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Abstract

Prognosis and therapeutic management of dogs with cutaneous mast cell tumors (MCTs) depend on clinical stage and
histological grade. However, the prognostic value of this latter is still questionable. In the present study, MCT transcriptome
was analyzed to identify a set of candidate genes potentially useful for predicting the biological behavior of MCTs. Fifty-one
canine MCT biopsies were analyzed. Isolated and purified total RNAs were individually hybridized to the Agilent Canine V2
4x44k DNA microarray. The comparison of reference differentiated and undifferentiated MCT transcriptome revealed a total
of 597 differentially expressed genes (147 down-regulated and 450 up-regulated). The functional analysis of this set of
genes provided evidence that they were mainly involved in cell cycle, DNA replication, p53 signaling pathway, nucleotide
excision repair and pyrimidine metabolism. Class prediction analysis identified 13 transcripts providing the greatest
accuracy of class prediction and divided samples into two categories (differentiated and undifferentiated), harboring a
different prognosis. The Principal Component Analysis of all samples, made by using the selected 13 markers, confirmed
MCT classification. The first three components accounted for 99.924% of the total variance. This molecular classification
significantly correlated with survival time (p = 0.0026). Furthermore, among all marker genes, a significant association was
found between mRNA expression and MCT-related mortality for FOXM1, GSN, FEN1 and KPNA2 (p,0.05). Finally, marker
genes mRNA expression was evaluated in a cohort of 22 independent samples. Data obtained enabled to identify MCT cases
with different prognosis. Overall, the molecular characterization of canine MCT transcriptome allowed the identification of a
set of 13 transcripts that clearly separated differentiated from undifferentiated MCTs, thus predicting outcome regardless of
the histological grade. These results may have clinical relevance and warrant future validation in a prospective study.

Citation: Giantin M, Granato A, Baratto C, Marconato L, Vascellari M, et al. (2014) Global Gene Expression Analysis of Canine Cutaneous Mast Cell Tumor: Could
Molecular Profiling Be Useful for Subtype Classification and Prognostication? PLoS ONE 9(4): e95481. doi:10.1371/journal.pone.0095481

Editor: Omprakash Mittapalli, The Ohio State University/OARDC, United States of America

Received December 30, 2013; Accepted March 27, 2014; Published April 18, 2014

Copyright: � 2014 Giantin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from Istituto Zooprofilattico Sperimentale delle Venezie (RC IZSVE 4/10: Caratterizzazione biomolecolare del
mastocitoma di cane mediante microarray) to Anna Granato, Marta Vascellari and Mauro Dacasto. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The Centro Oncologico Veterinario and Ambulatorio Veterinario Associato are not commercial companies, rather private practices. Laura
Marconato is not an employee of the Centro Oncologico Veterinario, rather a free-lance consulting there. Antonella Vercelli is a free-lance professional working in
Ambulatorio Veterinario Associato. In any case, there are no restrictions on sharing of data and/or materials. They declare no competing interests.

* E-mail: mery.giantin@unipd.it

. These authors contributed equally to this work.

Introduction

Nowadays, molecular profiling technologies provide the poten-

tial to comprehend relevant biological networks underlying the

cellular and molecular origin of cancer as well as to tailor medical

care, both at tumor and patient levels [1,2]. Gene expression

profiling has shown a great potential in cancer research, providing

a detailed view on the molecular changes involved in tumor

progression, leading to a better understanding of the pathophys-

iological process, discovering new prognostic markers and novel

therapeutic targets [1].

An increasing number of –omic oncologic studies have been

recently published in the dog, focusing on mammary tumor

[3,4,5,6], hemangiosarcoma [7], osteosarcoma [8,9,10], lympho-

ma [11,12], urinary bladder cancer [13], histiocytic sarcoma [14]

and melanoma [15]. Conversely, the transcriptome of canine

cutaneous mast cell tumor (MCT) has not been characterized so

far, although MCTs are frequent tumors in dogs, accounting for

approximately 6% of all canine neoplasms and 20% of all skin

tumors [16,17].

Unlike human cutaneous mastocytosis, that is rare and benign

[18], the disease course of canine MCT may be aggressive [17].

Currently, therapy is mainly guided by histological grade and

clinical stage, which have prognostic relevance [19,20]. Neverthe-

less, the prognostic value of the histological grading is still

questionable, particularly for Patnaik grade 2 (G2) MCTs. Indeed,

while the biological behavior for Patnaik-G1 and Patnaik-G3

MCTs can generally be anticipated, the prognosis for Patnaik-G2

MCTs is variable [17]. In addition to the unpredictable behavior

of Patnaik-G2 MCTs, histopathological grading is subjective,
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resulting in grading variations among pathologists [21,22]. In

2011, a new grading system was proposed by Kiupel and

coauthors, aiming at improving concordance among pathologists

[20]. This two-tier histologic grading system was demonstrated to

be more accurate at predicting metastasis development and tumor

mortality than the Patnaik system [20]. Nevertheless, approxi-

mately 15% of dogs with Kiupel low grade MCTs have nodal

involvement at presentation (Marconato, personal data), indicating

that also this grading system possesses some gaps.

