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Cytokines mapping 
for tissue‑specific expression, 
eQTLs and GWAS traits
Lyubov E. Salnikova1,2*, Maryam B. Khadzhieva1,2, Dmitry S. Kolobkov1,3,4, 
Alesya S. Gracheva1,2, Artem N. Kuzovlev2 & Serikbay K. Abilev1

Dysregulation in cytokine production has been linked to the pathogenesis of various immune-
mediated traits, in which genetic variability contributes to the etiopathogenesis. GWA studies 
have identified many genetic variants in or near cytokine genes, nonetheless, the translation of 
these findings into knowledge of functional determinants of complex traits remains a fundamental 
challenge. In this study we aimed at collection, analysis and interpretation of data on cytokines 
focused on their tissue-specific expression, eQTLs and GWAS traits. Using GO annotations, we 
generated a list of 314 cytokines and analyzed them with the GTEx resource. Cytokines were highly 
tissue-specific, 82.3% of cytokines had Tau expression metrics ≥ 0.8. In total, 3077 associations for 
1760 unique SNPs in or near 244 cytokines were mapped in the NHGRI-EBI GWAS Catalog. According 
to the Experimental Factor Ontology resource, the largest numbers of disease associations were 
related to ‘Inflammatory disease’, ‘Immune system disease’ and ‘Asthma’. The GTEx-based analysis 
revealed that among GWAS SNPs, 1142 SNPs had eQTL effects and influenced expression levels of 
999 eGenes, among them 178 cytokines. Several types of enrichment analysis showed that it was 
cytokines expression variability that fundamentally contributed to the molecular origins of considered 
immune-mediated conditions.

Cytokines are regulatory proteins and glycoproteins that are synthesized and secreted by immune system cells 
and other cell types. They regulate innate and acquired immunity, embryogenesis, hematopoiesis, inflammation 
and regeneration processes, and proliferation. These functions are realized through cell signaling and intercel-
lular communication. Cytokines may act via autocrine manner, if they stimulate their own secretion; paracrine, 
if they have an effect on adjacent cells; or endocrine, if they diffuse to distant regions of the body. Cytokines 
function through binding to specific receptors, which send signals to recipient cells. Cytokines may also affect 
the expression of receptors, which in turn may influence the responsiveness of both secreting cells and target 
cells. Generally, cytokines are pleiotropic, i.e. have many overlapping functions, and redundant, i.e., each func-
tion is mediated by more than one cytokine. The complexity of cytokine interactions is defined as the “cytokine 
network”1,2.

The basal and stimulus-induced expression of cytokines is under tight genetic control and strongly varies 
between individuals3. Dysregulation in cytokine production has been linked to the pathogenesis of various 
immune deficiencies, acute and chronic infections and many chronic conditions, in particular autoimmune 
diseases, allergic diseases, and malignancies, all disorders in which genetic variability contributes to the eti-
opathogenesis. The genome-wide association studies (GWAS) have identified many genetic variants in or near 
cytokine genes, nonetheless, the translation of these findings into knowledge of functional determinants of 
complex immune-related traits remains a fundamental challenge4. Linking nucleotide sequences with the disease 
genes through expression quantitative trait loci (eQTL) analysis may help to identify the tissue-specific effects 
and mechanisms associated with human disease phenotypes5.
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In this study, we characterized tissue-specificity of cytokines, analyzed eQTLs influencing expression of indi-
vidual cytokines and their clusters and summarized GWAS data for cytokine associations. Since a GWAS signal 
may be due to a synthetic association provided by a rare high-effect variant in linkage disequilibrium (LD) with 
a common SNP6, we compared functional annotations and functional scores for index SNPs and LD SNPs. We 
applied two natural selection tests to identify GWAS cytokine SNPs under positive selection. Finally, we selected 
GWAS SNPs with eQTL activity and characterized their target gene spectrum and possible implication in diseases 
via their influence on cytokine expression in disease-relevant tissues.

Results
The overall study design.  The flowchart of study design is shown in Fig. 1. After building the list of genes 
encoding proteins referred to as cytokines, we performed genomic characterization of cytokines expression, 
which included the analysis of expression tissue specificity, genome-wide detection of cytokine eQTLs, and 
examination of the direction of eQTL effects on target gene pairs. Next, we described the phenotypic spectrum of 
cytokine gene associations in the NHGRI-EBI GWAS Catalog and conducted an integrative genomic investiga-
tion of cytokine SNPs represented in the NHGRI-EBI GWAS Catalog. This investigation consisted of the follow-
ing steps: compiling the lists of GWAS trait-associated SNPs (index SNPs) and their LD SNPs, functional anno-
tation of index and LD SNPs, natural selection analysis, and eQTL analysis of GWAS Catalog SNPs in cytokine 
genes. To identify functional effects of GWAS-identified variants by the means of eQTL analysis, we analysed the 
distribution of eQTLs by genomic region and disease spectrum, performed the analysis of tissue specificity of 
cytokine genes eQTLs for each trait in the GTEx panel, conducted ARCHS4 Tissues and Gene Ontology enrich-
ment analyses for eQTLs’ target genes, and calculated Jaccard tissue similarity indexes for cytokine eQTLs. This 
last item was aimed at establishing the role of cytokine eQTLs in cytokine expression tissue specificity.

The list of genes encoding proteins with cytokine and cytokine receptor activity.  The list of 314 
genes encoding proteins with cytokine/chemokine activity and cytokine/chemokine receptor activity (combined 
under the name ‘cytokines’) was constructed with the QuickGo tool7 (Table 1, Supplementary Table S1). The terms 
cytokine activity (GO:0005125), chemokine activity (GO:0008009), cytokine receptor activity (GO:0004896) 
and chemokine receptor activity (GO:0004950) yielded, correspondingly, 219, 50, 70 and 25 genes. Two types 
of activities for corresponding proteins were identified for 51 genes. We then classified cytokines on the basis of 
having growth factor activity (GO:0008083). It was attributed to 68 genes, of which 67 genes encoded proteins 
with cytokine activity.

