̄ to quantify the magnitude of respiratory f-wave
frequency modulation in this study.

2.6. Estimation of Respiration Rate
A surrogate respiration signal is derived from the ECG leads
(V1, V2, V3, V4, V5, V6, I, II, III) by using homomorphic
filtering to extract slow variations in the amplitudes (Rezek and
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Roberts, 1998). First, the ECG signal is decimated to 50 Hz
and a zero-phase first-order Butterworth low-pass filter with a
cut-off frequency of 2 Hz is applied to emphasize slow variation

in the ECG amplitude caused by chest movements during the
respiratory cycle. Then, the peak envelope of the filtered ECG
signal is determined and smoothed using a Savitzky-Golay filter

FIGURE 3 | Left subplots indicate rl (n) from lead V1, V2, V3, V4, V5, V6, I, II, and III during baseline in the patient (b), and middle subplots are corresponding Welch

periodogram. The prominent peak in the respiratory interval (red solid line) is shown with red marker. The averaged spectra and respiration rate estimate can be seen

in the right subplot.
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with polynomial order four and frame length 251 corresponding
to 5 s, and the resulting envelope is down-sampled to 5 Hz.
A similar approach is applied separately to each ECG lead; the
surrogate respiration signal obtained from lead l is denoted rl(n).
A robust estimate of the respiration rate is obtained by combining
rl(n) obtained from all ECG leads using peak conditioned spectral
averaging (Bailón et al., 2006; Lázaro et al., 2013; Sandberg et al.,
2019). In this technique,Welch periodograms are estimated from
sliding segments of rl(n) from each lead, and periodograms of
sufficient quality are averaged to produce a power spectrum from
which the respiration rate can be estimated more robustly. In the
present study, Welch periodograms were computed based on 80
s sliding 75 s overlapping segments of rl(n), by averaging power
spectra of 50% overlapping 24 s subintervals. A periodogram is
considered to be of sufficient quality if it has a prominent peak in
the respiratory interval, defined by at least 85% of the maximal
peak height in the spectrum. The respiration rate estimates

obtained from the averaged spectra every 5 s are denoted f̂r(n).
An example of rl(n), corresponding Welch periodograms, and
averaged power spectra obtained from an 80 s time segment from
patient b in phase B, is displayed in Figure 3. In this example, the
average spectrum used for respiration rate estimation is based
on all leads except lead V5, for which the periodogram was
considered of insufficient quality.

3. RESULTS

The estimation accuracy of1f̄ is evaluated using simulations and

the estimation accuracy of f̂r(n) is evaluated using the CR and PA
phases of the clinical data for which the respiration rate is known.
Finally, results from analysis of clinical data during B, CR, and PA
are presented.

3.1. Estimation Accuracy of Respiratory
f-Wave Modulation
Signal quality S and 1f̄ were estimated from the simulated f-
wave signals using the methods described in sections 2.4 and
2.5, respectively. The sampling frequency fs in Equation (4) was
set to 50 Hz to match the sampling frequency of the simulated
f-wave signals. The respiration rate used for the band-pass
filtering was set to fr as used for the corresponding simulation.
Results from the analysis of simulated data are presented in
Figures 4, 5. Figure 4 shows that S decreases with increasing σ8

independently of the other parameter settings. The estimation
error, quantified by the absolute difference between 1f and 1f̄ is
displayed in Figure 5. Results suggest that 1f can be accurately
estimated if S is above ŴS = 0.5; 95% of the estimates has an
error below 0.01 Hz if S > 0.5. For S < 0.5 the estimation error
becomes large which indicates that the estimate 1f̄ is unreliable.
Hence a threshold ofŴS = 0.5 was used to determine if the signal
quality is sufficient for analysis.

3.2. Estimation of Respiration Rate in
Clinical Data
Respiration rate f̂r(n) was estimated from the clinical dataset
using the method described in section 2.6. Table 2 summarizes

FIGURE 4 | Signal quality S of xsim(n) plotted vs. σ8. Red dots indicate the

mean and blue whiskers indicate the std of S.

