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The trimeric severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) spike protein (S) is the sole viral protein respon-
sible for both viral binding to a host cell and the membrane
fusion event needed for cell entry. In addition to facilitating
fusion needed for viral entry, S can also drive cell–cell fusion, a
pathogenic effect observed in the lungs of SARS-CoV-2–infected
patients. While several studies have investigated S requirements
involved in viral particle entry, examination of S stability and
factors involved in S cell–cell fusion remain limited. A furin
cleavage site at the border between the S1 and S2 subunits
(S1/S2) has been identified, along with putative cathepsin L and
transmembrane serine protease 2 cleavage sites within S2. We
demonstrate that S must be processed at the S1/S2 border in
order to mediate cell–cell fusion and that mutations at potential
cleavage sites within the S2 subunit alter S processing at the
S1/S2 border, thus preventing cell–cell fusion. We also identify
residues within the internal fusion peptide and the cytoplasmic
tail that modulate S-mediated cell–cell fusion. In addition, we
examined S stability and protein cleavage kinetics in a variety of
mammalian cell lines, including a bat cell line related to the likely
reservoir species for SARS-CoV-2, and provide evidence that
proteolytic processing alters the stability of the S trimer. This
work therefore offers insight into S stability, proteolytic pro-
cessing, and factors that mediate S cell–cell fusion, all of which
help give a more comprehensive understanding of this high-
profile therapeutic target.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the causative viral agent of the ongoing coronavirus
disease 2019 (COVID-19) global pandemic. Thus far, COVID-
19 has impacted over 86 million people globally, resulting in
the death of more than one and a half million individuals
(https://covid19.who.int/). Because of the widespread global
impact of this pandemic, a concerted effort has been made to
rapidly develop a vaccine or an antiviral treatment.

The SARS-CoV-2 spike (S) protein is the major trans-
membrane glycoprotein studding the surface of the viral par-
ticle and is exclusively responsible for viral attachment and cell
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entry, thus making it the major target of current vaccine
strategies and antiviral therapeutics (1). The S protein consists
of two distinct subunits: the S1 subunit, which binds to the
known host receptor, angiotensin-converting enzyme 2
(ACE2) (2–10), and the S2 subunit that promotes the viral-to-
host cell membrane fusion event needed for viral infection (1,
7, 11–17). Most known coronavirus (CoV) S proteins undergo
two post-translational proteolytic cleavage events, one at the
border of the S1 and S2 subunits and one downstream within
the S2 subunit (termed S2’) (1, 12, 14–20).

Similar to several other CoVs, SARS-CoV-2 likely utilizes
bats as a reservoir species, specifically Rhinolophus affinis or
horseshoe bats (10, 21–24). SARS-CoV-2 has 96% sequence
identity to a CoV found in this bat population, RaTG13, with
limited differences between them (24). One difference is the
polybasic, PRRA, insertion at the S1/S2 border, which gives
this site the canonical sequence requirements for cleavage by
the cellular proprotein convertase furin (25–28). This change
may be a key factor in the zoonotic transmission of SARS-
CoV-2. The presence of a furin consensus sequence at the
cleavage site has been observed in other human-infecting
CoVs (25, 29–31) as well as in highly pathogenic forms of
influenza (32, 33), and previous studies have demonstrated its
functional significance. For SARS-CoV-2, the insertion is
suggested to allow for expanded cellular tropism and infec-
tivity (12, 25, 34, 35). For most CoVs, cleavage at a down-
stream S2’ site may be carried out by a number of cellular
proteases, including serine proteases like transmembrane
serine protease 2 (TMPRSS2), or endopeptidases, including
members of the cathepsin family (12, 13, 18–20).

Following receptor binding by the S1 subunit and priming
by proteolytic cleavage, the S2 subunit of S promotes the
critical membrane fusion step of viral entry by undergoing
dynamic conformational changes to promote merging of the
viral and host cell membranes (9, 34, 36). For entry of SARS-
CoV-2, cleavage at the S1/S2 border (by furin or a similar
protease) is critical for TMPRSS2 cleavage and entry at the
plasma membrane. However, when S1/S2 border cleavage is
blocked, viral entry can be mediated through endosomal
compartments with proteolytic cleavage carried out by a
member of the cathepsin family, similar to the entry pathway
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SARS-CoV-2 spike protein stability, cleavage, and fusion
of SARS-CoV (9, 34, 36–38). In addition to promoting virus–
cell fusion during viral particle entry, S can also promote cell–
cell fusion, a pathogenic effect observed in the lungs of patients
with COVID-19 where neighboring cells fuse together to form
large multinucleated cells, termed syncytia (39–44). While the
role of cellular proteases and S cleavage in viral entry is being
extensively investigated, insight into the cleavage requirements
for cell–cell fusion in SARS-CoV-2 remains more limited.
Recent studies have suggested that S cleavage at the S1/S2
border is critical for cell–cell fusion, and TMPRSS2, while not
required, appears to enhance this cell–cell fusion (36, 39, 45,
46). However, relatively little is known about the timing and
efficiency of these cleavage events, and how mutations in S
may affect the process.

Though CoVs mutate at a slower rate than most RNA vi-
ruses because of the presence of viral proofreading machinery,
a meta-analysis of genomes of circulating SARS-CoV-2 found
several mutations within S circulating in significant percent-
ages of the analyzed populations (47, 48). The most common
mutation, now found in most of the global population, is an
aspartate to glycine mutation at residue 614 (D614G) in the S1
subunit. Additional mutations throughout the S1 and S2
subunits of S have been found in a smaller percentage of the
viral population. Since S2 contains the fusion machinery,
mutations in this region may have an impact on overall protein
stability and fusion. Understanding the effects of mutations in
this region will allow for a more comprehensive understanding
of the overall S function.

We tested WT SARS-CoV-2 S and variants in different host
cell lines to analyze the effects on stability, proteolytic pro-
cessing, and cell–cell fusion. Here, we demonstrate that furin
cleavage of S at the S1/S2 border is required for efficient cell–
cell fusion and that the presence of TMPRSS2 in target cells
enhances S-mediated cell–cell fusion, consistent with previous
studies (36, 45). We also show that mutations of the cleavage
sites at the S1/S2 border, S2’ site, or a cathepsin L (cath L)
cleavage site, conserved from SARS-CoV S, all reduce initial
cleavage at the S1/S2 border during viral protein synthesis,
suggesting that mutations downstream of the S1/S2 border
likely alter the overall conformation of the protein. In addition,
we identify two S2 subunit residues, one in the internal fusion
peptide and another in the cytoplasmic tail, which alter protein
fusion function when mutated without changing overall pro-
tein expression and cleavage, providing more insight into re-
gions of the protein important for the regulation of the fusion
process. Finally, we demonstrate protein turnover and cleavage
kinetics in a range of host cells as well as in the presence of
several exogenous proteases, providing a more comprehensive
picture of the S protein.
Results