Tissue‑specific expression of cytokines.  In the GTEx V8 database8, we found 310 genes, among which 
four genes were not detected in any tissues and seven genes were expressed in a single tissue (Fig.  2a, Sup-
plementary Table S2 for GTEx tissue abbreviations, Supplementary Table S3). Tissue-pairwise Spearman rank 
correlation of gene expression values showed positive correlation in expression (mean Spearman’s rho = 0.79, 
range 0.40–0.99). The lowest levels of correlation were observed for hemic and immune-related cells and tis-

Figure 1.   Flowchart of the study design.
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sues (cells—EBV-transformed lymphocytes, spleen and whole blood) between themselves, and between other 
tissues (Fig. 2b). Using the expression specificity metric Tau9 and tissue specificity index TSI10, we classified 255 
(82.3%) genes as tissue-specific (Tau ≥ 0.8) (Fig. 2c), of which 110 genes had TSI ≥ 0.3. Based on these thresholds, 
we determined 20 tissue-specific genes with the highest levels of expression in corresponding tissues (Fig. 2d).

Genome‑wide detection of cytokine eQTLs.  Next, we performed the expression quantitative trait loci 
analysis, which revealed in total 322,020 associations for 84,904 eSNPs (SNPs reported as eQTLs) targeting 
cytokines (Fig. 2e, upper panel (associations), bottom panel (eSNPs)). Tissue sample volume correlated with the 
number of GTEx associations, number of unique eSNPs, number of target genes and number of target cytokine 
genes (Pearson correlation coefficient ranged from 0.88 to 0.92). Twenty seven genes appeared to be non-eGenes 
(their expression level was not associated with any SNP). The top five genes, which were regulated by the largest 
numbers of eSNPs included C1QTNF4, GHR, IL20RB, IL34 and CCR1 (Fig. 2e, bottom panel, Supplementary 
Table S1).

Interestingly, we found an inverse correlation between Tau and the number of eSNPs influencing the cor-
responding gene expression (Spearman’s rho = − 0.390, two sided correlation P value = 1.43E−12). More in depth 
analysis of eQTL statistics revealed that the expression level of tissue-specific genes (Tau ≥ 0.8, TSI ≥ 0.3) was 
regulated by a lower number of eQTLs compared to ‘other’ genes (Mean ± SD: 178.81 ± 250.90 vs. 321.35 ± 376.84, 
Mann–Whitney U-test P = 1.49E−06, Kolmogorov–Smirnov (KS) test P = 2.80E−05). The top five genes regu-
lated by the largest numbers of eSNPs appeared to be non tissue-specific. After the exclusion of these five genes 
from the sample ‘other genes’, the differences remained significant (Mann–Whitney U-test P = 5.51E−06, KS test 
P = 7.40E−05) (Fig. 2f). We noticed that among eQTLs available for 49 tissues, eQTLs targeting corresponding 
top tissue-specific genes were not identified in 31 tissues. In the set of 20 top tissue-specific genes, the largest 
numbers of eQTLs in corresponding tissues (tissue samples, n > 350) were found for the following genes: SLURP1 
(Skin—Sun Exposed/Skin—Not Sun Exposed, 684/291 eQTLs), CNTF (Nerve—Tibial, 669), CMTM2 (Testis, 58), 
ADIPOQ (Adipose—Subcutaneous, 45), TNFRSF11B (Thyroid, 40) and CCL11 (Colon—Sigmoid, 39 eQTLs). 
For other top tissue-specific genes, the number of eQTLs, if any, was small, e.g., CXCL2 (Muscle—Skeletal, 14), 
CSF3R (Whole Blood, 13), TNFRSF11B (Artery—Tibial, 8). These SNPs did not represent single LD blocks, 
average r2 for eQTLs targeting these genes was, respectively, 0.38, 0.33 and 0.26.

Direction of eQTL effects on target gene pairs.  A significant proportion of cytokines (n = 96) were 
located in gene clusters (Supplementary Table S4). Expression SNPs within these clusters were often associated 
with expression levels of more than one cytokine. We explored the direction of allelic effects of all eQTL-gene 

Table 1.   Genes regulating proteins with cytokine activity (GO:0005125), chemokine activity (GO:0008009), 
cytokine receptor activity (GO:0004896) and chemokine receptor activity (GO:0004950). *GO:0008083, 
growth factor activity.

Cytokine activity (n = 170)

ADIPOQ, AIMP1, *AREG, *BMP1, *BMP10, *BMP15, *BMP2, *BMP3, *BMP4, *BMP5, *BMP6, *BMP7, *BMP8A, *BMP8B, C1QTNF4, 
CD40LG, CD70, CER1, *CLCF1, CMTM1, CMTM2, CMTM3, CMTM4, CMTM5, CMTM6, CMTM7, CMTM8, *CNTF, *CSF1, *CSF2, *CSF3, 
CTF1, EDN1, *EPO, FAM3B, FAM3C, FAM3D, FASLG, *FGF2, FLT3LG, *GDF1, *GDF10, *GDF11, *GDF15, *GDF2, *GDF3, *GDF5, *GDF6, 
*GDF7, *GDF9, *GPI, GREM1, GREM2, *GRN, HMGB1, IFNA1, IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, 
IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, IFNE, IFNG, IFNK, IFNL1, IFNL2, IFNL3, IFNL4, IFNW1, *IL10, *IL11, *IL12A, IL13, IL15, IL16, 
IL17A, IL17B, IL17C, IL17D, IL17F, IL18, IL19, IL1A, IL1B, IL1F10, IL1RN, *IL2, IL20, IL21, IL22, IL23A, IL24, IL25, IL26, IL27, *IL3, IL31, 
IL32, IL33, *IL34, IL36A, IL36B, IL36G, IL36RN, IL37, *IL4, *IL5, *IL6, *IL7, *IL9, *INHA, *INHBA, *INHBB, *INHBC, *INHBE, *KITLG, 
*LEFTY1, *LEFTY2, *LIF, LTA, LTB, MIF, *MSTN, *MYDGF, NAMPT, *NDP, *NODAL, *NRG1, *OSM, SCG2, SCGB3A1, SECTM1, SLURP1, 
SPP1, *TGFB1, *TGFB2, *TGFB3, THNSL2, *THPO, *TIMP1, TNF, TNFRSF11B, TNFSF10, TNFSF11, TNFSF12, TNFSF12-TNFSF13, 
TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TNFSF18, TNFSF4, TNFSF8, TNFSF9, TSLP, TXLNA, *VEGFA, VSTM1, WNT1, WNT2, 
WNT5A, WNT7A

Cytokine and chemokine activity (n = 46)