FIGURE 5 | Estimation error |1f̄-1f | and corresponding signal quality S of

xsim(n).

the estimated respiration rates f̂r(n) for each patient during B, CR,

and PA, respectively. The standard deviation of f̂r(n) within each
recording is smaller than the bandwidth of the filter β , implying
that the center frequency fr can be fixed to the mean f̄r .

The estimation accuracy of f̂r(n) was evaluated on the CR and
PA phases, for which the respiration rate is known to be 0.125

Hz. In all patients except one, f̂r(n) gave an accurate estimate of
the true respiration rate in the CR and PA phases (see Table 2). It

should be noted that patient b, for which f̂r(n) did not correspond
to 0.125 Hz in CR and PA, has a considerable amount of ectopic
beats, which may explain why the respiration rate estimation
failed. This patient was excluded from further analysis.
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TABLE 2 | Estimated respiration rate f̂r (n) (mean ± std) for B, CR, and P,

respectively.

Patient f̂rB (Hz) f̂rCR (Hz) f̂rPA (Hz)

a 0.268± 0.007 0.125± 0.000 0.125± 0.000

b 0.252± 0.006 0.162± 0.000* 0.180± 0.056*

c 0.208± 0.008 0.125± 0.000 0.125± 0.000

d 0.215± 0.007 0.125± 0.000 0.125± 0.001

e 0.232± 0.003 0.125± 0.000 0.125± 0.000

f 0.308± 0.002 0.125± 0.000 0.125± 0.000

g 0.232± 0.019 0.125± 0.000 0.125± 0.000

h 0.163± 0.003 0.125± 0.000 0.125± 0.000

Gross average 0.235± 0.043 0.129± 0.013 0.131± 0.019

*Indicates that f̂r (n) differed significantly from the true respiration rate.

3.3. Estimation of Respiratory f-Wave
Modulation in Clinical Data
The methodology as described in sections 2.3–2.6 was applied to
analyze the clinical data described in section 2.2. The sampling
frequency fs in Equation (4). was set to 50 Hz to match the
sampling frequency of the f-wave signals. Figure 6 illustrates the
signals obtained in each step of the analysis for patient b in
phase B.

The signal quality was sufficient for analysis (S > ŴS ) in all

recordings except one. The mean and standard deviation of f̂ (n)

and 1f̂ (n) are shown in the Table 3. A Kruskal-Wallis test with
Dunn-Sidak correction was applied to analyze if the differences
between phases for each patient were significant. Results indicate

that1f̂ (n) was significantly larger in CR than in B for all patients,

and that1f̂ (n) was significantly smaller in PA than in CR for four

patients (p< 0.05). For f̂ (n) the results weremore heterogeneous;

f̂ (n) was significantly larger in CR than in B for three patients
and significantly smaller in CR than in B for three patients (p

< 0.05). Further, f̂ (n) was significantly larger in PA than in CR
for four patients and significantly smaller in PA than in CR for

three patients (p < 0.05). The gross average 1f̂ was 0.15± 0.01
Hz (mean±std) during B, 0.18± 0.02 Hz during CR, 0.17± 0.03
Hz during PA. There is a trend toward increased 1f̄ during CR
and decreased 1f̄ during PA (see Figure 7). A Friedman test was
applied to analyze if the differences in 1f̄ between B, CR, and PA
were significant. Results indicate that only the changes between B
and CR are significant.

The modulation magnitude 1f̄ is plotted vs. the average f̂ (n),
denoted f̄ , in Figure 8. There is no correlation between 1f̄ and f̄
in any of the phases.

4. DISCUSSION

The aim of the study was to develop a method to quantify
respiratory modulation in the f-wave frequency. Simulation

FIGURE 6 | Signals obtained in each step of the analysis of patient b in phase

B. (A) ECG from lead V1, (B) corresponding extracted f-waves x(n), (C)

estimated f-wave frequency trend f̂ (n), and (D) corresponding (solid blue)

filtered f̂ (n), (dashed purple) 1f̂ (n), and (solid red) estimated 1f̄ . Note the that

(A,B) shows 10 s excerpts of the signals, whereas (C,D) shows the full 5 min

signal.

results shows that the method works accurately provided that the
signal quality is sufficient (cf. Figure 5). Our results from analysis
of clinical data suggest that the magnitude of the respiratory f-
wave frequencymodulation provide complementary information
to the average f-wave frequency (cf. Figure 8).