Stability and proteolytic cleavage of SARS-CoV-2 spike in
relevant cell lines

To examine the stability and cleavage patterns of SARS-
CoV-2 S in a range of mammalian cell lines, several cell
lines were transiently transfected with pCAGGS-S. We used
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Vero cells, an easily transfectable cell line frequently used in
the field, A549 cells, a human adenocarcinoma alveolar basal
epithelial cell line, to better understand S in a more relevant
cell model, cath L-mouse embryonic fibroblast (MEF), a
previously generated cath L knockout cell line used to un-
derstand the contribution of cath L to S processing, WT
MEFs, as a control to the cath L-line, and LoVo cells, a
human colon carcinoma line that does not express func-
tional furin to allow for analysis of the role of furin. Stability
of S and the timing of proteolytic processing were deter-
mined by pulse-chase labeling and immunoprecipitation. S
protein detected from immunoprecipitation with an S2
subunit–specific antibody was observed as two bands, a
band around 150 kDa corresponding to an uncleaved full-
length species of the protein, labeled S, and a band
around 97 kDa corresponding to a species of S cleaved at
the border of the S1 and S2 subunits, labeled S2 (Fig. 1A;
reference gel with molecular weight markers and expected
band positions for S2 and the S2’ [not visualized] in
Fig. S1E). After a 1-h chase, a band corresponding to S2 was
observed in Vero, A549, and both MEF cell lines (Fig. 1A).
In LoVo cells, a band corresponding to the S2 subunit did
not appear until 4 h of chase, verifying that lack of furin
impedes efficient processing at S1/S2, and that the S1/S2
border can be cleaved by cellular protease other than furin
(Fig. 1A) in a slower and less efficient process. Vero cells,
A549 cells, MEFs, and cath L-MEFs displayed similar
cleavage patterns over time, whereas LoVo cells displayed
significantly less cleavage at 2 and 4 h. LoVo cells had only
2% cleavage at 2 h and 18% cleavage at 4 h, compared with
about 20 to 40% at 2 h and 30 to 60% at 4 h for all other
cell types (p < 0.05). However, LoVo cells reached cleavage
levels similar to the other cell lines at later chase time
points (Fig. 1B). Bands smaller than 90 kDa that would
correspond to cleavage at the S2’ site were not observed in
any cell line (the expected position of this band is noted on
the full-length gel in Fig. S1E). In the examined cell lines,
expressed S remained stable through the first 4 h (Fig. 1C).
By 24 h after label, only 20 to 30% of the original labeled
protein remained for all cell lines.

Several studies have examined the cellular proteases
involved in the cleavage of S. Furin and TMPRSS2 appear to
play key roles in cleavage at the S1/S2 border and S2’ site,
respectively (9, 25, 34, 49, 50). In addition, lysosomal pro-
teases such as cath L/B can be utilized for viral entry in
TMPRSS2-deficient cells (9, 37, 45). To examine how higher
expression levels of these proteases affect S stability and
cleavage, Vero and A549 cells were transiently transfected
with S alone or S with TMPRSS2, furin, or cath L. Pulse-
chase analysis demonstrated that the transient expression
of TMPRSS2 or cath L did not affect the cleavage pattern of
S (Fig. 1, D and E and Fig. S1B), and a band corresponding
to S2’ cleavage was not observed in either Vero or A549
cells. However, transient overexpression of furin increased
the cleavage observed at the S1/S2 border in Vero cells at 4
and 8 h of chase (p < 0.05) and at all times after zero for
A549 cells (p < 0.01 for 1- and 8-h chase, p < 0.0001 for 2-



Figure 1. SARS-CoV-2 spike is cleaved at the S1/S2 subunit border in a variety of cell lines. A, the indicated cell types transiently expressing S were
metabolically labeled for 1 h and chased for times indicated (hours). Band densitometry was used to quantify bands representing full-length S or S cleaved
at the S1/S2 border (S2). B, percent cleavage (S2 divided by S plus S2) and (C) overall protein stability (total S, S plus S2, for each time point, normalized to
time point 0) were calculated for spike in each cell line (n = 3). D, Vero cells or A549 cells transiently expressing S alone or S with proteases were
metabolically labeled and chased for the times indicated (hours). Percent cleavage was measured using band densitometry in both (E) Vero and (F) A549
cells (B, C, E, and F are represented as the average ± SD for three independent experiments). S, spike protein; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2.

SARS-CoV-2 spike protein stability, cleavage, and fusion
and 4-h chase times) (Fig. 1, E and F). This suggests that
the normal levels of cellular furin can eventually promote
maximal levels of S1/S2 cleavage in both Vero and A549
cells, but overexpression of furin facilitates more rapid
cleavage of the S1/S2 border. Interestingly, in both experi-
ments (Fig. 1, A and D), some uncleaved S remains even
after 24 h, indicating that a small portion of the S popu-
lation is not cleaved by furin or other endogenous proteases
in these cell lines. Overall protein stability was not affected
by coexpression of any tested proteases (Fig. S1B). Finally, to
further analyze the capability of each of these proteases to
cleave the S protein, we transiently transfected S with furin,
TMPRSS2, or cath L in LoVo cells since they demonstrated
a significant reduction in S protein cleavage compared with
other cell lines tested. Only coexpression with furin
appeared to restore S protein cleavage at the S1/S2 border
(Fig. S2E).
Spike-mediated cell–cell fusion

The S2 subunit of S mediates both viral–cell fusion and
cell–cell fusion (39–41), with cell–cell fusion readily observed
both in a laboratory setting and in the lungs of SARS-CoV-2–
infected patients (39–44). To better understand the re-
quirements and contribution of cellular proteases to S2-
mediated cell–cell fusion, we performed syncytia and re-
porter gene assays. For syncytia analysis, a small number of
syncytia were observed at 24 h post transfection (hpt) in all
samples (Fig. 2A). At 48 hpt, similar numbers of large syncytia
were observed with S alone or S coexpressed with TMPRSS2
J. Biol. Chem. (2021) 297(1) 100902 3



Figure 2. CoV-2 spike alone mediates cell–cell fusion. Vero cells expressing S and TMPRSS2, furin, or cathepsin L were imaged at 24 (A) and 48 (B) hpt for
syncytia formation (black arrows). Magnification bar is 100 μM. C, a luciferase reporter gene assay was performed with target cells (BSR/T7 cells expressing
hACE2 and additional proteases) overlaid onto effector cells (Vero or A549 cells expressing S) for 9 h. D, luciferase reporter gene experiment was performed
with additional proteases coexpressed with S in Vero cells and overlaid with target cells expressing hACE2. E, the effect of neuropilin in both target and
effector (Vero) cells was examined with a luciferase reporter gene assay. Expression of effector cells is listed along the x-axis. Target cell expression is listed
in the legend to the graph. Results expressed as the percent fusion normalized to samples with S in the effector cells and hACE2 only in the target cells (C–E
are average ± SD for three independent experiments, performed in duplicate). Significance was determined by two-way ANOVA. *p < 0.05, ****p < 0.0001.
CoV-2, coronavirus 2; hACE2, human angiotensin-converting enzyme 2; hpt, hours post transfection; S, spike protein; TMPRSS2, transmembrane serine
protease 2.