C10orf99, CCL1, CCL11, CCL13, CCL14, CCL15, CCL15-CCL14, CCL16, CCL17, CCL18, CCL19, CCL2, CCL20, CCL21, CCL22, CCL23, 
CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L1, CCL4, CCL4L1, CCL4L2, CCL5, CCL7, CCL8, CKLF, CX3CL1, *CXCL1, CXCL10, 
CXCL11, *CXCL12, CXCL13, CXCL14, CXCL16, CXCL2, CXCL6, CXCL8, CXCL9, PF4, *PPBP, XCL1, XCL2

Chemokine activity (n = 4)

C5, CXCL3, CXCL5, PF4V1

Cytokine receptor activity (n = 65)

CD4, CD44, CD74, CNTFR, CRLF2, CSF2RA, CSF2RB, CSF3R, EPOR, F3, FLT3, GFRA1, GFRA2, GFRA4, GFRAL, GHR, IFNAR1, IFNAR2, 
IFNGR1, IFNGR2, IFNLR1, IL10RA, IL10RB, IL11RA, IL12RB1, IL12RB2, IL13RA1, IL13RA2, IL15RA, IL17RA, IL17RB, IL17RC, IL17RD, 
IL17RE, IL17REL, IL18R1, IL1R1, IL1R2, IL1RAP, IL1RAPL2, IL1RL1, IL1RL2, IL20RA, IL20RB, IL21R, IL22RA1, IL22RA2, IL23R, IL27RA, 
IL2RA, IL2RB, IL2RG, IL31RA, IL3RA, IL4R, IL5RA, *IL6R, IL6ST, IL7R, IL9R, LEPR, LIFR, MPL, OSMR, PRLR

Cytokine and cytokine receptor activity (n = 3)

CRLF1, EBI3, *IL12B

Chemokine receptor activity (n = 24)

ACKR2, ACKR3, ACKR4, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCRL2, CXCR1, CXCR2, CXCR3, CXCR4, 
CXCR5, CXCR6, GPR17, GPR35, GPR75, XCR1

Chemokine and cytokine receptor activity (n = 2)

CMKLR1, CX3CR1
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pairs within gene clusters. The majority of eQTL effects on a given cytokine pair in the same tissue were unidi-
rectional (n = 95), however, opposite directional effects were also present (n = 51). For unidirectional and bidi-
rectional eQTL effects, the numbers (mean ± SD) of associations and SNPs distances (kb) differed: 39.01 ± 231.81 
versus 13.92 ± 60.83 (Mann–Whitney U-test P value = 2.15E−02) and 188.43 ± 212.04 versus 106.22 ± 133.67 
(P = 2.87E−05). As expected, SNPs average LD metric r2 negatively correlated with a genomic distance (mean 
Spearman’s rho − 0.56, one-sided P = 1.23E−11). For a given gene pair, the higher was the number of unidi-
rectional associations, the lower was the number of bidirectional associations (if any) and vice versa (mean 
Spearman’s rho − 0.23, one-sided P = 6.78E−03). Both unidirectional and bidirectional eQTL effects were reg-
istered in a wide spectrum of tissues. Gene clusters including gene pairs with more than one hundred shared 
eQTL-tissue associations are presented in Fig. 3. The largest number of unidirectional associations was revealed 
for IL1RL1 and IL18R1 genes (n = 3711). The largest number of bidirectional eQTL effects was detected in the 
cluster of chemokine ligand genes in the 17q12 region. Since cytokines are redundant in their activity, i.e., simi-
lar functions can be stimulated by different cytokines, we could assume that bidirectional effects of functionally 
related cytokines might partially neutralize each other, thus reducing the eQTL-attributed phenotypic diversity. 
However, multiple uni-and bidirectional associations were observed within the majority of gene clusters (Fig. 3, 

Figure 2.   Expression profiles and genome-wide eQTL data for cytokines. The tissues are shown by 
abbreviations (Supplementary Table S2) and grouped by tissue categories (used throughout). (a) Gene 
expression profiles, built from TPM (Transcripts Per Million). (b) Spearman’s rank correlation matrix of tissue 
gene expression (heatmap). (c) Distribution of Tau (tissue specificity) scores. (d) Tissue-specific genes (Tau ≥ 0.8, 
TSI (Tissue Specificity Index) ≥ 0.3) with the highest levels of expression in corresponding tissues. Circles 
colored in accordance with the legend for tissue categories show TPM value for the tissue(s) with the highest 
level of expression for a given gene. Mean ± SD for TPM values across all tissues for a gene of interest is colored 
in red. Grey circles represent TPM values for a given gene in other tissues. Thirteen tissues from different brain 
regions are signed with a common label ‘BRAIN’. (e) Manhattan plot with the number of associations for eQTLs 
(Y-axis) targeting cytokines. Top ten genes are signed (upper panel). Manhattan plot with the number of eQTLs 
(Y-axis) for cytokines. Top ten genes are signed (bottom panel). (f) A density plot showing the distribution of 
the number of eQTLs per gene in the set of tissue-specific genes and in the set of ‘other’ genes.
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Supplementary Table S4), therefore the causality interpretation of potential phenotypic association should be 
translated from gene-specific to a gene cluster-specific level.

Phenotypic spectrum of cytokine gene associations in the NHGRI‑EBI GWAS catalog.  In total, 
244 cytokines were mapped in the NHGRI-EBI GWAS Catalog11 (Supplementary Table S5). Diseases and traits 
associated with cytokine genes were classified with the use of Experimental Factor Ontology (EFO)12. GWAS 
traits were annotated according to disease type, disease by anatomical system (for non-oncological diseases), 
and type of measurements (Supplementary Table S5, Fig. 4). The majority of the associations were described by 
several classification units. In the generated data sets of the most numerous categories (Fig. 4a–c) and diseases 
(Fig.  4d), the numbers of associations, SNPs and genes correlated (Pearson correlation coefficient range: set 
‘disease type’ 0.93–0.99, set ‘disease by anatomical system’ 0.84–0.97, set ‘measurements’ 0.93–0.95, set ‘diseases’ 
0.70–0.82). Based on the number of associations, we constructed one more set including 20 genes (Fig. 4e). In 
this set, the compared parameters strongly and disproportionately varied.