In previous studies that have investigated respiratory
modulation in the f-wave frequency, a spectral approach was
used (Stridh et al., 2003; Holmqvist et al., 2005). In this study,
we use a recently proposed model-based approach that allows
more detailed f-wave characterization and provides a signal
quality metric S that can be used to exclude unreliable frequency
estimates caused by artifacts in the f-wave signal (Henriksson
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TABLE 3 | Estimated f-wave frequency f̂ (n) and respiratory frequency modulation 1f̂ (n) (mean ± std) from clinical data.

Patient 1f̂B(n)(Hz) 1f̂CR(n)(Hz) 1f̂PA(n)(Hz) f̂B(n)(Hz) f̂CR(n)(Hz) f̂PA(n)(Hz)

a 0.16± 0.06 0.17± 0.09∗ 0.16± 0.08• 6.84± 0.43 6.77± 0.45∗ 6.71± 0.41•∗

c 0.13± 0.06 0.16± 0.08∗ 0.13± 0.07• 6.17± 0.35 6.31± 0.37∗ 6.46± 0.36•∗

d 0.16± 0.08 0.17± 0.08∗ 0.14± 0.07•∗ 6.57± 0.43 6.75± 0.39∗ 6.36± 0.43•∗

fe 0.16± 0.08 0.19± 0.10∗ 0.19± 0.10∗ 7.68± 0.51 7.39± 0.54∗ 7.57± 0.54•∗

f 0.14± 0.07 0.21± 0.10∗ 0.21± 0.12∗ 7.46± 0.46 7.29± 0.49∗ 7.14± 0.48•∗

g — 0.17± 0.08 0.16± 0.08• — 5.91± 0.41 5.96± 0.42•

h 0.15± 0.08 0.17± 0.07∗ 0.17± 0.07∗ 7.73± 0.43 8.11± 0.44∗ 7.98± 0.43•∗

Gross average 0.15± 0.01 0.18± 0.02 0.17± 0.03 7.07± 0.64 6.93± 0.73 6.88± 0.71

Subscripts {B, CR, PA} indicates phase of recording, (∗ ) indicates significant differences to B and (• ) indicates significant differences to CR. The phase B recording from patient g was

excluded from analysis due insufficient signal quality (S < ŴS ).

FIGURE 7 | 1f̄ estimated from phase B, CR, and PA recordings, respectively.

Each curve corresponds to a patient.

et al., 2018). It should be noted that the settings in the present
study were different from the ones used in Henriksson et al.
(2018), to facilitate analysis of respiratory modulation in f-wave
frequency trend. Since the recordings in the present study were
obtained during stationary conditions, the initial frequency
estimate was based on the entire 5 min recording rather than
on 5 s segments of the recording. Further, we allowed a larger
local frequency deviation from the initial estimate; 1.5 Hz rather
than 0.25 Hz. In Henriksson et al. (2018), it was shown that S
larger than 0.3 was sufficient for accurate estimation of f̂ (n).
Our simulation results indicate that a similar S is required for
accurate estimation of the average f-wave frequency with the
present settings. Analysis of small variations in the frequency
trend, however, requires better signal quality, and our simulation
results indicate that S larger than 0.5 is required for accurate
estimation of respiratory f-wave frequency modulation.