SARS-CoV-2 spike protein stability, cleavage, and fusion
or cath L (Fig. 2B). However, coexpression of S with furin
resulted in increased syncytia formation. The cells exhibited
nearly complete fusion, suggesting that the presence of exog-
enous furin further increases S-mediated cell–cell fusion
(Fig. 2B, panel 3).

To quantitate S-mediated cell–cell fusion, luciferase re-
porter gene fusion assays were performed (Fig. S2A), using a 9-
h overlay that was determined to be optimal (Fig. S2B). To
characterize the role of cellular proteases in the human ACE2
(hACE2)–expressing target cells, S-expressing effector cells
were overlaid with target cells containing hACE2 alone or
hACE2 with TMPRSS2, furin, or cath L. The amount of
plasmid transfected was kept constant by supplementing with
a plasmid encoding an empty expression vector (EV). When
Vero cells were used as the S-expressing effector cell and
TMPRSS2 was present in the target cells, a significant increase
in fusion was observed. This is consistent with the concept that
TMPRSS2 plays a role in fusion after or during the hACE2
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(receptor)-binding step in the fusion cascade (Fig. 2C) (9, 11,
31, 36, 45), although the presence of TMPRSS2 in these target
cells also appeared to process hACE2 (Fig. S2C, also observed
in Ref. (39)). In samples with cath L or furin in the target cells,
fusion levels were similar to hACE2 + EV (Fig. 2C). When
A549 cells were used as the S-expressing effector cell, none of
the conditions produced statistically significant differences
from background levels (Fig. 2C), so Vero cells were used as
the effector cells for the remainder of the experiments
performed.

Having analyzed the function of proteases in the target cells,
we were also interested in the role of proteases present in the
S-expressing effector cells. To test this, EV, TMPRSS2, cath L,
or furin was coexpressed with S, and samples were overlaid
with target cells expressing hACE2 (Fig. 2D). Similar to what
we observed in syncytia assays, only coexpression of S and
furin produced a statistically significant increase in fusion
(Fig. 2D). This increase is likely because of the increase in the
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amount of cleaved protein present when S is coexpressed with
furin (Fig. 1E).

Neuropilin-1 has been suggested as a coreceptor for SARS-
CoV-2 S and may be important for the viral infection infil-
trating the neuronal network (51–53). To assess the contri-
bution of neuropilin in cell–cell fusion, effector cells were
transfected with S and either EV, furin, neuropilin, or furin and
neuropilin (F + N). Target cells were transfected with EV,
hACE2, neuropilin, or hACE2 and neuropilin (neuropilin
expression verified by Western blot, shown in Fig. S2D).
However, no significant increase in fusion was observed when
neuropilin was present in either the target or effector cells
(Fig. 2E), suggesting that neuropilin does not appear to play a
significant role in cell–cell–mediated fusion. Interestingly,
when neuropilin is coexpressed in S-containing effector cells,
there is no difference observed in fusion compared with
samples with S + EV, suggesting that neuropilin also does not
have an inhibitory effect (Fig. 2E). In addition, when neuropilin
alone is expressed in the target cells, fusion levels above
background levels are not observed. This indicates that in cell–
cell fusion, S-binding hACE2 appears to be the major inter-
action during the receptor attachment function.
Importance of CoV-2 cleavage sites

Early protein sequence analysis of CoV-2 S protein
demonstrated the presence of three potential cleavage sites
(25): a putative furin cleavage site at the S1/S2 border; a
conserved site 10 residues downstream from the S1/S2 border,
shown to be cleaved by cath L in SARS-CoV; and the S2’ site
that is potentially cleaved by TMPRSS2 (25). To functionally
understand the role of each cleavage site in S cell–cell fusion, a
series of mutants were made. Alanine mutations of all the
residues within each potential cleavage site (S1/S2 AAAAA,
cath L AAAA, and S2’ AA) and single alanine mutations at the
terminal arginine of the S1/S2 border and S2’ site (S1/S2
PRRAA, S2’ KA) were created. Finally, a mutant with residues
(PRRA) upstream of the S1/S2 border deleted (del. PRRA),
leaving a single R residue at this site, was made, creating an S1/
S2 border similar to SARS-CoV S (Fig. 3A). Pulse-chase
analysis (Fig. 3B) showed that all mutants exhibited similar
protein degradation compared with WT S in Vero cells.
However, in A549s, several mutants demonstrated more rapid
protein turnover than WT S at later chase time points. Sur-
prisingly, mutations at all three sites led to either a complete
loss or a significant delay in the proteolytic processing of the S
protein at the S1/S2 border, indicated by the lack of a band
corresponding to the S2 subunit. This suggests that mutations
at distal sites can strongly influence cleavage at S1/S2. After an
8-h chase, no cleavage at the S1/S2 border was observed for
the mutants del. PRRA and S1/S2 AAAAA, confirming that
deletion or mutation of the furin consensus prevents cleavage
at this site. For all other mutants, cleavage at the S1/S2 border
reached 30 to 50% of WT levels in both Vero and A549 cells at
the 8-h time point (Fig. 3, C and D). Accurate analysis of
protein cleavage was not possible by the 24-h time point since
only 20 to 30% of protein remained (Fig. S1B). Finally, surface
biotinylation showed that both total and cell surface expres-
sion of all mutants were not significantly different from WT S
levels (Fig. 3, E–G). Similar to the results discussed previously,
a band corresponding to cleavage at the cath L site or the S2’
site was not observed in any condition tested.

To assess the effects of the mutations on cell–cell fusion,
syncytia formation assays in Vero cells were performed. While
syncytia were readily observed in all samples containing WT S,
none of the mutants exhibited syncytia formation at 24 or 48
hpt when expressed alone (Fig. S3, panel 2). Addition of
TMPRSS2 did not recover syncytia formation in any mutant
(Fig. S3, panel 3), and the addition of furin only recovered
syncytia formation in the S1/S2 PRRAA mutant (Fig. S3, panel
4, syncytia denoted with black arrows). To analyze this result,
cells were lysed following the 48-h imaging, and protein levels
were examined by Western blot. Results showed that coex-
pression of furin with the S1/S2 PRRAA mutant restored
cleavage at the S1/S2 border, whereas all other mutants did not
show cleavage at this site (data not shown). This suggests that
cleavage at the S1/S2 border is critical for cell–cell fusion, and
that the double R motif in the PRRAA mutant can be cleaved
by overexpressed furin.