The highest numbers of associations covered by shared classifications were found for those related to inflam-
matory diseases and connective tissue diseases (Fig. 4a); immune and digestive system diseases, as well as 
immune and musculoskeletal system diseases (Fig. 4b); and protein measurements and inflammatory biomarker 
measurements (Fig. 4c). In the set of the top ten diseases, the comparison of disease pairs Crohn’s disease—
Ulcerative colitis and Crohn’s disease (or Ulcerative colitis)—Psoriasis produced a similar number of shared 
associations (Fig. 4d). Infectious diseases were mainly represented by chronic infections. Only one study reported 
associations for acute infectious diseases13.

The lists of GWAS trait‑associated SNPs and their LD SNPs.  A total of 3077 associations for 1760 
unique SNPs were found for cytokine genes in the NHGRI-EBI  GWAS Catalog. Constructing a data set of 
cytokine SNPs, we included intragenic or intergenic SNPs in mapped (not reported) genes (Supplementary 
Table S5). We identified 891 intragenic SNPs and 869 intergenic SNPs, among the latter, 249 SNPs were located 
in regulatory regions. The majority of SNPs were obtained from Europeans. Next, we conducted an LD analy-

Figure 3.   Direction of eQTL-gene pair effects. eQTL-gene pair effects are presented if the number of 
unidirectional or bidirectional associations for a given gene pair were ≥ 100. Genes are listed according 
their chromosome location. Bidirectional (left) or unidirectional (right) effects of eQTL-gene pairs are visualized 
by color. The effect information includes the number of eQTL-gene pairs (circles), the number of relevant tissues 
(squares) and the eQTLs distance (triangles).
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sis using as criteria the threshold r2 > 0.8 (Fig. 5, Supplementary Tables S6, S7) and a clear identification of the 
population. The numbers and the proportions of index SNPs and LD SNPs in the studied populations are shown 
in Fig. 5a,b. Significant discrepancies in the proportions of index and LD SNPs were observed between EUR and 
ASN (P = 0.004). Other comparisons did not yield significant results due to smaller differences and/or smaller 
sample sizes.

Functional annotation of index and LD SNPs.  To compare functional characteristics of index and LD 
SNPs, we used IW-Scoring: an integrative weighted scoring framework to annotate and prioritize noncoding 
variations14 (Fig. 5c, Supplementary Tables S6, S7). Density and box plots demonstrated that index SNPs had 
much higher scores, i.e. higher functionality in comparison with LD SNPs (KS test P < 1.0E−06). A compari-
son of some other types of functional annotations via HaploReg v4 and SNPnexus (Fig. 5d–f, Supplementary 
Tables S6, S7) also mostly demonstrated a predominance of functional SNPs among index SNPs compared to 
LD SNPs. However, in individual pairs of index and LD SNPs, more functional LD SNPs were also observed. 
For example, top ten functional LD SNPs had an average IW-score 6.24, while their index SNPs had an average 
IW-score − 0.68.

Natural selection analysis.  Natural selection analysis was carried out for GWAS SNPs linked to cytokine 
genes. We used global Fst and integrated haplotype score (iHS) as measures of positive selection signals. The 
absolute scores and rank scores (− log10 of the P value centile rank of the SNP compared to others across the 
genome) were extracted from the 1000 Genome Browser15. Absolute scores having significant rank scores (> 2) 
are presented in Supplementary Table S8. It is accepted that SNPs with Fst scores ≥ 0.516 or iHS scores ≥ 2.017 
are subjected to positive selection. All Fst and iHS signals with significant rank scores corresponded to these 

Figure 4.   Representation of cytokine gene associations in the NHGRI-EBI GWAS Catalog. Circos plots show 
the proportions of top-ranked EFO (Experimental Factor Ontology) classifications for cytokines associations 
found in the NHGRI-EBI GWAS Catalog. These classifications were categorized by: (a) disease type, (b) disease 
by anatomical system (for non-oncological diseases), (c) type of measurement, (d) disease. The majority of the 
associations were described by several classification units, illustrated by the individual colored ribbons. Several 
associations were found in multi-trait studies (Supplementary Table S5). In figure panel (d), ribbons indicate 
associations that were both uniquely mapped and were studied together within the same framework. (e) Graph 
with top 20 genes by the number of corresponding associations. The numbers of unique SNPs, mapped traits 
and PubMed papers are also indicated.
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cutoff values. A total of 75 SNPs had global Fst rank scores > 2 (scores ranged from 0.404 to 0.668). Among 
them, the majority of GWAS associations, mostly with anthropometric measurements, were found for the two 
SNPs rs143384 and rs224333 in high LD (r2 = 0.93 in all populations) in the GDF5 gene (Fig. 6a). Similar effects 
were also observed for GDF5 rs143384 and rs224333 (scores ranged from 0.649 to 0.714) when comparing Fst 
CEU (Northern European) vs. YRI (West African). Five SNPs in high LD (r2 = 0.90 in all populations) in or near 
the TGFB2 gene showed significant Fst values for the CEU-CHB (East Asian) pair (Supplementary Table S8). 
Only ten SNPs had rank scores > 2 for the iHS CEU score; among them three tightly linked SNPs (r2 = 0.86) 
were located in or near IL18R1 gene (Fig. 6b). The top IL18R1 SNP rs2001461 with an iHS CEU score of 4.544 
was associated with blood protein (IL18R1) measurement, while two other SNPs were associated with serum 
ST2 (the IL1RL1 gene product) measurement (rs1420103) and atopic eczema (rs6419573). Some other IL1RL1/
IL18R1 SNPs, which were not reported in GWAS Catalog studies also had high scores (Fig. 6b), however, this 
could be the result of hitchhiking effects18. The aforementioned SNPs were in low LD (r2 < 0.2) with top asthma-
related SNPs widely represented in the region 2q12.1. Based on the results of the tests we used, the genes them-
selves were not shown to be under selection: GDF5, Global Fst 0.36; TGFB2, Fst CEU-CHB 0.06; IL18R1, iHS 
CEU 1.06.

