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Mekjavić IB, Plavec J, Rittweger J,
Debevec T, Eiken O and Stres B

(2020) Systems View
of Deconditioning During Spaceflight

Simulation in the PlanHab Project:
The Departure of Urine 1H-NMR

Metabolomes From Healthy State
in Young Males Subjected to Bedrest

Inactivity and Hypoxia.
Front. Physiol. 11:532271.

doi: 10.3389/fphys.2020.532271

Systems View of Deconditioning
During Spaceflight Simulation in the
PlanHab Project: The Departure of
Urine 1H-NMR Metabolomes From
Healthy State in Young Males
Subjected to Bedrest Inactivity and
Hypoxia
Robert Šket1, Leon Deutsch1, Zala Prevoršek1, Igor B. Mekjavić2, Janez Plavec3,
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We explored the metabolic makeup of urine in prescreened healthy male participants
within the PlanHab experiment. The run-in (5 day) and the following three 21-day
interventions [normoxic bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation
(HAmb)] were executed in a crossover manner within a controlled laboratory setup
(medical oversight, fluid and dietary intakes, microbial bioburden, circadian rhythm,
and oxygen level). The inspired O2 (FiO2) fraction next to inspired O2 (PiO2) partial
pressure were 0.209 and 133.1 ± 0.3 mmHg for the NBR variant in contrast to
0.141 ± 0.004 and 90.0 ± 0.4 mmHg (approx. 4,000 m of simulated altitude) for HBR
and HAmb interventions, respectively. 1H-NMR metabolomes were processed using
standard quantitative approaches. A consensus of ensemble of multivariate analyses
showed that the metabolic makeup at the start of the experiment and at HAmb
endpoint differed significantly from the NBR and HBR endpoints. Inactivity alone or
combined with hypoxia resulted in a significant reduction of metabolic diversity and
increasing number of affected metabolic pathways. Sliding window analysis (3 + 1)
unraveled that metabolic changes in the NBR lagged behind those observed in the
HBR. These results show that the negative effects of cessation of activity on systemic
metabolism are further aggravated by additional hypoxia. The PlanHab HAmb variant
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that enabled ambulation, maintained vertical posture, and controlled but limited activity
levels apparently prevented the development of negative physiological symptoms such
as insulin resistance, low-level systemic inflammation, constipation, and depression.
This indicates that exercise apparently prevented the negative spiral between the
host’s metabolism, intestinal environment, microbiome physiology, and proinflammatory
immune activities in the host.

Keywords: urine, metabolome, NMR, inactivity, interplanetary travel, medicine, deconditioning, inflammation

INTRODUCTION

Metabolomics has developed into a technology-driven discipline
enabling improved data collection, analysis, and interpretation.
In particular, 1H-NMR spectroscopy has received significant
attention since it is non-destructive, non-biased, quantitative, and
at the same time requires no sample derivatization (Emwas et al.,
2019), is reproducible, quantitative, and enables identification
of unknown novel compounds routinely in complex biological
systems, such as human body or built environments (Murovec
et al., 2018; Sket et al., 2018; Emwas et al., 2019).

The PlanHab project encompasses the two faceted nature of
spaceflight, where human physiological responses are coupled
to microbial responses to inactivity on one side and 21-day
(prolonged) confination within built environment, similar to
hospital settings, on the other (Debevec et al., 2014a; Simpson
et al., 2016). The combined effects of 21-day inactivity/unloading
and hypoxia were investigated in a controlled manner (crossover
design) using medically prescreened cohort of healthy male
volunteers. The experiment was executed adopting the European
Space Agency (ESA) and NASA core bedrest data collection SOP
(Standardization of bedrest study conditions 1.5, August 2009)
controlling a number of parameters such as atmospheric oxygen
content, levels of exercise (immobilization), daily water and
nutritional intake, circadian rhythm, and microbial ambiental
and aerosol bioburden next to the 24/7 medical surveillance
(Debevec et al., 2014a; Simpson et al., 2016). In this study,
the PlanHab repertoire of exploration was extended by analyses
of urine 1H-NMR metabolomes during the run-in (5 day)
and three consecutive experimental phases [21-day normoxic
bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation
(HAmb)] in healthy male test participants. Bedrest approach
in experiments is widely adopted to simulate the effects of
microgravity on various physiological systems of human body,
especially for studies of bone, muscle, and the cardiovascular
system by NASA, ESA, and Roscosmos (Hargens and Vico, 2016;
Sundblad et al., 2016). On the other hand, physical inactivity
in general has emerged as the fourth leading behavioral risk
factor for worldwide mortality (Kelly et al., 2020). Risk of over
20 chronic conditions [e.g., coronary heart disease, stroke, type
2 diabetes, some cancers, obesity, mental health problems (e.g.,
depression), and neurological conditions (e.g., dementia)] is
increased by physical inactivity making lack of exercise a global
health problem (Kelly et al., 2020).