Luciferase reporter gene analysis of fusion in Vero cells
transfected with WT S or each mutant showed similar results
to the syncytia assays, with none of the mutants showing
fusion levels above background (Fig. 3H). While the S2’ AA
mutant displayed fusion levels around 25%, these levels were
not significantly above background levels. Reporter gene assays
were also carried out with addition of transiently expressed
furin in the S-expressing effector cells, but no significant in-
creases in fusion were observed. Since all cleavage mutants
created reduced cleavage at the S1/S2 subunit border, the re-
ductions in cell–cell fusion may be attributable to loss of
cleavage at this site.
Effect of circulating S mutations on protein stability, cleavage,
and fusion

An early examination revealed several mutations in the S
protein gene in circulating viral variants (47, 48), including
the D614G substitution now found in most of the global
SARS-CoV-2 (47, 54–60). The D614G mutation lies in the S1
subunit of the protein, just downstream of the receptor-
binding domain and is proposed to play a critical role in
receptor binding by alteration of the positioning of the
receptor-binding domain. Other mutations in circulating
variants were found throughout the S2 subunit (48). To
assess the effect(s) of these mutations, we created the mu-
tants D614G, A831V, D839Y/N/E, S943P, and P1263L
(Fig. 4A). Pulse-chase analysis in Vero and A549 cells
(Fig. 4B) demonstrated that all circulating mutants tested
exhibited protein turnover (Fig. S1D) and protein cleavage
(Fig. 4C) at similar rates as WT S in both cell lines. Surface
biotinylation confirmed that all tested mutants displayed total
protein and surface protein levels comparable to WT S,
suggesting that none of the mutants caused major defects or
enhancement of protein trafficking to the cell surface (Fig. 4,
J. Biol. Chem. (2021) 297(1) 100902 5



Figure 3. Mutations at all three potential spike cleavage sites reduce cleavage at the S1/S2 subunit border. A, full or partial alanine substitution
mutations were made at each of the three potential cleavage sites. B, plasmids expressing WT S or mutants were transfected into Vero and A549 cells, cells
were metabolically labeled for 1 h, and chased for the times indicated. Percent cleavage was determined in (C) Vero cells and (D) A549 cells (average ± SD
for three independent experiments). E, surface biotinylation was performed on cells expressing WT S and each mutant. Cells were radiolabeled for 6 h.
Protein expression in (F) Vero and (G) A549 cells, results are normalized to WT S, and error bars represent the SD (average ± SD for three independent
experiments). H, a luciferase reporter gene assay was performed using target cells expressing hACE2 and EV or TMPRSS2, and effector (Vero) cells with WT S
or each mutant. I, luciferase reporter gene analysis with cells expressing hACE2 and effector (Vero) cells transfected with S or S mutants and EV or furin-
expressing plasmids. Results of both reporter gene assays are shown normalized to samples with WT S in the effector with hACE2 in target cells (average ±
SD for three independent experiments, performed in duplicate). EV, expression vector; hACE2; human angiotensin-converting enzyme 2; S, spike protein;
TMPRSS2, transmembrane serine protease 2.

SARS-CoV-2 spike protein stability, cleavage, and fusion
D and E). Syncytia formation and evaluation of protein
location by immunofluorescence were similar between all
mutants and WT S (Fig. 5). Interestingly, cellular extensions
containing the S protein were observed for the WT and each
of the mutants (Fig. 5, white arrows) (61). Finally, luciferase
reporter gene assays were performed. While most of the
mutants displayed fusion levels similar to WT S, three mu-
tants exhibited significant changes (Fig. 4F). D839Y and
D839N displayed significantly reduced levels of fusion
compared with WT (p < 0.01 and p < 0.05, respectively),
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and P1263L showed a significant increase in fusion compared
with WT (p < 0.05). These changes in fusion are unlikely to
be due to significant differences in cell surface protein
expression or cleavage levels, although it is worth noting that
D839Y and D839N demonstrated a lower percent cleavage
than other mutations tested, though this decrease was not
statistically significant. These data may suggest that residues
near the internal fusion peptide, where D839 is located, and
residues in the cytoplasmic tail, where P1263 is located, may
play an important role in controlling the fusion cascade.



Figure 4. Spike S2 subunit mutations found in circulating variants variably affect spike-mediated cell–cell fusion. A, mutations in the S2 subunit of S
identified in circulating SARS-CoV-2 variants. B, WT S or the mutants were transfected into Vero and A549 cells, metabolically labeled for 1 h, and chased for
the times indicated. Percent cleavage was determined in (C) Vero and A549 cells (average ± SD for three independent experiments). D, surface biotinylation
on cells expressing WT S or each mutant. E, total and surface protein expression normalized to WT S (average ± SD for three independent experiments). F, a
luciferase reporter gene assay was performed using target cells expressing EV or hACE2, overlaid onto effector cells transfected with WT S or each mutant.
Results are normalized to samples with WT S in the effector cells and hACE2 in target cells (average ± SD for three independent experiments, performed in
duplicate). Significance was determined by two-way ANOVA: *p < 0.05 and **p < 0.01. EV, expression vector; hACE2, human angiotensin-converting
enzyme 2; S, spike protein; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

SARS-CoV-2 spike protein stability, cleavage, and fusion
Trypsin accessibility and protein–protein association in select
spike mutants

Since all the S cleavage site mutants exhibited defects in
cleavage at the S1/S2 border, we evaluated the accessibility of
this site using a trypsin treatment assay to determine if the lack
of cleavage was due to misfolding in the S1/S2 border region.
Vero or A549 cells were transfected with WT S or each
cleavage mutant and metabolically labeled. Cell surface
proteins were biotinylated, and then cells were either left un-
treated or treated with 0.3 μg/μl of TPCK–trypsin prior to
lysis. When treated with exogenous TPCK–trypsin, both the
del. PRRA and S1/S2 PRRAA mutants were efficiently cleaved
at the S1/S2 border, shown by the appearance of a band cor-
responding to S2 in the lanes treated with trypsin (Fig. 6A,
quantified in Fig. 6B). This suggests that the observed defects
in cleavage at the S1/S2 border are not because of
J. Biol. Chem. (2021) 297(1) 100902 7



Figure 5. All circulating mutants form large syncytia, similar to WT spike. Immunofluorescence of WT S or the circulating mutants (S stained in green)
transiently expressed in Vero cells. White arrows indicated S-positive cellular extensions. The magnification bar is 20 μM. S, spike protein.

SARS-CoV-2 spike protein stability, cleavage, and fusion
inaccessibility at the site but rather to the removal of the furin
consensus sequence. Interestingly, mutations at the down-
stream cath L or S2’ potential cleavage sites also render defects
in protein cleavage at the S1/S2 border site. However, treat-
ment with exogenous trypsin did not significantly affect the
amount of cleavage observed, a result consistent with a change
in conformation that renders the S1/S2 border cleavage site
inaccessible.