Interestingly, SNPs under selection pressure were more often associated with different types of measurements 
in comparison with other GWAS SNPs (85.09%, 348 from a total of 409 associations vs. 70.27%, 1865 from a total 

Figure 5.   Population distribution and functional characterization of GWAS and LD SNPs. (a) GWAS-identified 
SNPs (left panel) and LD SNPs (right panel) by population are shown in a Venn diagram. In the population 
where GWAS (index) SNPs were detected, we selected SNPs in LD (linkage disequilibrium) with index SNPs 
using a threshold of r2 > 0.8. Only index SNPs were analyzed in mixed populations with different ethnicity or in 
populations, which could not be assigned to one of the four populations: EUR (European), ASN (East Asians), 
AFR (Africans including African Americans) and AMR (Admixed American). (b) Proportions of index and LD 
SNPs in the four populations. Asterisks indicate significant differences between EUR and ASN (P = 0.004) in 
the proportion of index and LD SNPs. (c) Density and box plots for functional IW-scores (K10) for index and 
LD SNPs. IW-scores (K10) were obtained from ten different scoring systems via IW-Scoring tool: an integrative 
weighted scoring framework to annotate and prioritize noncoding variations. (d) Distribution of genomic 
region annotations for index and LD SNPs (INT, intronic variant; NSM, non-synonymous missense variant; 
SYN, synonymous variant; U3, 3′untranslated region variant; U5, 5′untranslated region variant). (e) Distribution 
of potential regulatory sequences for index and LD SNPs. (f) Distribution of additional functional annotations 
for index and LD SNPs. SIFT and PolyPhen prediction scores were used to predict pathogenicity of amino acid 
substitutions. (d, e) Data were obtained from HaploReg v4; (f) Data were obtained from SNPnexus.
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of 2654 associations, P = 6.9E−10). Among the measurements, the most pronounced differences were related 
to anthropometric measurements (P = 1.4E−10). These differences were mainly due to the SNPs in or near the 
TGFB2 gene (35 associations) and in the GDF5 gene (35 associations). From the total of 77 associations with 
anthropometric measurements, 73 items were linked to height- and body mass index (BMI)-related phenotypes. 
Among five TGFB2 SNPs, only rs1108548 had eQTL effects (two associations in the GTEx database). SNPs in 
the GDF5 gene rs143384 and rs224333 had, respectively, 116 and 130 records in the GTEx database. The number 
of the GTEx associations for the IL1RL1/IL18R1 SNPs (rs2001461, rs1420103, rs6419573) ranged from 35 to 
41 items.

eQTL analysis of GWAS Catalog SNPs in cytokine genes.  Our search of cis-eQTL SNPs yielded 
19,386 associations for 1142 SNPs, targeting 999 genes, of which 178 genes represented cytokines (Supplemen-
tary Table S9). Compared to SNPs without eQTL effects (non-eSNPs), eSNPs were more often located in inter-
genic regulatory regions and in introns, while non-eSNPs were more frequently found in non-regulatory inter-
genic regions (Fig. 7a, upper panel). The most associations in the GTEx database, per one eSNP, were found for 
splice region variants, TF (transcription factor) binding site variants and 5′UTR variants (Fig. 7a, middle panel). 
In the set of eSNPs, positive IW-score (K10) mean values were revealed for TF binding site variants, synonymous 
variants, 5′UTR and 3′UTR variants (Fig. 7a, bottom panel). In the context of the direction of eQTL effects on 
target gene pairs, quite a lot of these effects were unidirectional for one gene pair and bidirectional for another 
gene pair. Both uni- and bidirectional associations were found for 78 eQTLs from, respectively, 188 and 103 
eQTLs with unidirectional and bidirectional effects on target gene pairs.

The Circos plot demonstrating the numbers of GWAS Catalog associations, unique GWAS Catalog SNPs, 
unique eSNPs, eSNP associations in the GTEx v.8 database and target genes, depicted according to chromo-
some regions is provided in Fig. 7b. The largest number of eSNPs was reported for the region 2q14.1. For this 
region, we found 220 GWAS Catalog associations and 188 eSNPs targeting 27 genes, among them nine cytokines 
(IL36RN, IL1A, IL37, IL1B, IL1F10, IL36A, IL36G, IL36B, IL1RN). The majority (202/213) of eSNP associations 
were detected for different types of measurements, primarily, for interleukin-1 beta measurement. The largest 
numbers of eSNP disease associations were linked to the following regions: 2q12.1 (58 associations, 32 eSNPs), 
10p15.1 (31 associations, 12 eSNPs), 1q21.3 and 5q22.1 (27 associations, 11 eSNPs and 5 eSNPs, respectively). 
The top five diseases associated with all GWAS Catalog eSNPs were: asthma, Crohn’s disease, inflammatory bowel 
disease, multiple sclerosis and rheumatoid arthritis (Fig. 7c).

Next, we looked at the specificity of cytokine genes eQTLs for each trait in the GTEx panel (Supplementary 
Table S10). The most significant associations (Pexp < E−10) were found for the following disease-tissue pairs: (1) 
cardiovascular, IL6R (coronary artery disease, atrial fibrillation, abdominal aortic aneurysm) and BMP1 (coro-
nary artery disease); (2) digestive, CCR1 (celiac disease), TSLP (eosinophilic esophagitis) and IFNGR2 (ulcerative 
colitis, Crohn’s disease, sclerosing cholangitis, inflammatory bowel disease); (3) endocrine, NRG1 (hypothyroid-
ism), GFRA2 (type II diabetes mellitus) and IFNGR2 (sclerosing cholangitis); (4) immune/hematologic, CCL20 