The past findings obtained within the PlanHab platform
showed that a number of negative physiological symptoms

related to obesity and metabolic syndrome developed in a dose-
dependent manner over the course of 21-day experimental period
in the HBR and NBR but were absent from the HAmb variant
(Debevec et al., 2014b, 2016b; Rittweger et al., 2016; Simpson
et al., 2016; Stavrou et al., 2016; Sket et al., 2017a,b; Strewe
et al., 2017). In addition, the observed negative physiological
symptoms faded effectively in 14, 10, and <4 days for HBR,
NBR, and HAmb, respectively (Debevec et al., 2014b; Sket
et al., 2017a,b). Also, many of the microbial parameters such
as butyrate producing microbial community, the general
bacterial and archaeal microbial communities were shown to
respond to modifications in human intestinal environment
but lagged behind the changes in human physiology and
intestinal environment (Sket et al., 2017a,b). These findings
suggested a time-dependent and complex interplay between the
host physiology (including apparent constipation), immunity
(inflammation), controlled diet, intestinal environment variables,
and microbiome physiology in absence of exercise. The analyses
of microbiome and associated environmental parameters
suggested that the onset of inactivity gave rise to progressive
shifts in intestinal environment boiling down to modified
microbial metabolic activity and increased metabolism toward
degradation of host mucus layer in bedrest variants (HBR,
NBR) (Sket et al., 2017b). On the other hand, in the absence
of such changes the healthy HAmb variant was coupled to the
production of beneficial indole derivatives (Sket et al., 2017b).
Further metagenomic analyses within the PlanHab platform (Sket
et al., 2018) confirmed that inactivity and hypoxia resulted in a
significant increase in the relative abundance of genus Bacteroides
in HBR next to Bacteroides cell wall, capsule, virulence, defense,
and mucin degradation genes [beta-galactosidase (EC3.2.1.23),
α-L-fucosidase (EC3.2.1.51), Sialidase (EC3.2.1.18), and α-
N-acetylglucosaminidase (EC3.2.1.50)] and genes coding for
iron acquisition and metabolism proteins (Sket et al., 2018).
In contrast, the corresponding microbial fecal metabolomes,
intestinal chemical and metal profiles, and the diversity of
bacterial, archaeal, and fungal microbial communities were not
significantly affected within the timeframe using the experimental
set-up of the PlanHab project (Sket et al., 2018). The fact that
the genus Bacteroides and proteins involved in iron acquisition
and metabolism, cell wall, capsule, virulence, and mucin
degradation were also enriched at the end of HBR revealed that
significantly increased constipation and electrical conductivity
led to decreased intestinal metal availability that consequently
affected the expression of codependent and coregulated genes
in Bacteroides genomes. Data integration utilizing Bayesian
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network analysis resulted in the establishment of the first
hierarchical model describing the onset of inactivity-mediated
deconditioning over time (Sket et al., 2018).

The PlanHab wash-out period corresponded to a
reintroduction of exercise, vertical position, and posture
maintenance that resulted in stepwise amelioration of the
negative physiological symptoms, indicating that physical
activity as such introduced changes into the crosstalk between
the host physiology, microbial physiology, mucin degradation,
and proinflammatory immune activities within the host (Sket
et al., 2017a,b, 2018). This observation was based on the fact that
the observed progressive decrease in some of the parameters (e.g.,
defecation frequency, intestinal indole content) and concomitant
increase in other (e.g., intestinal electrical conductivity,
inflammatory markers) preceded or took place in absence of
significant changes at the levels of microbial taxonomy, the
corresponding functional genes, intestinal metabolomes, and
accompanying metal profiles (Sket et al., 2017a,b, 2018).

Metabolic signal can be divided into three categories, human,
microbial, and human-microbial cometabolites (Dumas et al.,
2017; Wilmanski et al., 2019) and can represent a significant
portion of dissolved organic matter in blood and urine. Hence,
the selection of metabolomics layer for in-depth analysis of the
PlanHab project-derived urine samples thus represents a logical
continuation of efforts to discern and improve our understanding
of the timing and the consequences of 21-day inactivity and
hypoxia on human pathophysiology.

As there is a lack of data and understanding on the
progressive changes in human metabolic responses coupled to
microbial metabolites in the absence of exercise, we hypothesized
that reduction in physical activity (complete inactivity) would
(i) result in structured and significant changes in urine
metabolomes of healthy participants; (ii) enable identification
of significant groupings of experimental variants; (iii) provide
discriminant metabolites between observed physiological states;
(iv) enable the construction of metabolic network of co-
occurring metabolites; (v) provide insight into the time-
dependent changes in metabolomes; and finally (vi) enlighten
the significantly different metabolic pathways between the
experimental variants and also relative to the healthy initial
state. In addition, the systemic hypoxia due to inactivity
(HBR) versus ambulation in hypoxia (HAmb) was predicted
to be an additional important factor aggravating the observed
physiological changes within the 21-day PlanHab execution,
unraveling the difference due to retained physical activity levels,
hydrostatic pressures, and posture-related muscle activity in
HAmb (Debevec et al., 2014a; Miles-Chan and Dulloo, 2017; Sket
et al., 2017a,b).

METHODS

Experimental Setup
Experimental setup, registration, approval, recruitment, medical
prescreening, acquisition of clinical data and supervision, and
hypoxic facility next to the detailed outline of the PlanHab study
were prepared and conducted according to the European Space