CoV S proteins associate as homotrimers shortly after
synthesis and remain in this trimeric form throughout the
fusion cascade (11, 14). To determine if proteolytic processing
affects the stability of S trimer association, Vero or A549 cells
8 J. Biol. Chem. (2021) 297(1) 100902
transfected with WT S or mutants D614G, S1/S2 AAAAA, S2’
AA, or WT S plus additional furin were metabolically labeled.
After lysis and immunoprecipitation, samples were then
treated at 50 �C or 100 �C prior to separation on nonreducing
SDS-PAGE. When WT S was incubated at 50 �C prior to
separation, species that correspond to a full-length S mono-
mer, dimer, and trimer were observed (Fig. 6C). Interestingly,
species that fall in between sizes corresponding to a monomer,
dimer, and trimer (Fig. 6C, red and purple *) were also
observed. These intermediate species may be the result of di-
mers or trimers made up of a mixture of full-length S proto-
mers and cleaved S protomers. When WT S was incubated at



Figure 6. Mutations at downstream potential cleavage sites render the S1/S2 border cleavage site less accessible to proteases. A, Vero or A549 cells
expressing WT S or S cleavage mutants were metabolically labeled for 6 h. Surface proteins were biotinylated, and samples were either treated for 10 min
with TPCK–trypsin or left as untreated controls (as indicated). B, Vero or A549 cells expressing indicated proteins were metabolically labeled for 6 h. Samples
were treated at the indicated temperatures before separation on a nonreducing SDS-PAGE. Oligomers are labeled on the right based on size, and colored *
represents potential intermediate species (n = 3). Using band densitometry to quantify the bands in (A), percent cleavage was measured in (C) Vero and (D)
A549 cells for both the surface (top graphs) and total (bottom graphs) populations (average ± SD for three independent experiments). Significance was
determined by two-way ANOVA: *p < 0.05, **p < 0.01, ***p < 0.0005, and ****p < 0.0001. S, spike protein.

SARS-CoV-2 spike protein stability, cleavage, and fusion
100 �C prior to separation, bands corresponding only to full-
length S monomer, dimer, trimers, and cleaved S2 mono-
mers were apparent. Similar results were also observed in
D614G samples, suggesting that species containing cleaved
protomers may be less stable. Consistent with these data, the
S1/S2 AAAAA mutant, which cannot undergo cleavage at the
S1/S2 border site, migrated primarily as a trimeric species after
50 �C incubation, with little monomer or dimer observed. In
J. Biol. Chem. (2021) 297(1) 100902 9



Figure 7. Furin or furin-like proteases in pteropus bat cells can cleave
the S1/S2 border site of SARS-CoV-2 spike. A, surface biotinylation was
performed on pteropus lung and pteropus fetus cells transfected with
plasmids for WT S or the del. PRRA mutant. B, surface or total protein
expression levels were quantified using band densitometry and normalized
to WT S levels. C, pt. lung and pt. fetus cells were transfected with WT S or
del. PRRA mutant, metabolically labeled for 1 h, and chased for the times
indicated. Using band densitometry to quantify the bands in (C), results are
expressed as (D) protein cleavage and (E) protein stability over the times
indicated. (B–E average ± SD for three independent experiments). SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2.
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addition, when WT S was coexpressed with furin (shown to
increase S cleavage in Fig. 1, E and F), the predominant
observed species was monomeric, after both 50 �C and 100 �C
incubation. Overall, these results suggest that cleavage at the
S1/S2 border alters the stability of S trimeric association.

Furin or furin-like proteases in bat cells can cleave the S1/S2
border of SARS-CoV-2 spike

R. affinis horseshoe bats have been identified as the likely
reservoir species for the novel SARS-CoV-2 (24). To under-
stand the proteolytic processing, expression, and stability of
CoV-2 S in a cell line closely related to its reservoir host, we
utilized Pteropus alecto fetus (pt. fetus) or lung (pt. lung) cells
(62) that have a furin enzyme with �90% sequence homology
to bats in the Rhinolopus family. Our previous studies on
paramyxovirus fusion protein cleavage have shown that effi-
cient furin and cathepsin cleavage occurs in these cells,
although the furin cleavage occurs with delayed kinetics
compared with Vero or A549 cells (63).

Surface biotinylation demonstrated that WT S and the del.
PRRA mutant were readily expressed at the surface at similar
levels in both cell lines, with cleavage at the S1/S2 border only
observed for WT S and not for the del. PRRA mutant (Fig. 7, A
and B). Pulse-chase analysis showed that S expressed in both
pt. lung and pt. fetus cells was cleaved at the S1/S2 border by
1 h, with cleavage extent reaching approximately 40% at 8 h
and 60% at 24 h (Fig. 7, C and D). Thus, furin or other pro-
teases in P. alecto cells are able to process S, although this
processing occurred more slowly than in other mammalian
cell lines (compare to Fig. 1B). Interestingly, some cleavage was
also observed in both pt. lung and pt. fetus cells for the del.
PRRA mutation (Fig. 7, C and D). In addition, the WT S and
del. PRRA mutant were slightly less stable in the P. alecto cells,
demonstrating about 30 to 50% protein remaining at 8 h and
about 20% at 24 h (Fig. 7E). In contrast, previously used
mammalian cell lines showed 60 to 90% of WT S remained at
8 h, with 30 to 50% at 24 h of chase (Fig. 1C).

Discussion

In this study, we present a detailed characterization of the
cleavage patterns, protein stability, and cell–cell fusion func-
tion of the SARS-CoV-2 S protein, as well as analysis of mu-
tations within the S2 subunit that may affect these important
protein properties. Consistent with recently published work
(25, 34, 46, 49, 50, 64), our analysis confirms that S is readily
cleaved at the S1/S2 border in a variety of mammalian cell
lines. In addition, we show for the first time that cleavage
occurs in a bat cell line similar to the SARS-CoV-2 reservoir
species. While cleavage appears to be primarily carried about
by the cellular protease furin, the sequence at this border does
have the ability to be cleaved by other members of the pro-
protein convertase family when furin is not present (46), and
this likely accounts for the small amount of cleavage we
observed in furin-negative LoVo cells.

In addition, we carefully assessed the role different proteases
play in cell–cell fusion, finding that furin increases cell–cell
10 J. Biol. Chem. (2021) 297(1) 100902
fusion when present in the same cell as S, and TMPRSS2 in-
creases cell–cell fusion when present in a target cell, consistent
with previous studies (36, 45). Interestingly, when cell–cell
fusion assays were performed using A549 cells as the
effector cell (Fig. 2C), high background fusion levels were
observed. This could be due to high endogenous levels of
TMPRSS2 in this cell line compared with Vero cells, which
were ultimately used for this experiment (Fig. S2C). High
TMPRSS2 expression or exogenous treatment with trypsin has
been shown to restore cell–cell fusion in low ACE2 receptor
expression environments for SARS-CoV S (65, 66). It is also
worth noting that coexpressing TMPRSS2 and hACE2 in the
target cells (BSR/T7) leads to a double banding pattern for
hACE2, suggesting that TMPRSS2 may be cleaving hACE2
(Fig. S2C (39)). Therefore, we cannot exclude the possibility
that the increase in fusion observed when TMPRSS2 is present
in these cells is due to an effect on hACE2. In addition to the
effect of proteases on cell–cell fusion, we also assessed the
effect of neuropilin-1, which has been suggested to be a
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coreceptor for SARS-CoV-2 viral entry and may be key for
SARS-CoV-2 infiltration of the neuronal network (51–53). We
show that the presence of neuropilin-1 with hACE2 in target
cells does not impact S-mediated cell–cell fusion (Fig. 2E). In
addition, coexpressing neuropilin-1 with S in effector cells did
not have an inhibitory effect on cell–cell fusion. While reports
suggest that neuropilin-1 plays a role in viral entry of SARS-
CoV-2, this indicates it does not play a significant role in S
cell–cell fusion in our assay, although this was not investigated
in neuronal cells.