Figure 6.   Evidence of natural selection for the GWAS SNPs in the GDF5 and IL1RL1/IL18R1 genes. Data were 
extracted from the 1000 Genomes Selection Browser 1.0 for two natural selection tests: global Fst and integrated 
haplotype score (iHS). (a) Global Fst values for the SNP rs143384 (Fst = 0.649) and rs224333 (Fst = 0.714) in 
the GDF5 gene. GWAS signals for the SNPs rs143384 and rs224333 were reported for European and mixed 
ancestry populations. (b) iHS signals for the SNPs rs2001461 (iHS = 4.54), rs1420103 (iHS = 3.46) and rs6419573 
(iHS = 3.34) in the IL18R1/IL1RL1 locus in CEU population. GWAS signals for these SNPs were reported for 
European ancestry individuals.
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Figure 7.   eQTL analysis of GWAS Catalog SNPs in cytokine genes. (a) Distribution of eSNPs and non-
eSNPs by genomic region (upper panel). Number of GTEx associations per eSNP by genomic region (middle 
panel). IW-scores (K10) by genomic region (bottom panel). (b) Circos plot illustrating by chromosomal 
region distribution of the numbers of GWAS Catalog associations, unique GWAS Catalog SNPs, unique 
eSNPs, eSNP associations in the GTEx v.8 database and target genes (from the periphery to the center). (c) 
Spectrum of GWAS diseases associated with eSNPs in cytokine genes (frequency of association occurrence ≥ 5). 
(d) Results of ARCHS4 Tissues enrichment analysis for 655 target genes encoding proteins involved in protein 
interactions. (e) Top ten unique GO terms returned by GO enrichment analysis for the whole set of target genes. 
(f) Jaccard tissue similarity matrix for eQTL profiles based on matching eQTLs with their target genes and NES 
(Normalized effect size) direction: for the whole set of target genes (above the diagonal) and for the subset of 
target cytokines (under the diagonal). *(c) Ankylosing spondylitis, psoriasis, ulcerative colitis, Crohn’s disease, 
sclerosing cholangitis; (e) positive regulation of phosphate metabolic process.
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and CXCL5 (inflammatory bowel disease, ulcerative colitis), CCR1 (celiac disease, Behcet’s syndrome, AIDS), 
GDF15 and IL12RB2 (systemic lupus erythematosus), IFNGR2 (multiple sclerosis) and TNFSF15 (Crohn’s dis-
ease); (5) integumentary, IFNLR1 (psoriasis) and IL1A (eczema); (6) musculoskeletal, IFNGR2 and IFNLR1 
(ankylosing spondylitis); (7) nervous, CCL20 (eating disorder), FLT3 (Tourette syndrome), IFNAR1 (narco-
lepsy with cataplexy), IL18R1 (anterior uveitis and leprosy); (8) respiratory, IL1RL1 and IL18R1 (asthma). The 
subsequent analysis of GWAS disease-relevant tissue-specific eQTLs showed that eQTLs linked to nervous 
system diseases were enriched (had lower expression P values) in nervous compared to integumentary tissues; 
and eQTLs observed in cardiovascular diseases were enriched in cardiovascular against nervous tissues (Sup-
plementary Table S10).

We further used the STRING database19 for two types of enrichment analysis. First, we retrieved protein–pro-
tein interaction information for a total of 999 target genes, of which 655 genes encoded proteins found to be 
involved in protein interactions (Supplementary Table S11). The list of 655 genes was analyzed for the enriched 
categories from the ARCHS4 tissue database via the Enrichr tool20. ‘Macrophage’ was the top term followed by 
five more tissues, namely, lung (bulk tissue), colon (bulk tissue), ileum (bulk), valve and gastric epithelial cell 
(Fig. 7d). Since interacting proteins participate in many functions determining, in particular, tissue phenotypes 
in health and disease21, the aforementioned results are in agreement with the fact that many GWAS Catalog 
diseases found for cytokine genes were represented by inflammatory diseases and by respiratory and digestive 
system diseases. Second, we performed GO enrichment analysis for the following gene sets: target cytokines 
(n = 178), target non-cytokine genes (n = 821) and the combined group of 999 genes. No enriched terms were 
retrieved for the group of non-cytokine genes. Enriched biological process (BP) annotations included 838 and 
457 annotations for the set of cytokines and for the whole set, respectively (Supplementary Table S12). Among 
annotations found for the whole set, 57 annotations were unique, of which the top ten annotations were related 
to different types of regulation, including regulation of cell communication and migration (Fig. 7e). Subsequent 
processing of GO annotations, with the use of the REVIGO tool22, allowed selection of common and unique 
top-level functional categories for the set of cytokines and for the whole set (Supplementary Table S13). In the 
latter set, non-cytokine genes might contribute to cytokine network, in particular, participating in ‘apoptotic cell 
clearance’, since clearance defects are associated with the processes underlying inflammation and autoimmunity23.

Next, we used the Jaccard index to measure pairwise tissue similarity for eQTL profiles by matching eQTLs 
with their target genes and NES (Normalized effect size) direction. The Jaccard index was calculated for three 
sets: only cytokines as target genes for GWAS Catalog eSNPs, all target genes for our set of GWAS Catalog eSNPs, 
and cytokines as target genes at the genome-wide level (in total, targets for 84,904 eSNPs) (Supplementary 
Table S14). In the set of cytokines as target genes for GWAS Catalog eSNPs, the Jaccard index ranged from 0 to 
42.33 (mean ± SD, 8.98 ± 8.00). It was somewhat higher when considering the whole pool of target genes (range 
0.45 to 44.94, mean ± SD, 14.34 ± 6.78) (Fig. 7f). In the third set, the Jaccard index had values closer to those 
found for the first set (range 0.31–34.29, mean ± SD, 9.78 ± 6.15). Overall, the mean Jaccard index was low in all 
sets. The highest sharing of eQTLs across tissues was observed within the same tissue categories.

Discussion
Gene lists of human cytokines vary from 132 to 261 genes depending on whether cytokine receptors are 
included24. Using the QuickGo database and the search terms ‘cytokine/chemokine activity’ and ‘cytokine/
chemokine receptor activity’, we generated a list of 314 cytokines, which comprised an extensive range of 
cytokines/chemokines and their receptors. We aimed at collection, analysis and interpretation of data on 
cytokines focused on their tissue-specific expression, eQTLs and GWAS diseases and traits.

Our results on high tissue-specificity of cytokines are in agreement with the literature data. Inflammation 
initiation and resolution are mediated by pathways involving different cytokines, which work together with other 
tissue-specific signals depending on the composition of the relevant tissue and the microbial load24,25. The results 
of inverse correlation between cytokine tissue-specificity and the number of eQTLs targeting their expression 
should be assessed with caution since there is a positive correlation between the number of eQTLs and the tissue 
sample size, as well as gene length and the number of SNPs in tight LD with the top eSNP. Nevertheless, gene 
expression is a trait that is often under stabilizing selection, which plays an important role in limiting discrepancy 
in gene-expression levels26,27 substantial for the maintenance of tissue specificity in the expression regulatory 
framework28. Moreover, eQTLs can be predominantly targets of negative selection, in particular those affecting 
genes essential for tissue function, i.e. tissue-specific genes29,30. In this context, our results on a smaller number 
of eQTLs in tissue-specific cytokine genes, in comparison with other genes, seem biologically plausible. We also 
demonstrated many uni- and bidirectional changes in expression levels of target cytokine pairs associated with 
the same SNPs. A dominance of unidirectional correlations was seen in large gene clusters, mini-clusters and 
individual gene pairs. Gene clusters are regions of co-localized genes, which were formed in the course of evolu-
tion due to duplication of a single gene. The two newly formed copies usually developed specialized functions 
without losing a common primary function31. Cytokines gene clustering was intended to provide a consistent 
response to inflammatory stimuli32, while complex interplay of eQTLs influencing expression of genes in both 
directions could enable fine-tuning of the inflammatory response.