Agency’s standardization plan for bedrest studies (ESA, 2009),
including sample size calculation and were extensively detailed
before (Debevec et al., 2014a, 2016a; Rittweger et al., 2016;
Simpson et al., 2016; Sket et al., 2017a,b, 2018; Stavrou et al.,
2016; Strewe et al., 2017). In short, for this study, each healthy
male, participant, characterized by numerous clinically relevant
measurements to assert absence of disease with a state of
physical, mental, and social welfare, underwent 5 days of baseline
data collection during which participants were ambulant, 21
intervention days and 5–14 days of medical follow-up. The
participants underwent the following three protocols: (1)
normobaric NBR (fraction of inspired O2 (FiO2) = 0.209;
partial pressure of inspired O2 (PiO2) = 133.1 ± 0.3 mmHg);
(2) normobaric hypoxic ambulatory confinement (HAmb;
FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg;
∼4,000 m simulated altitude); and (3) normobaric HBR
(FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg; ∼4,000 m
simulated altitude). Altogether, 11 healthy men underwent
all three campaigns in randomized crossover design of
PlanHab project. Subjects were enrolled by project manager
and randomly allocated between campaigns using Latin
square design method. Sample size was determined based
on previous reports on bedrest studies to obtain sufficient
predictive power ≥ 0.80 (Traon et al., 2007; Angerer et al.,
2014; Debevec et al., 2014a, 2016a,b; Simpson et al., 2016;
Sundblad et al., 2016). For detailed experimental protocols,
please see Debevec et al. (2014a); Sket et al. (2017b). In
essence, the combined effects of 21-day complete inactivity
and hypoxia on healthy participants were examined within
the PlanHab study utilizing 11 healthy medically prescreened
participants in the crossover design under strictly controlled
conditions according to ESA/NASA core bedrest data collection
SOP in order to determine significant differences between
samples and experimental variants relative to healthy baseline
data collection.

The PlanHab Project Acquisition of
Clinical, Exercise, Dietary, and Ambiental
Data
Acquisition of clinical, exercise, dietary, and ambiental data
were described in detail before (Debevec et al., 2014a, 2016a;
Simpson et al., 2016). The in-house database (Sket et al.,
2017b) containing over 13,000 entries based on all measured
variables in the PlanHab experiment (i.e., clinical, inflammation,
immune, human physiology, and nutrition data next to the
experimental design and characteristics of the participants) was
checked for consistency and updated with recent publications
related to the PlanHab project (Debevec et al., 2014a, 2016b,
2018; Keramidas et al., 2016; Louwies et al., 2016; Rittweger
et al., 2016; Rullman et al., 2016, 2018; Simpson et al., 2016;
Morrison et al., 2017; Strewe et al., 2017; Salvadego et al.,
2018; Sarabon et al., 2018; Stavrou et al., 2018a,b; Ciuha et al.,
2020). The in-house database was used to identify parameters
that differed significantly between the experimental variants
over the course of the experiment as described before (Sket
et al., 2017b, 2018). This resulted in 48 parameters describing
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diet, intestinal metabolites, immune, and chemical parameters
next to human physiology that were significantly different
between NBR, HBR, and HAmb variants (p < 0.05; corrected
for multiple comparisons). These served as the basis for the
linking of observed body deconditioning to urine metabolites
observed in this study.

Participants
After initial prescreening according to NASA and ESA
guidelines for bedrest studies, the data of 11 participants
that finished all three interventions were included in
our analysis with the following baseline characteristics
(mean ± SD): age = 27 ± 6 years; body mass = 76.7 ± 11.8 kg;
stature = 179 ± 3 cm; BMI = 23.7 ± 3.0 kg m−2; body
fat = 21 ± 5%; maximal oxygen uptake = 44.3 ± 6.1 ml
kg−1 min−1 (Debevec et al., 2014a; Sket et al., 2017a).

Sample Collection
Urine samples were collected aseptically on a daily basis in the
early morning during the 5 days of run-in period and 21 days
of intervention periods. In total, 523 samples were obtained,
aliquoted, and frozen at−20◦C for further analyses.

Urine Metabolome Analysis Using Proton
Nuclear Magnetic Resonance
Urine samples (600 µl) were centrifuged at 10,000× g for 30 min
at 4◦C to remove fine particles. Samples were filtered through
0.22 µm HPLC-compatible filters (Millipore, Germany), 400 µl
aliquots were mixed with 200 µl 1H-NMR buffer as described
before (Beckonert et al., 2007) and stored at−20◦C until analysis.
Before analysis, samples were thawed at room temperature and
centrifuged at 12,000 × g for 5 min at 4◦C; 550 µl of each
sample was transferred into 5 mm NMR tube as described before
(Murovec et al., 2018).

Proton nuclear magnetic resonance (1H-NMR) spectra were
acquired on an Agilent Technologies DD2 600 MHz NMR
spectrometer equipped with 5 mm HCN Cold probe. 2D
experiments were measured on Agilent Technologies (Varian)
VNMRS 800 MHz NMR spectrometer equipped with 5 mm
HCN Cold probe. All experiments were measured at 25◦C. 1H-
NMR spectra of the samples were recorded with spectral width
of 9.0 kHz, relaxation delay 2.0 s, 32 scans, and 32 K data
points. Water signal was suppressed using double-pulsed field
gradient spin-echo (DPFGSE) pulse sequence. Heteronuclear
single quantum coherence spectrum (HSQC) for 1H- and 13C-
dimensions (2D NMR) was acquired with spectral widths of 9.0
and 40 kHz for 1H- and 13C-dimensions, respectively, and 1,536
complex points for 1H-dimension, relaxation delay 1.5 s, 160
number of transients, and 128 time increments. Total correlated
spectrum (TOCSY) was measured with 1H spectral widths of
7.0 kHz, 4,096 complex points, relaxation delay 1.5 s, 32 number
of transients, and 144 time increments. The 1H and 2D spectra
were apodized with an exponential function and a cosine-squared
function, respectively, and zero filled before Fourier transform.
NMR spectra were processed and analyzed using VNMRJ
(Agilent/Varian) and Sparky (UCSF) software and MestReNova.

The resulting spectra were consequently analyzed in
two complementary ways: (i) human expert chemometric
untargeted metabolomics, including 2D spectra, and (ii) targeted
quantitative metabolomics using Chenomx NMR Suite version
8.3 (Chenomx, Inc.) For the latter, all spectra were randomly
ordered for spectral fitting using ChenomX profiler. Metabolites
were thus identified with the support of Chenomx Compound
Library extended by Human Metabolome Data Base (Wishart
et al., 2009; Markley et al., 2017), giving access to chemical
shift profiles of 674 compounds used in analyses. The number
of database derived chemical shift profiles of metabolites
used in analyses was further decreased by the procedures
described below.