The viral entry and cell–cell fusion pathways of SARS-CoV,
Middle East respiratory syndrome (MERS)-CoV, and SARS-
CoV-2 have several noteworthy commonalities but do have
marked differences. They all share the ability to facilitate entry
through endosomal pathways, with S proteolytic activation
mediated by endosomal/lysosomal proteases (9, 18, 34, 36–38,
67–70). In addition, they all can utilize cell surface (such as
TMPRSS2) or extracellular proteases (trypsin) for S activation
and subsequent viral entry (9, 36, 37, 46, 65, 70–76). SARS-
CoV-2 and MERS-CoV S differ from SARS-CoV S in that
their S1/S2 border harbors a canonical furin cleavage motif
(25, 26, 31), resulting in S preactivation by furin during syn-
thesis and cellular trafficking, prior to reaching the cell surface
or being incorporated into viral particles (18, 34, 36, 38, 73).
This preactivation by furin likely enhances the ability of SARS-
CoV-2 and MERS-CoV S to participate in cell–cell–mediated
fusion without overexpression of cell surface or extracellular
proteases (36, 45). Addition of this cleavage sequence in SARS-
CoV S allows SARS-S to facilitate cell–cell fusion without
exogenous proteases (36, 77). We show an increase in both
syncytia formation and luciferase reporter gene assay fusion
when cleavage at the S1/S2 border is enhanced by over-
expression of furin (Fig. 2, B and C), confirming that furin
cleavage of SARS-CoV-2 S plays a critical role in cell–cell
fusion. Interestingly, furin cleavage is not required for SARS-
CoV-2 infection (9, 34, 36, 46), although removal of the site
or inhibition of furin does appear to attenuate the virus (34, 38,
46) and reduce cellular tropism (45).

The presence of a furin consensus sequence is not only a
marked difference between SARS-CoV and SARS-CoV-2 but
also one of the differences between SARS-CoV-2 and a similar
CoV circulating in a bat population (24). Analysis of SARS-
CoV-2 WT S in P. alecto cells demonstrates that this motif
can be recognized and cleaved by furin in these cells (Fig. 7, C
and D), although the kinetics of this cleavage are noticeably
slower than in other mammalian cell lines (compare to
Fig. 1B). Previous work has shown that the fusion proteins of
Hendra virus, processed by cathepsins, and parainfluenza virus
5, processed by furin, are also cleaved in P. alecto cells (63).
Pulse-chase analysis in this prior study demonstrated an in-
crease in processing kinetics, although this kinetic difference
can be accounted for by differences in protease expression
levels between different bat cell lines (pt. kidney cells (63) and
pt. lung and pt. fetus cells in our work), suggesting there may
be cellular differences in protein trafficking or furin activity.
Intriguingly, a CoV-2 S mutant with a deletion of the inserted
PRRA residues still demonstrated some cleavage in both
utilized bat cell lines (Fig. 7, C and D), while not showing any
in Vero or A549 cells (Fig. 3, C and D). Earlier work on MERS-
CoV S showed that furin or other proprotein convertases in
bat cells can process MERS S S1/S2 border without the pres-
ence of a canonical recognition motif (78). Taken together,
these results suggest that mutations in circulating bat CoVs
that allow for human protease recognition at critical cleavage
sites may be an important factor for zoonotic transmission of
several CoVs.

Two other potential cleavage sites have been identified in
work with other CoVs. The S2’ site is essential for both SARS
and MERS infection (11, 31, 79–81), whereas a cath L–
activated site plays a critical role for SARS-CoV S (12, 19,
82, 83). Interestingly, mutations made at the S2’ site of SARS-
CoV-2 S significantly reduce S1/S2 border cleavage, both in
our study and others (Fig. 3, B–D (45, 84)), even though the
sites are distal from each other. A similar reduction in cleavage
is observed when the conserved cathepsin site is mutated
(Fig. 3, B–D). Our analysis of the published structures (2, 3, 85,
86) indicates that a full alanine mutation of this site may
simply collapse the exposed S1/S2 loop. Our finding that
exogenous trypsin treatment of cells expressing the S2’ or
cathepsin site mutants does not restore cleavage at the S1/S2
border (Fig. 5, A and B) suggests that these mutations result in
proteins with altered furin loop structure (85), rendering it
inaccessible. However, these mutants are still synthesized and
trafficked to the surface despite not being cleaved (Fig. 3, E–
G), thus this change in conformation is unlikely to have
drastically misfolded the protein. These results suggest that
there may be a dynamic interaction between the S1/S2 border
and S2’ cleavage sites in SARS-CoV-2 S needed to facilitate
viral entry and cell–cell fusion. This dynamic control could
also be regulated by S receptor binding exposing cryptic pro-
tease sites, although studies analyzing this in SARS and MERS
S conflict on this topic (18, 68, 75, 87, 88).

We also assessed the effect on protein stability, cleavage,
and cell–cell fusion function of a series of mutations in other
regions of S. The D614G mutation emerged during 2020 and is
now found in most circulating variants globally (47). D614G
has been shown to increase S incorporation into viral particles
(89), increase receptor binding (90, 91), and reduce S1 subunit
shedding and particle infectivity (92). Importantly, the D614G
mutant shifts S to favor a “heads up” conformation of the
receptor-binding domain (91, 93, 94). In our study, the D614G
mutation did not impact the cell–cell fusion function (Fig. 4F),
expression, or stability of the protein (Fig. 4, D and E and
Fig. S1), consistent with one previous study (84). Our fusion
results however conflict with two previous studies that
demonstrated that D614G increases cell–cell fusion, measured
by cell depletion in flow cytometry (90), and syncytia forma-
tion in 293T and HeLa cells stably expressing hACE2 (95).
These discrepancies may be due to differences in experimental
conditions or cell types utilized. We are, however, the first to
date to utilize a luciferase reporter gene assay to quantitate
cell–cell fusion of a D614G S mutant. Using this assay, we also
show that mutations found at two other residues (discovered
in small and nondominant population subsets (48)) alter the
J. Biol. Chem. (2021) 297(1) 100902 11
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cell–cell fusion activity of S (Fig. 4F) without changing the
overall protein expression or stability levels (Fig. 4, D and E
and Fig. S1D). Mutations at D839, a residue within the internal
fusion peptide, to the polar amino acids, tyrosine or aspara-
gine, significantly reduce fusion. Interestingly, a mutation at
this residue that conserves the negative charge, D839E, has no
effect on fusion activity. The negative charge at this residue
may play a role in the regulation of S-mediated fusion because
of its location in the internal fusion peptide. Alternatively, this
residue is in close proximity to C840, which may participate in
a disulfide bond, so mutations at D839 may disrupt this di-
sulfide bond, destabilizing the protein and changing fusion
activity. In addition, mutation of residue P1263 to a leucine
significantly increases S-mediated cell–cell fusion, suggesting
that residues in the cytoplasmic tail may play a role in the
S-promoted cell–cell fusion process. Notably, a study that
removed the entire S cytoplasmic tail still observed syncytia
formation at levels similar to WT S (84), indicating that
regulation by the cytoplasmic tail may be complex or that the
role of the cytoplasmic tail in fusion is not regulation but
interaction with cellular host factors (96).