We classified all GWAS diseases and traits linked to cytokine SNPs with the EFO classification, described the 
top classification units for mapped traits and demonstrated their pairwise overlappings. The disease spectrum 
mainly included chronic immune-related disorders with a wide representation of autoimmune diseases, while 
associations found for infectious diseases, especially acute conditions, were relatively scarce.

It is accepted that GWAS-identified SNPs are usually considered as markers, and other SNPs in high LD 
with the index SNPs may be causal for the disease33. The comparative analysis of index SNPs and LD SNPs 
revealed higher functional scores for index SNPs, however, the influence of individual non-GWAS functional 
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SNPs in different degrees of LD with the index SNPs can be essential. We reported a larger proportion of LD 
SNPs in Asians vs. Europeans. This finding may be explained by the fact that GWAS SNPs were more often 
located in intragenic regions in Asian (52.21%) than in European populations (46.27%), since an excess of SNPs 
in strong LD is an inherent property of intragenic SNPs34.

Immune-related genes and cytokines, in particular, are frequently targets for natural selection in humans35, 
therefore, we performed two natural selection tests, Fst and iHS, and found several SNPs subjected to high selec-
tive pressures. Given the results of the Fst test, the SNPs in or near the GDF5 and TGFB2 genes were mainly asso-
ciated with anthropometric measurements related to height and BMI. Height is one of the best known candidates 
for polygenic selection in humans, especially in Europeans, while data for BMI are contradictory36,37. The GDF5 
gene product regulates bone and cartilage formation; recent selection of growth phenotypes affected GDF5 alleles, 
which were also associated with an increased arthritis susceptibility, especially in East Asians38,39. In our study, 
the GDF5 SNPs, rs143384 and rs224333, were associated with height- and BMI- related phenotypes in different 
populations, however, no associations with arthritis were revealed for these SNPs under selective pressure. The 
TGFB2 gene product also has growth factor activity. According to GO annotations, it participates in skeletal 
system development. In our study, significant Fst results were observed only for the CEU-CHB pair of popula-
tions and the SNPs under selective pressure had almost no effect on the TGFB2 expression. Thus far, we did not 
find literature data on the involvement of TGFB2 SNPs in the selective processes. The iHS test, aimed at defining 
evidence of recent positive selection, detected selective sweeps for three tightly linked SNPs in the IL18R1 gene, 
which encodes a cytokine receptor from the interleukin 1 receptor family. It has been previously discussed that 
the conserved across evolutionary branches mechanism of regulating IL18 signaling might represent a target for 
selective pressure40. This assumption is consistent with the fact that the top IL18R1 SNP rs2001461 (iHS CEU 
score 4.54) was associated with the IL18R1 expression (GWAS trait P value = 3.00E−129).

Our eQTL analysis of GWAS SNPs revealed the largest number of associations in the GTEx database for 
splice region variants, TF binding site variants and 5′UTR variants, i.e., the regions functionally relevant to gene 
expression and its regulation41. The analysis of tissue specificity of cytokine genes eQTLs for each trait in the 
GTEx panel was aimed at highlighting the most significant findings for disease-tissue associations. Some eQTLs 
influenced the expression levels of many (more than 20) different cis-genes in multiple tissues thus complicat-
ing the eQTL data interpretation. The relevance of eQTLs may be supported by the results of the tissue- and 
disease-specific enrichment analysis42, however, the specific level of enrichment was observed in only two sets 
of comparisons. Lack of enrichment results for the majority of tissue-specific effects of eQTLs can be explained 
by a lack of statistical power and pleotropic effects of many SNPs. The true absence of tissue-specific effects for 
some complex traits is also discussed43. The role of eGenes represented by cytokines in comparison with the role 
of other eGenes was highlighted in the gene set enrichment analyses, which showed that cytokines were involved 
in infection and inflammation-related biological processes, while other genes in the whole set of target genes were 
mainly engaged in regulation, cell communication and migration. All together these data imply that cytokines 
expression variability fundamentally contribute to the molecular origins of complex traits and immune-mediated 
diseases. Tissue similarity in eQTL profiles of GWAS trait-associated SNPs measured by Jaccard coefficients 
showed high eQTL specificity. These results are in agreement with the fact that tissue-specific eGenes are more 
often annotated as disease genes than tissue-shared eGenes42. Tissue-specific genes are relevant to tissue biology 
and disease29. Among other regulatory mechanisms, cytokine eQTLs specificity could contribute to cytokine 
tissue expression specificity. The GTEx database provides data on tissue expression in healthy tissues, however, 
the validity of the approach using GTEx data for translational research in medical science has been recently 
confirmed in the study of drug targets, in which druggable genes were expressed in disease-relevant tissues in 
a healthy state in 87% of cases44.

The main limitations of this study are characteristic for secondary investigations using data as they are in 
original resources. The enrichment analysis of GTEx data was limited to the results presented with q-value 
threshold 0.05. GTEx eQTL effects may be gender- and age- dependent and linked to population structure, thus 
being subjected to confounding7,45.

In conclusion, we generated a list of 314 cytokines and characterized their tissue-expression specificity, eQTLs 
and GWAS diseases and traits. Several findings go beyond the scope of this study and may be interesting for future 
research directions. (1) Correlation between cytokine gene expression levels in different GTEx tissues was high, 
however, the lowest levels of correlations were revealed for whole blood and other hemic and immune-related 
cells and tissues, between themselves and between other tissues. These data are in agreement with GTEx data 
for the whole set of GTEx genes7 and suggest that using blood as a surrogate tissue for transcription analysis has 
marked limitations for translational research. (2) Low Jaccard index for eQTL-based tissue similarity reflects 
eQTL tissue-specificity. This conclusion is supported by literature data demonstrating that, if possible, disease-
relevant tissue should be used for eQTL-based transcription analysis46. Other findings and observations are 
more specific to the aim of the study. (3) Acute immune-mediated conditions are scarcely represented among 
GWAS traits, possibly due to insufficient research and/or complexity and multifactoriality. (4) Natural selection 
analysis identified SNPs in the GDF5 gene (confirmatory information) and IL18R1 gene (new data) subjected 
to positive selection. (5) GWAS SNPs with eQTL effects affected expression levels of many eGenes in different 
tissues, however, it was cytokines expression variability that fundamentally contributed to the molecular origins 
of considered immune-mediated conditions.