Bioinformatic and Statistical Analysis of
Urine Metabolomes
Two different approaches to asymmetric sparse matrix data
analysis were adopted (Legendre and Legendre, 2012), as
each compound concentration was (i) normalized by dividing
the measured concentration into the total concentration of
all metabolites in that sample and (ii) by Box-Cox or log2
transformation (Sket et al., 2018). The metabolites that were
present in less than 5% of the samples (i.e., < the size of
the smallest experimental group of samples in analysis) were
excluded from further analysis.

The significance of difference in the metabolic characteristics
of various groups of samples was tested using ANOSIM,
NP-MANOVA, expressed as an overlap in non-metric
multidimensional scaling (nm-MDS) trait space using Gower
and Euclidean distance measures, and finally the dimensionality
reduction selected through stress function and inspection
of Shepard’s plots of correspondence between target and
obtained ranks. To analyze the relationship between starting
and endpoints of each variant, and also between the endpoints
of particular variants, a number of established approaches
were used: weighted UniFrac, uweighted UniFrac, analysis of
molecular variance (AMOVA), HOMOVA, LEfSe, indicator
species, and Metastats tests with 999 permutations were used as
implemented in mothur (Schloss et al., 2009). Multiple-group
comparisons were performed using Benjamini-Hochberg false
discovery rate (FDR). Multiple test correction (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001), was used as
described before (Sket et al., 2017a,b, 2018).

Associations between urine metabolites were calculated using
non-linear Spearman correlation as implemented in mothur
(Schloss et al., 2009), and significant interactions (p < 0.005) were
used for further network analysis. Software Cytoscape (Shannon
et al., 2003) was used to create interaction networks between the
significantly different groups of metabolomes identified in the
previous section, giving thus rise to two groups: (i) the beginning
of the experiment and endpoint of HAmb on one side and (ii) the
endpoints of experimental variants NBR and HBR at the other.
Network characteristics were described using parameters, e.g.,
clustering coefficient, number of nodes and edges, and network
density next to centrality measures such as betweenness and
closeness (Shannon et al., 2003).
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Furthermore, a complementary analysis using a completely
distinct analytical approach utilizing a dedicated MetaboAnalyst
tool (Xia et al., 2009) was adopted. The supervised classification
using random forest method and pathway mapping were
utilized where measured metabolites were compared with human
metabolome database for identification of the affected metabolic
pathways (Wishart et al., 2007). Pathway enrichment analysis was
performed using global ANCOVA and topology analysis using
relative-betweeness centrality in MetaboAnalyst (Goeman et al.,
2004; Chong et al., 2019).

The final type of analysis introduced a sliding window analysis
of the relationships between the recorded metabolic profiles.
Metabolomes belonging to a particular day over the run-in
and experimental phase were binned together using window
size of 3 days and the increment step size of 1 day. For each
window, the urine metabolites and their distribution between
samples were used to calculate the mean values of 3 days
span for all three experimental variants (HBR, NBR, HAmb).
Furthermore, the metabolic windows of 3 days calculated
for different experimental variants were compared with the
first 3 days of baseline data collection using permutational
multivariate analysis of variance (PERMANOVA) tests with
9,999 permutations to assess the significance of differences
between multiple-group comparisons and elucidate the possible
trends in changes of significance within each and between
different windows.

RESULTS

The Extent of Body Deconditioning in the
PlanHab Project
The in-house PlanHab database reported before (Sket et al.,
2017b) enabled us to incorporate novel recently reported
parameters within the PlanHab project (Supplementary
Table 1) and identify 48 variables from other substudies within
the PlanHab project that differed significantly between the
experimental variants describing the clinical, inflammation,
immune, human physiology, and nutrition characteristics of
the participants (Figure 1). The results show clear separation
between the HAmb variant and the inactive HBR and NBR
variants. In addition, the variables were clearly separated into
two broad response clusters with a number of variable subtypes,
showing the complexity of the developed physiological and
nutritional responses. The healthy levels of measured variables
were retained for the major part of the measured variables
in HAmb and hence constitute the least-affected phenotype,
whereas those observed for HBR and NBR were classified as
characteristic of insulin resistance (type 2 diabetes), low-level
systemic inflammation, constipation, depression, symptoms
related to metabolic syndrome, obesity, and body deconditioning
due to inactivity. A number of specific changes can be observed
in human physiology in response to either hypoxia or inactivity
under hypoxia that are beyond the scope of this work and
were already described in details within the PlanHab project
publications (Sket et al., 2017b, 2018; Supplementary Table 1).

Variations in Measured Urine Metabolites
Between the Experimental Branches
Multiple comparisons using AMOVA test indicated significant
shifts in metabolites between baseline data collection and
endpoints of experimental variants (p < 0.01). Individually
tested correlations between experimental variants showed that
metabolites detected in HBR and NBR campaigns differed
significantly from HAmb and baseline data collections
(Figure 2A). As the metabolites detected in baseline data
collection and HAmb group were not significantly different,
these two groups represented rather healthy physiological
signatures, as observed before in the PlanHab literature
(Supplementary Table 1). Multiple comparisons of the most
significant metabolites according to ANOVA significance testing
(Figures 2B–C) confirmed the joint clustering of HAmb and
baseline data collections as healthy physiological signatures on
one side in contrast to HBR and NBR campaigns as affected
states on the other. In this respect, the joint branching of the
baseline data collection of healthy participants with HAmb
variant represented thus the rather healthy human physiological
signatures on one side with NBR and HBR experimental variants
representing severely affected participants on the other (Figure 1;
Supplementary Table 1).