The proposed methodology relies on ECG derived respiration
rate estimation. It should be mentioned such estimation requires
ECG length sufficiently long due to respiratory frequency during

baseline phase. If the respiration was known the method
could be apply to shorter segment. Several methods have been
proposed to extract respiratory information from the ECG.
One of the most common approaches is to use respiratory
sinus arrhythmia, i.e., respiratory induced variations in the
heart rate (Charlton et al., 2018). However, such approach
is not feasible during AF where the heart beats result from
complex interactions between the atria and the atrioventricular
node. Another approach is to use beat-to-beat morphological
variations in the QRS complexes caused by chest movements,
using e.g., vectorcardiogram loop analysis (Bailón et al., 2006).
Such analysis is more challenging in AF due to presence of
f-waves, however, a recent study showed that respiration rate
could be accurately estimated from the ECG using a method
based on the differences between the maximal upslope and the
minimal downslope within a QRS interval (Kontaxis et al., 2020).
In the present study we analyze ECG recordings from patients
with pacemakers. The pacemaker causes sharp spikes in the
signal and, hence, the previously proposed methods based on
morphological variations in the QRS complex are not applicable.
Instead, we exploit variation in the ECG amplitude caused by
chest movements to estimate the respiration rate. Our results
show that the estimated respiration rate corresponded to the
expected respiration rate during controlled respiration in all
patients except one (cf. Table 3). For that patient we found that a
considerable amount of ectopic beats caused the respiration rate
estimation to fail.

In the present study we used a filtering approach to extract
respiratory variations in the f-wave frequency trend. Adaptation
of the filter to varying respiration rates is possible, however, in
the present data the respiration rate was found to be constant
within each phase and no adaptation of the filter was required.
Another approach to extract respiratory variations in the f-wave
frequency trendwould be to use orthogonal subspace projections.
In this approach the f-wave frequency trend can be decomposed
into two different components, one respiratory component, and
one residual component by a projection matrix. Such approach
has previously been used to remove respiratory influence in the
heart rate for improved heart rate variability analysis (Varon et al.,
2019). In contrast to the filtering approach which relies on the
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FIGURE 8 | The modulation magnitude 1f̄ plotted vs. average the f-wave frequency f̄ for each patient during (top) B, (middle) CR, and (bottom) PA phase,

respectively. Patients are identified with different colors.

respiration rate, the subspace projections approach requires that
a respiratory signal is available.

It has been shown that respiratory modulation in heat
rate, i.e., respiratory sinus arrhythmia, can be used for non-
invasive assessment of parasympathetic activity (Katona and
Jih, 1975; Alcalay et al., 1992). In this study we aim to
quantify respiratory modulation in the atrial activity during
AF. Our results from clinical data shows that the magnitude
of respiratory f-wave frequency modulation increase with deep
breathing (increased parasympathetic activity) and decrease with
vagal block (decreased parasympathetic tone), suggesting that
respiratory modulation in the f-wave frequency trend can be
partly attributed to parasympathetic regulation in the atria during
AF. This is supported by a recent simulation study that showed
that the parasympathetic neurotransmitter acetylcholine could
be an important factor involved in f-wave frequency modulation
(Celotto et al., 2020). After injection of atropine, there is still
considerable variation in the respiration frequency band; these
variations may be caused by other factors such as the endocrine
system (Gordan et al., 2015) or stretch of the atrial tissue induced
by respiratory chest movements.

4.1. Limitations
The proposed methodology requires ECG recordings longer than
the 10 s clinical standard. The requirement that is motivated by

the respiratory cycle length, which is assumed to be between 10
and 2.5 s corresponding to a respiration rate of 6–24 breaths
per minute. Therefore, a 10 s ECG segment may contain
only one complete respiratory cycle which is insufficient for
robust analysis of respiratory modulation. The methodology
was tested in a small group of AF patients with pacemakers in

controlled settings and the feasibility of the methodology has

to be verified in a larger study population. Further, the clinical
significance of respiratory induced f-wave modulation remains
to be established.

5. CONCLUSIONS

We introduce a novel approach to quantify respiratory
induced variations in the f-wave frequency from the
ECG. Results from simulated signals indicate that
respiratory modulation can be accurately estimated
when the signal quality is sufficient. Results from
analysis of clinical data suggest that respiratory f-wave
frequency modulation increase during deep breathing
and decrease after injection of atropine, implying that
parasympathetic ANS regulation is a contributing factor to
the modulation.
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