Materials and methods
Hand‑curated list of  genes encoding proteins with cytokine and cytokine receptor activ-
ity.  We generated a list of genes encoding proteins with cytokine/chemokine and cytokine/chemokine 
receptor activity employing the QuickGo database—a web-based tool of the European Bioinformatics Insti-
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tute (EMBL-EBI) for Gene Ontology searching7. Our searching for the terms cytokine activity (GO:0005125), 
chemokine activity (GO:0008009), cytokine receptor activity (GO:0004896) and chemokine receptor activity 
(GO:0004950) provided 40,607, 11,241, 29,071 and 9474 annotations respectively (last access August, 2019). 
After the removal of non-human taxon entries, proteins without annotations in SwissProt and entries without a 
gene symbol approved by the HUGO Gene Nomenclature Committee, we constructed a final set of 314 unique 
genes.

GTEx information on cytokine genes in the whole genome context: data extraction and analy-
sis.  For our gene-set analyses, we downloaded results from the GTEx database Analysis Release V88. Gene 
tissue expression data presented as median TPM (Transcript Per Million) were available for 54 tissues (in total 
948 donors). Cis-eQTL information was provided for 49 tissues (in total 838 donors) with significant eQTL sig-
nals determined with a  Q-value  threshold. Two metrics estimating tissue specificity were applied, Tau9 and 
TSI10, both calculating tissue specificity based on the information of a given gene expression in each tissue and 
its maximal expression across all tissues. Both metrics vary from 0, indicating that expression is constant in all 
tissues, to 1, pointing out that expression is specific to a single tissue.

To assess the direction of an eQTL effect on target gene pairs, we formed clusters of physically co-local-
ized genes for a given chromosome region. These clusters included gene pairs and SNPs matched by tissue-
specific expression. LD analysis was carried out by calculating the squared correlation coefficient (r2) for each 
pair of SNPs of interest. LD patterns were analyzed in populations of European descent (CEU, UtAh residents 
from North and West Europe; TSI, Toscani in Italia; FIN, Finnish in Finland; GBR, British in England and 
Scotland; IBS, Iberian population in Spain). LD analyses in this section and throughout the study were done 
with the LDlink resource47.

The NHGRI‑EBI GWAS Catalog data extraction and analysis.  We extracted data for cytokine genes 
from the NHGRI-EBI GWAS Catalog (last access August, 2019)11. Associations reported in the GWAS Catalog 
were annotated with the use of EFO (Experimental Factor Ontology)12. We used HaploReg v448 to construct two 
data sets including information for GWAS SNPs (index SNPs) and SNPs in high LD with the index SNPs. This 
information was obtained via haploR package49. LD SNPs were selected based on a threshold r2 > 0.8 and were 
matched by population with index SNPs. Only index SNPs were considered for mixed and non-indicated popu-
lations, as well as for populations which could not be attributed to any of the HaploReg populations: European, 
Asian (Chinese, Japanese, Vietnamese), African (including African Americans) and American (Admixed Amer-
ican). To annotate index and LD SNPs we used the IW-scoring tool, which was developed to annotate and rank 
non-coding genetic variants by their putative functional importance14. Among available outputs, we focused on 
IW-score (K10), which aggregates scores from ten state-of-the-art functional prediction tools for known genetic 
variants. We also considered some additional annotations provided by HaploReg v448 and SNPnexus50 for non-
coding and coding variants (annotations at the genomic region level, as potential regulatory sequences and the 
effect of the amino acid change on protein function).

Detection of signals of positive selection.  Two measures of positive selection signals for GWAS SNPs 
in cytokine genes, Fst (Fixation index) and iHS (Integrated Haplotype Score) were subjected to analysis via the 
1000 Genome Selection Browser 1.015. This resource includes data on populations of West African (YRI), North-
ern European (CEU) and East Asian (CHB) ancestry. Natural selection statistics are provided as the absolute 
scores and rank scores representing − log10 of the P value at 0.01 FDR for the SNP compared to others in the 
whole-genome context. Rank scores > 2.0 are considered significant15. Six sets, Fst CEU versus CHB, Fst CEU 
versus YRI, Fst Glob, iHS CEU, iHS CHB and iHS YRI were considered.

Functional analysis of GWAS SNPs with eQTL effect.  To investigate GWAS SNPs affecting gene 
expression levels, we also used the GTEx database Analysis Release V8. Among target genes, we identified gene 
sets significantly enriched in protein–protein interactions (PPI) and GO (Gene Ontology) terms in the STRING 
database19. For each PPI pair, the combined score > 0.4 was applied as the cutoff criterion. In the set of GO 
terms we included only terms with at least three genes per category. The resulting gene set was analyzed for 
tissue specific enrichment by ‘ARCHS4 Tissues’ in Enrichr20. For gene set enrichment analyses we set the false 
discovery rate (FDR) threshold as 0.05. The REVIGO tool was applied to remove redundancies in GO terms 
and to select the cluster GO representatives22. Tissue-sharedness in eQTL effects was assessed with the Jaccard 
similarity index, which measures similarity between two sets as the ratio of their intersection to their union. Tis-
sue pairwise overlap was registered for eQTLs if they influenced the same target genes with the same direction 
of the effect.

Statistical analysis.  For categorical variables, we used Pearson’s chi-square with Yates’s correction/Fish-
er’s  exact test and displayed P values corrected for multiply testing (FDR test). For continuous variables, we 
applied two nonparametric tests, the Mann–Whitney U test and the KS tests. The Mann–Whitney test computes 
a P value depending on the discrepancy between the mean ranks of the compared groups, while the KS test com-
pares the cumulative distribution of the two data sets. The Mann Whitney test is more appropriate for sample 
sizes < 50 samples.

Ethics statement.  Ethical review and approval was not required for the secondary analysis of public data 
in accordance with the local legislation and institutional requirements.
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