The metabolites most involved in separation of the two
experimental branches (healthy vs. affected) listed within
Figures 2B,C represent the classes of microbial metabolites (e.g.,
acetate, formate, hippurate), human-microbe cometabolites (e.g.,
trimethyl amine, hippurate, carnitine, acetyl carnitine, cresol,
phenyl acetyl glycine), and human-derived metabolites involved
in ATP synthesis (e.g., creatinine, choline, guanidinoacetate,
hypoxanthine, xanthine), DNA (purine) metabolism (e.g.,
uric acid, xanthine, hypoxanthine), tricarboxylic acid cycle
(e.g., succinate, citrate), muscle mitochondria (e.g., isoleucine),
generation of reactive oxygen species (ROS; e.g., xanthine,
hypoxanthine), bile acid metabolism (e.g., taurine), and others. It
can be seen that numerous metabolites were associated and could
be hence involved with distinct complex physiological responses
detailed in Figure 1.

Of interest, the three collections of run-in baseline data
metabolomes obtained from healthy and medically prescreened
participants were not significantly different (PERMANOVA
test; p > 0.05; FDR corrected). This shows that urinary
metabolomes obtained during the run-in baseline data collection
were representative of healthy normal males.

Interaction Network Analysis of
Co-occurring Metabolites
Interaction network of metabolites characteristic of the healthy
state showed us 177 statistically significant connected metabolites
(i.e., nodes; Spearman correlation p < 0.005) with a total of
1,769 edges representing the co-occurrence patterns between
metabolites (Figure 3). In contrast, the interaction network
in affected participants of NBR and HBR variants showed a
severe reduction of more than 30% in the number of statistically
significantly connected metabolites and a 2.5 times reduced
number of their interactions. This testifies that a reduction in
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FIGURE 1 | Heatmap plot showing the relationship between parameters describing human physiology, psychology, and intestinal environment that differed
significantly at the end of the PlanHab experiment (n = 48; p < 0.05; FDR corrected) that are now part of the new version of the in-house PlanHab database (Sket
et al., 2017b) based on all measured variables within the project. The inset to the left represents the magnitude of z-normalized data.
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FIGURE 2 | Schematic overview of the detected changes in urine metabolites. (A) Comparison of metabolite groups showing the start and HAmb, HBR, and NBR
experimental variants using three different tests. The dotted and solid lines designate significant and non-significant differences between the groups. (B) Heatmap of
the 50 most important urine metabolites according to AMOVA significance testing constructed using Euclidean distance measure and Ward clustering algorithm.
(C) Graphical representation of 15 most informative metabolic features and their sample classification efficiency ranked by random forest algorithm. The insets to the
right (B,C) represent the magnitude of z-normalized data.

physical exercise is coupled to significant reduction in metabolic
diversity within human body.

Based on centrality measurements (betweenness, closeness),
the most important metabolites representing the difference
between healthy and affected states that were identified also
using different statistical approaches (Supplementary Table 1)
were enriched in either healthy or affected states (Figures 2B,C),
suggesting significant shifts existed in the metabolic makeup
of the human urine after introduction to inactivity within the
PlanHab project and secondly very few to the project itself.

In addition, these graphical representations of metabolic
co-occurrence networks clearly demonstrate the complexity of

metabolic makeup of developed metabolic states observed in the
PlanHab project showing that the search for a single or a handful
of biomarkers would be prohibitive and oversimplification and
that a more complex approach needs to be utilized to derive
important information.

Variations in Predicted Urine Metabolic
Pathways
As many metabolites can be involved in different not
necessarily complementary metabolic pathways, the collected
metabolomics data were used to reconstruct the most important
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FIGURE 3 | An overview of the complexity of the metabolic co-occurrence networks and their characteristics reported for the healthy (start; HAmb) and affected
(NBR; HBR) metabolic states. The rightmost pane represents the difference between the two networks, showing the extent of lost metabolic interactions and nodes
due to modifications in human physiology in response to conditions in HBR and NBR (inactivity and hypoxia).

metabolic pathways contributing to the observed differences
in metabolomes. The pathways were identified based on the
importance of underlying metabolites (pathway impact) and
the significance of comparison between different metabolites
(significance after FDR).

The metabolites involved in propanoate metabolism
(p < 0.0001) were enriched in comparison with the start of
the experiment (Figure 4 and Supplementary Table 2) in all
three campaigns. On the other hand, the metabolites involved
in synthesis and degradation of ketone bodies with pathway
impact 0.7 were enriched solely in HAmb experimental variant
(p < 0.0001) considering FDR but not in HBR and NBR variants.

Most enriched pathway in the most affected variant of the
PlanHab project, the HBR campaign, were, e.g., glycolysis or
gluconeogenesis and furthermore the concentration of glucose 1-
phosphate were lower at the end of HBR in comparison with the
start of the experiment, whether on the other hand metabolite
acetate was increased in both HBR and NBR campaigns
(Figures 3, 4). Acetate was the main factor in HBR and NBR
campaigns suggesting the enriched pyruvate metabolism.