In this work, we also provide critical insight into the kinetics
of protein cleavage and overall stability of CoV-2 S. S protein
processing at the S1/S2 border occurs within 2 h of synthesis
(Fig. 1, A and B; 1 h of label, 1 h of chase) in several
mammalian cell lines (Vero, MEF, and A549) and continues to
increase over time, reaching 60 to 80% protein cleavage by 8 h
of chase time, depending on the cell type. Overexpression of
furin increased the efficiency of S1/S2 border cleavage (Fig. 1,
D–F), and this increase in cleavage may account for the in-
crease in cell–cell fusion observed when furin is coexpressed
with S (Fig. 2, A–C (36, 45)). In addition, we show edthat
transiently transfected S is stable in several mammalian cells
for 4 to 5 h postprotein synthesis with demonstrable turnover
after this point (Fig. 1C and Fig. S1). This protein turnover is
similar to turnover rates seen in PIV5 fusion protein, also
activated by cellular furin (97), and slightly slower turnover
than Hendra fusion protein, activated by cellular cathepsins
(98, 99). Overexpression of cellular proteases that may process
S did not affect these protein turnover rates. Interestingly,
analysis of S in nonreducing conditions found that cleavage of
the S1/S2 border appears to destabilize trimeric interactions
(Fig. 6B). In these nonreducing conditions, no differences were
observed in oligomeric stability between WT S and the D614G
S mutations, despite the D614G favoring a “heads up”
conformation (91, 93, 94) and Vero cells having sufficient
levels of endogenous ACE2 to facilitate syncytia formation
(Fig. S2C), suggesting that changes in receptor binding do not
alter overall protein trimeric association. Notably, in these
nonreducing conditions after a 50 �C treatment for WT S, the
D614G mutant, and WT S + furin, bands between monomer,
dimer, and trimer species are observed (Fig. 6B, indicated with
an *). These intermediate species are not observed after
treatment at 100 �C. These may represent protein oligomers
that are not identically cleaved and are therefore partially
destabilized, a phenomenon proposed for MERS-CoV S (31)
and murine hepatitis virus CoV S, (100). Protein oligomers
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with differential proteolytic processing may also account for
the small population of uncleaved protein we observed at the
cell surface in our experiments (Figs. 3E, 4D, 6A, and 7A).

Through biochemical and cell biological analysis of the
SARS-CoV-2 S protein, we have provided important obser-
vations about the stability, proteolytic processing, and re-
quirements for cell–cell fusion of this highly sought-after
therapeutic target. This information may be helpful in
directing treatments that inhibit S protein fusion or for
discerning methods to stabilize CoV-2 S in therapeutic
development. Additional studies are needed to understand the
potential interplay between S cleavage sites and how that may
contribute to S protein function, as well as to further investi-
gate spike S2 subunit regions that are critical for protein
function.

Experimental procedures

Cell lines and culture

Vero cells (American Type Culture Collection), BSR T7/5
cells (provided by Karl-Klaus Conzelmann; Pettenkofer Insti-
tut), MEFs from cath L knockout mice (cath L-MEFs) (a gift
from Terence Dermody; University of Pittsburgh), and
P. alecto bat cells harvested from fetus (pt. fetus) and lung (pt.
lung) (a gift from Linfa Wang; Duke-NUS) (62) were all
maintained in Dulbecco’s modified Eagle’s medium (DMEM;
GE Healthcare), with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Every third passage, 0.5 mg/ml of G-
418 (Invitrogen) was added to the culture media of BSR T7/5
cells to select for the expression of the T7 polymerase. A549
and human colon carcinoma LoVo cells (both purchased from
American Type Culture Collection) were cultured in F12
Kaighn’s Modification media (GE Healthcare) with 10% FBS
and 1% penicillin/streptomycin.

Plasmids, antibodies, and mutagenesis

pCAGGS-SARS-CoV-2 spike was obtained from BEI Re-
sources. pcDNA3.1(+)-hACE2 and pcDNA3.1(+)-TMPRSS2
were provided by Gaya Amarasinghe (Washington Univer-
sity). Human neuropilin-1 was expressed with an exogenous
PTPα signal sequence from the pLEXm vector (from Craig
Vander Kooi; University of Kentucky). SARS-CoV-2 S was
subcloned into pUC57, and all S mutants were created in
pUC57 using the QuikChange site-directed mutagenesis kit
(Strategene) with primers purchased from Eurofins. Con-
structs were then subcloned back into the pCAGGS EV. Other
plasmids utilized include pSG5-cath L (from Terence Der-
mody; University of Pittsburgh), pCAGGS-furin (Promega),
and T7 promoted-luciferase (Promega). Antibodies anti-SARS
spike glycoprotein (ab252690), specific to the S2 subunit, and
anti-hACE2 (ab15348) were purchased from Abcam, and anti-
TMPRSS2 (H-4) was purchased from Santa Cruz Biotech-
nology, Inc.

Gel electrophoresis and Western blotting

Proteins were separated on a 10% SDS-PAGE. For Western
blot analysis, proteins were transferred to a polyvinylidene
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difluoride membrane (Fisher Scientific) at 60 V for 100 min.
After blocking with 5% milk in Tris-buffered saline + Tween-
20 (TTBS) for 1 h, membranes were incubated with respective
antibodies (anti-SARS S, 1:5000 dilution; anti-TMPRSS2,
1:1000 dilution; and anti-hACE2, 1:1000 dilution) at 4 �C
overnight. Membranes were then washed with TTBS and
incubated with (Li-Cor) secondary antibodies at 1:10,000
dilution in 5% milk solution for 1 h. Membranes were washed
again with TTBS and deionized H2O, before being imaged on
the Odyssey Image Analyzer (Li-Cor).

Syncytia assay

Cells (Vero or A549) in 6-well plates were transiently
transfected with 2 μg of either wt or mutant SARS-CoV-2
S protein plasmid with Lipofectamine 3000 (Invitrogen) at a
ratio of 1:2:2 DNA:P3000:Lipofectamine 3000. For experi-
ments with the addition of proteases, the total DNA trans-
fected was kept constant at 2 μg; in those cases, we used 1 μg of
S and 1 μg of the indicated protease. Syncytia formation was
imaged at 24 and 48 hpt on a Nikon Ti2 at 20× magnification.