Other significantly affected metabolic pathways enriched in
HBR and NBR in comparison with the start of experiment were
aminoacyl-tRNA biosynthesis, arginine and proline metabolism,
beta-alanine metabolism, fructose and mannose metabolism,

galactose metabolism, glycerophospholipid metabolism, methane
metabolism, nitrogen metabolism, pantothenate and CoA
biosynthesis, selenoamino acid metabolism, sulfur metabolism,
taurine and hypotaurine metabolism, valine, leucine, and
isoleucine biosynthesis (Figure 4 and Supplementary Table 2).

Finally, an overview of the number of affected pathways
suggested that the introduction of the participants into the
PlanHab project significantly affected four metabolic pathways
in HAmb in comparison with the starting metabolic makeup,
whereas a five and eight times larger number of pathways were
progressively affected in NBR (n = 22) and HBR (n = 32),
respectively. This is in line with our observation that inactivity
irrespective of hypoxia resulted in 30% reduction in the number
of statistically significantly connected metabolites, a 2.5 times
reduction in the number of interactions and that reduced
physical exercise resulted in diminished metabolic diversity
within human body.

The Sliding Window Time-Frame
Analysis
Sliding window analysis enabled us to compare each bin of 3 days
to the start of the experiment in order to identify the onset
of significant changes in experimental variants (Figure 5) over
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FIGURE 4 | Graphical representation of metabolic pathways according to their significance of change between experimental variants relative to the start of the
experiment [significance (−log(p))] and importance of metabolites within a given pathway. y-axis: the p-Values (−log(p)) from pathway enrichment analysis using
Global test for testing differentially expressed metabolites. Significantly changed urine metabolic pathways were based on KEGG database relative to the start of the
experiment. x-axis: pathway impacts from the topology analysis using relative-betweeness centrality were used to estimate the importance of measured metabolites
within a given metabolic pathway. Designation of changes in metabolic pathways relative to the start of the experiment: yellow, not significant changes; red,
significant changes in NBR and HBR; blue, significant changes in all three variants. See Supplementary Figure 1 and Supplementary Table 2 for additional
information. The size of the circles corresponds to pathway impact (x-axis) for simplicity.

time. The changes in metabolic makeup in both bedrest variants
(HBR, NBR) deviated progressively away from the initial status
until significant changes were detected by the end of the second
week of the experiments. Significant changes in human urine
metabolome were observed by the end of the first week in HBR,
whereas the apparent delay of significant changes in NBR in
comparison with HBR lasted till the day 12, and the difference
can be attributed to the lower levels of oxygen in HBR. It is
interesting to note that the pattern of metabolome deviation
of HAmb variant from its original state actually followed an
acclimation pattern. The initial effects of hypoxia were thus
ameliorated in HAmb by the retained levels of exercise in this

particular variant of the PlanHab project, diurnal vertical posture
maintenance activity, and hence establishment of hydrogradients
within the HAmb, giving rise to overall insignificant changes in
HAmb urine metabolites to the starting point during 21 days
of the experiment.

DISCUSSION

The unique crossover design allowed us to include responses
of the same participants to all three experimental variants,
NBR, HBR, and HAmb, under the controlled nutritional,
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FIGURE 5 | Analysis of significant changes in metabolic signatures over time. Sliding window analysis (n = 3) was adopted to elucidate the relationships between the
recorded metabolic profiles. x-axis: time of metabolic signature. For each signature, metabolomes were binned together using window size of 3 days and the
increment step size of plus 1 day. For each window, urine metabolites and their distribution between samples were used to calculate the mean values of 3 days span
for all three experimental variants (HBR, NBR, HAmb) and compared with the first 3 days of baseline data collection. y-axis: the significance of differences between
different metabolic windows over time (p < 0.05). Multivariate non-parametric test PERMANOVA with 9,999 permutations was used to assess the significance of
differences between multiple-group comparisons and to elucidate the possible trends in changes of significance within each and also between different windows.

environmental, and experimental conditions. The same general
trends of body deconditioning were recovered in this study
based on 1H-NMR metabolomics of urine, as described before
using different sets of markers and approaches in the PlanHab
subprojects (Debevec et al., 2014a, 2016b; Rittweger et al., 2016;
Simpson et al., 2016; Strewe et al., 2017, 2018; Stavrou et al.,
2018a,b; Supplementary Table 1). This shows large congruence
between the various independently collected datasets within the
PlanHab and the metabolomics approach used in this study. For
instance, zonulin concentration in blood samples (Strewe et al.,
2018) showed the same patterns as zonulin samples collected
from fecal samples (Sket et al., 2017b).

In this respect, our study demonstrates that 1H-NMR
metabolomics coupled to standardized analytical approaches and
sample preparation next to in-depth statistical analyses allows for
comprehensive characterization of the physiological responses
and enables the detection of subtle metabolic changes during the
initial and reversible body deconditioning in response to 3-week
inactivity. In comparison with HAmb, the participants involved
in NBR and HBR exhibited specific and different metabolic
trajectories giving rise to severely reduced metabolic diversity
and hence the reduction in the number of metabolic pathways
under controlled experimental and nutritional conditions

(Figures 2, 3). In essence, this shows a profound impact of
the onset of 3-week inactivity on human physiology revealing
the progressive systemic maladjustments. Finally, the Bayesian
modeling in our previous work (Sket et al., 2017a,b, 2018)
showed that the significant changes in human physiology in
the PlanHab project preceded or took place devoid of the
corresponding changes at the level of intestinal microbiome. The
genus Bacteroides and proteins involved in iron acquisition and
metabolism, cell wall, capsule, virulence, and mucin degradation
were enriched solely at the end of the third week in HBR only.
Apparently, constipation and electrical conductivity decreased
intestinal metal availability, induced modified expression of
coregulated genes in Bacteroides genomes (Sket et al., 2018),
possibly also the zwitterionic capsular polysaccharides with anti-
inflammatory properties (Neff et al., 2016).

Our findings suggest that the decision of the host to minimize
physical activity under hypoxic conditions (HBR) is detectable
within a few days at the level of urine metabolites using 1H-
NMR and by the end of the first 10 days in NBR irrespective
of individual responses to food intake (Sato et al., 2018), daily
composition, time of ingestion, and diurnal cycles of sleep
described before (Sket et al., 2017a,b, 2018). Our results show
reproducibly high flexibility of the underlying physiological
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metabolic pathways in the absence of the diurnal metabolic
signals from the use of skeletal muscles (Schranner et al., 2020).
This is important as in the absence of the metabolic signals
from the use of human skeletal muscles, the metabolomes
of other body organs seem to develop primarily different
metabolic changes with little similar alterations that showcase
the complexity of consequences due to the lack of exercise at the
organismal level (Starnes et al., 2017).

This shows that the host’s metabolic and other physiological
and psychological responses (Sket et al., 2017a,b, 2018;
Figure 1) actually precede the responses of microbiome at
the community structure level, but the chemical crosstalk
between the two entities remains apparently responsive as
based on the differences in metabolites that are known to
be cometabolized by both and exchanged between the two
subsystems (human and microbiome). Consequently, it is
apparently the host that can be held responsible for the
differences in thermodynamic niches provided to the microbes
and to which microbial constituents respond. The colonic
transit time was put forward as one of the most important
parameters of intestinal tract related to bacterial metabolism
and mucosal turnover in the gut (Roager et al., 2016), as also
observed in our past studies (Sket et al., 2017a,b, 2018), and
is hence a highly important factor to be considered in future
metabolomics studies.

This complex crosstalk between microbiome and host’s
systems is influenced by innumerable environmental parameters
(Rooks and Garrett, 2016), crosstalk within microbial domains
(Neff et al., 2016), and human evolutionary adaptations (Murray
and Montgomery, 2014). In addition, their interaction can act
locally and across greater distances within the human body, with
some yet undetermined temporal delays (Rooks and Garrett,
2016). However, the contribution of microbiome to metabolic
conversions of exercise-induced metabolites was shown to be of
significant importance (Scheiman et al., 2019) acting as natural,
microbiome-encoded enzymatic processes converting muscle
lactate to formate and providing it back to host. In essence, this
provides support for the concept, that mammals are holobionts,
dependent on microbial and host genome information for
optimal performance (Rooks and Garrett, 2016; Sket et al., 2018).

The approach adopted in this study provides an opportunity
to generate new hypotheses on metabolic pathway perturbation.
One can indeed hypothesize that the metabolites involved
in metabolic pathways identified in this study in fact act as
signaling molecules [or account for lack of these (e.g., in
HBR, NBR)] involved in the PlanHab symptoms as detailed in
Figure 1: insulin resistance, low-grade inflammation, different
mitochondrial function, miRNA expression in large muscles,
differences in lipid oxidation, mood changes, and depression
(Debevec et al., 2014a, 2016b; Rittweger et al., 2016; Simpson
et al., 2016; Sket et al., 2017a,b, 2018; Strewe et al., 2017,
2018; Stavrou et al., 2018a,b; Supplementary Table 1). In
addition to those listed above, groups of metabolites identified
in this study were also associated with: (i) the chronic
obstructive pulmonary disease (COPD) (Adamko et al., 2015;
Za̧bek et al., 2015) and included metabolites such as 3-
hydroxyisovalerate, 2-hydroxyisobutyrate, creatinine, formate,

taurine, urea, choline, isoleucine, pantothenate, valine, and its
degradation to beta-aminoisobutyric acid during metabolism
of branched-chain amino acids suggest increased catabolism
associated with COPD; (ii) cardiovascular disease as a results
of associated chain of events such as tissue hypoxia (gut
ischemia) due to reduced oxidative phosphorylation and energy
production that lead to pulmonary hypertension, systemic
inflammatory responses, and increased risk of cardiovascular
disease, type 2 diabetes, depression, and osteoporosis (Jones,
2014). Phospholipids such as trimethylamine (TMA), choline,
and trimethylamine-N-oxide (TMAO) were strongly correlated
with cardiovascular disease (Senn et al., 2012); and (iii)
diabetes and the metabolic syndrome where different metabolites
and metabolic pathways were correlated with the onset of
the disease, such as isoleucine and phenylalanine, alanine,
aspartate and glutamate metabolism, glycine serine and threonine
metabolism, and phenylalanine metabolism (Wang et al., 2011;
Jones, 2014).

In the single study of human metabolic responses to
microgravity simulated in a 45-day 6◦ head-down tilt bedrest
(HDBR) experiment (Chen et al., 2016) utilizing 1H-NMR
in urine metabolomic analyses, similar changes in a limited
number of biomarkers were detected (corresponding to NBR
variant of our experiment), such as increased guanidinoacetate
associated with enhancement of protein turnover inducing
further muscle turnover, trimethylamines and taurine associated
with cardiovascular diseases, and mammalian-microbial
cometabolites such as acetate and hippurate, products of
microbial fermentations, and dietary protein metabolism.
This observation signifies congruent detection of a small
number of the most informative metabolites in the two bedrest
studies. However, it also shows that there is little congruency
between different metabolomics studies based on the precise
nature of a handful of specific metabolites to be assigned
as specific biomarkers for certain disease or healthy status
(Schranner et al., 2020). This is further exemplified by the
incompatibilities between the methods, experimental designs,
statistical approaches utilized (biomarker vs. pathways), levels
of disease development, reversibility of the symptoms and
conditions. However, the correspondence is markedly increased
by the adoption of metabolite integration into metabolic
pathways that are up- or downregulated, as shown in this
study and in comparison to other studies utilizing the pathway
approach where the same affected pathways have started to
emerge for specific conditions (Sheedy et al., 2014; Elliott et al.,
2015; Tynkkynen et al., 2019; Kelly et al., 2020).