Luciferase reporter gene assay

Effector cells (Vero or A549) were plated in 12-well plates at
70 to 90% confluency and transfected with 1 μg of total DNA
(0.4 μg of a T7 promoted luciferase plasmid, 0.6 μg of WT or
mutant S protein or S protein with additional proteases). At
the same time, BSR cells (constitutively expressing a T7 pro-
moter) seeded in 6-well plates were transfected with 2 μg
either empty pCAGGS or pcDNA3.1(+)-hACE2. At about 18
to 24 hpt, BSR cells were lifted using trypsin, centrifuged for
5 min at 1500 rpm, resuspended in normal DMEM + 10% FBS,
and overlaid onto the S-expressing cells at a ratio of 1:1.
Overlaid samples were then incubated at 37 �C for 9 h (or as
described in the article). Samples were lysed in 100 μl of Re-
porter Gene Lysis buffer (Promega) and frozen overnight.
Plates were then scraped on ice, lysates were vortexed for 10 s,
centrifuged at 13,000 rpm for 1 min at 4 �C, and 20 μl of the
supernatant was added to an opaque 96-well plate. Luciferase
activity was measured on a SpectraMax iD3 (Molecular De-
vices) using a Luciferase Assay System (Promega). Background
values were subtracted (empty pCAGGS in BSRs and effector
cells), and luciferase activity was expressed as a percentage of
WT S (effector cells) and hACE2 (BSR cells).

Surface biotinylation

Two micrograms of WT or mutant S protein was trans-
fected into Vero or A549 cells using the Lipofectamine 3000
system (Invitrogen; ratios described previously). At about 18 to
24 hpt, cells were starved in Cys−/Met− media (Gibco) for
45 min and metabolically labeled for 6 h using 50 μCi of S35

(PerkinElmer) incorporated into Cys and Met (S35 Cys/Met).
After the label, cells were washed once with PBS (pH 8) and
incubated with 1 mg/ml of EZ-link Sulfo-NHS-biotin (Thermo
Fisher) in PBS (pH 8) at 4 �C for 35 min and then at room
temperature for 15 min. Next, the cells were lysed in 500 μl of
radioimmunoprecipitation assay (RIPA) buffer (100 mM
Tris–HCl [pH 7.4], 0.1% SDS, 1% Triton X-100, and 1%
deoxycholic acid) containing 150 mM NaCl, protease in-
hibitors (1 U aprotinin, 1 mM PMSF [both from Sigma–
Aldrich]), 5 mM iodoacetamide, and cOmplete EDTA-free
Protease Inhibitor Cocktail Tablets (all from Sigma–Aldrich).
Cell lysates were centrifuged at 55,000 rpm for 10 min, and the
supernatant was incubated with anti-SARS S polyclonal anti-
body at 4 �C for 3 h. Following incubation, protein A conju-
gated to Sepharose beads (Cytiva) were added to the samples
and incubated at 4 �C for an additional 30 min. Postincubation
samples were washed two times with each RIPA buffer + 0.3 M
NaCl, RIPA buffer + 0.15 M NaCl, and SDS-Wash II buffer
(50 mM Tris–HCl [pH 7.4], 150 mM NaCl, and 2.5 mM
EDTA). After buffer aspiration and addition of 10% SDS,
samples were boiled for 10 min. The supernatant was removed
to a separate tube. About 15 μl of supernatant was removed
and added to an equal portion of 2× SDS-loading buffer and
labeled “TOTAL.” Biotinylation buffer (20 mM Tris [pH 8],
150 mM NaCl, 5 mM EDTA, 1% Triton X-100, and 0.2%
bovine serum albumin) and streptavidin-conjugated beads
were added to the remaining supernatant, and this was incu-
bated at 4 �C for 1 h. Samples were again washed as described
previously, and 2× SDS-loading buffer was added following the
washes. Samples were boiled for 15 min and run on a 10%
SDS-PAGE gel. Gels were dried and exposed on a phos-
phoscreen for 2 to 4 days, and then visualized using a Typhoon
Imaging System (GE Healthcare). Bands were quantified using
band densitometry using the ImageQuant software (GE
Healthcare).

Time course immunoprecipitation

About 2 μg of WT or mutant S was transfected into Vero or
A549 cells using the Lipofectamine 3000 system (ratios
described previously). At about 18 to 24 hpt, cells were starved
in Cys−/Met− media (Gibco) for 45 min and metabolically
labeled for 1 h using 50 μCi of S35 Cys/Met. After the 1-h
labeling, cells were washed once with PBS, and normal
DMEM + 10% FBS was added for indicated times. Cells were
then lysed in 500 μl of RIPA lysis buffer. Anti-SARS S poly-
clonal antibodies were used to immunoprecipitate the CoV-2 S
protein as previously described, and the protein was analyzed
on a 10% SDS-PAGE gel. Gels were dried and exposed on a
phosphoscreen for 2 to 4 days and visualized using a Typhoon
Imaging System. Bands were quantified using band densi-
tometry using the ImageQuant software.

Nonreducing gel electrophoresis

Two micrograms of wt or mutant S was transfected into
Vero or A549 cells using the Lipofectamine 3000 system (ra-
tios described previously). At about 18 to 24 hpt, cells were
starved in Cys−/Met− media (Gibco) for 45 min and meta-
bolically labeled for 6 h using 50 μCi of S35 Cys/Met. Lysed
cells were immunoprecipitated as described previously; how-
ever, after the washing steps, 30 μl of 2× SDS-loading buffer
without DTT was added to each sample. Samples were treated
at 50 �C or 100 �C, as indicated, for 20 min and analyzed on a
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3.5% acrylamide gel under nonreducing conditions. The gel
was dried, exposed, and imaged as described for surface
biotinylation.

Immunofluorescence experiments

Subconfluent cells on coverslips in 6-well plates were
transfected with 2 μg of DNA using the Lipofectamine 3000
transfection system (Invitrogen). At about 18 to 24 hpt, cells
were fixed with 4% paraformaldehyde for 15 min at room
temperature. Cells were permeabilized in a solution of 1%
Triton X-100 in PBS + 0.02% sodium azide (PBSN) for 15 min
at 4 �C. After permeabilization, coverslips were moved to a
humidity chamber and blocked with 1% normal goat serum in
PBSN for 1 h at 4 �C. Cells were labeled with anti-SARS S
antibody (1:2000 dilution) in blocking buffer overnight at 4 �C
or for 3 to 5 h at room temperature. Samples were washed with
PBSN + 0.01% Tween-20 seven times and incubated for 1 h at
4 �C with goat anti-rabbit FITC (1:2000 dilution). Samples
were again washed with PBSN + 0.01% Tween seven times and
mounted onto slides using Vectashield mounting media
(Vector Laboratories). Slides were imaged on an Axiovert
200M (Zeiss) at 63× magnification using Metamorph to collect
Z-stacks and processed using Nikon NIS Elements.

Statistical analysis

Statistical analysis was performed using Prism 7 for Win-
dows (GraphPad). A p value of <0.05 was considered statis-
tically significant. Multiple comparison tests were generated
using one-way or two-way ANOVA with Dunnett’s multiple
comparison test: *p < 0.05, **p < 0.01, ***p < 0.0005, and
****p < 0.0001.

Data availability

The datasets generated during and/or analyzed during the
current study are available upon request from the corre-
sponding author, Rebecca Dutch (rdutc2@uky.edu), on
reasonable request.
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