From this it follows that no simple or single metabolic
biomarker exists for delineation of particular human state
(e.g., healthy vs. diseased in our experiment; trained vs.
untrained; active vs. sedentary; young vs. old or any other
group comparisons). In contrast, rather complex multivariate
descriptions of metabolic makeup are needed to capture
commonalities in human physiological states due to complex
responses in human physiology, large interpersonal variability
and variability over time, the fact that the same metabolites can
act in different metabolic pathways and can hence act as up- or
downregulated depending on the pathway.

Frontiers in Physiology | www.frontiersin.org 11 December 2020 | Volume 11 | Article 532271

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-532271 December 1, 2020 Time: 20:22 # 12

Šket et al. Urine Metabolomics in Inactive Males

Significant further research work will be needed to understand
how the regulatory cascades of physical exercise and oxygen
supply translate stimuli to various host’s tissues and microbiome
domains that all affect human metabolic makeup and crosstalk
between the domains of holobiont. The adoption of supervised
and automated analyses amenable for re-analyses once improved
algorithms, databases, statistical approaches arise enable us
to continuously expand and learn from the datasets at
hand over time. One has to realize that long-term bedrest
studies with females are significantly more challenging and
hence not many studies with sufficient statistical power were
reported so far to close the gap. With the concomitant
methodological development, the exploration of more complex
female metabolome and responses to inactivity and hypoxia can
be commenced, extending our recent FemHab work on this
topic (Debevec et al., 2016a). Finally, genetic and environmental
parameters likely play pivotal roles and further work is needed
to understand their relative contributions, how these can be
managed using metabolomics as one of the most promising
approaches to explore these relationships (Kelly et al., 2020).

A few limitations and concepts of this study need to be
considered. First, although the sample size utilized in this
study seems relatively small from the perspective of screening
random populations of participants, the sample size was well
within the limits of recent detailed studies adopting the
bedrest format or others (David et al., 2014a,b; Thaiss et al.,
2014; Chen et al., 2016). Second, the effects of supposedly
limited statistical power and accompanying potential for type-
II error were at least partly alleviated by the fact that the
test participant population was prescreened for healthy young
males according to SOP used by ESA/NASA (Thevenot et al.,
2015). Third, this study was conducted according to the
European Space Agency’s standardization plan for bedrest studies
(ESA, 2009), taking into account results of pre-experiments
(Debevec et al., 2016b; Keramidas et al., 2016; Rittweger et al.,
2016; Stavrou et al., 2016; Sket et al., 2017b; Strewe et al.,
2017), Guidelines for Standardization of Bed Rest Studies
in the Spaceflight Context (Angerer et al., 2014; Sundblad
et al., 2016), and past recommendations on the sufficient
sample size for measurements of the majority of routine
parameters (Traon et al., 2007). Fourth, the PlanHab project
was executed as crossover design experiment, hence the same
participants were subjected to all experimental conditions in
separate campaigns, further minimizing the overall interpersonal
variability between campaigns.

In order to study metabolic deconditioning of the human body
exposed to inactivity or other metabolic disorders, that may arise
as a result of either acute or chronic and communicable or non-
communicable diseases (Supplementary Table 1), the adoption
of multivariate analysis of complex metabolomes in a unified
framework can unravel more biologically relevant findings than
search for a few biomarker metabolic or microbial species
(Visconti et al., 2019; Kelly et al., 2020). In addition, 1H-NMR
metabolomics offers quantitative insight (Beckonert et al., 2007;
Emwas et al., 2019) as it is not compositional in contrast to shot-
gun or amplicon metagenomics (unless deliberately transformed)
(Vandeputte et al., 2017; Contijoch et al., 2019) and can be used

in metabolic and computational modeling for guided decisions
and health monitoring in personalized medicine approaches
(Sung et al., 2016; Palumbo et al., 2018).

CONCLUSION

The PlanHab project was designed to investigate in a controlled
manner the combined effects of 21-day inactivity/unloading and
hypoxia on a medically prescreened cohort of healthy male
volunteers in crossover design. In total, 523 urine metabolomes
were analyzed and processed using standard quantitative 1H-
NMR approaches and ensemble of multivariate methods from
three interventions: normoxic bedrest, hypoxic bedrest, and
hypoxic ambulation. Results show that in contrast to hypoxic
ambulation and run-in period inactivity alone or combined
with hypoxia resulted in significantly reduced systemic metabolic
diversity, increasing number of affected metabolic pathways, and
faster metabolic deconditioning. The maintained vertical posture
and controlled but limited activity in hypoxic ambulation variant
prevented the development of negative physiological symptoms
such as insulin resistance, low-level systemic inflammation,
constipation, depression, symptoms of metabolic syndrome, and
body deconditioning reported before in the PlanHab project.
Metabolic and pathway diversity as a response to physical activity
are apparently required to prevent the negative spiral between
the host and microbiome physiology governed by intestinal
environment and proinflammatory immune activities of the host.
In order to study metabolic deconditioning of the human body
exposed to inactivity or other metabolic disorders, the adoption
of multivariate analysis of complex metabolomes in a unified
framework of metabolic pathways can unravel more biologically
relevant findings than a search for a few specific metabolic
biomarker signatures.
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