The aim of the present study was to characterize the MCT

transcriptome by using DNA microarray technology, in order to

define a fingerprint of aggressiveness that could predict the

biological behavior, possibly overcoming the pitfalls of histological

grading.

Materials and Methods

Ethics Statements
Animal care, surgery and post surgery were carried out in

accordance with good veterinary practices; dogs were under the

care of licensed veterinarians and participation in the study did not

influence decisions of care. According to the Italian law (D. Lgs. n.

116/92), an Institutional Animal Care and Use Committee

approval number and date of approval for the study are not

requested for both academia and private practice. Only a written

informed consent is needed to conduct a clinical trial.

Tumor Samples
In this prospective study, seventy-three histologically confirmed

samples of spontaneous canine cutaneous MCTs were collected

from veterinary clinics of Northern Italy throughout the years

2007–2013, during routine diagnostic or therapeutic surgical

procedure and after written informed consent of the owner.

Aliquots from the central part of the tumor mass (up to 100 mg

each) were aseptically collected, immediately stored in RNAlater

solution (Life Technologies, Foster City, CA) and kept at –20uC
until use.

For each included case, the following data were retrieved from

medical records: breed, age, sex, grade according to Patnaik’s

system and Kiupel’s [19,20], type of treatment (surgery, radiation

therapy, chemotherapy, tyrosine kinase inhibitors or a combina-

tion of these), survival time, and cause of death.

MCTs from 51 dogs yielded high quality total RNA and passed

the quality control for gene expression profiling on DNA

microarrays. The remaining 22 samples were used in quantitative

Real Time PCR (qPCR) confirmatory analyses.

For sample class prediction, 18 out of the 51 samples used for

gene expression profiling were chosen as ‘‘reference samples’’ on

the basis of Patnaik and Kiupel histological classification and

mitotic index; these ‘‘reference samples’’ included 13 ‘‘differenti-

ated MCTs’’ (Patnaik-G1 or G2 and Kiupel low grade [L], with a

mitotic index #5), and 5 ‘‘undifferentiated MCTs’’ (Patnaik-G2 or

G3, Kiupel high grade [H], with a mitotic index .5). The choice

Table 1. DNA microarray validation: Spearman correlation analysis of normalized DNA microarray data and corresponding qPCR
results for the whole set of samples.

Target gene Spearman R

CCNB2 (probe 1) 0.9306***

CCNB2 (probe 2) 0.9281***

CCNB2 (probe 3) 0.9103***

CDC20 0.9158***

CDCA8 0.9241***

CENPP 0.7348***

FEN1 0.7797***

FOXM1 (probe 1) 0.8014***

FOXM1 (probe 2) 0.8571***

GSN (probe 1) 0.8228***

GSN (probe 2) 0.9256***

GSN (probe 3) 0.9059***

KPNA2 (probe 1) 0.5392***

KPNA2 (probe 2) 0.6434***

NUF2 (probe 1) 0.8869***

NUF2 (probe 2) 0.9538***

NUF2 (probe 3) 0.9453***

NUSAP1 0.8851***

PRC1 (probe 1) 0.9650***

PRC1 (probe 2) 0.9439***

RAD51 0.9075***

UBE2S (probe 1) 0.5951***

UBE2S (probe 2) 0.7484***

UBE2S (probe 3) 0.7752***

***p,0.001; statistical analysis was performed for each target gene-specific probe available on the array.
doi:10.1371/journal.pone.0095481.t001
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of MCT reference samples was based on a 100% concordance

among all pathologists.

RNA Isolation and Purification
Total RNA was isolated from tissue specimens as previously

described [23] and subsequently purified using the RNeasy Mini

kit (Qiagen, Milan, Italy), according to the manufacturer’s

instructions. To avoid genomic DNA contaminations, on-column

DNase digestion with the RNase-free DNase set (Qiagen, Milan,

Italy) was performed. Total RNA concentration was determined

using the NanoDrop ND-1000 UV-Vis spectrophotometer (Na-

noDropTechnologies, Wilmington, DE), and quality was mea-

sured by using the 2100 Bioanalyzer and RNA 6000 Nano kit

(Agilent Technologies, Santa Clara, CA). All 51 samples included

in the gene expression profiling experiment were suitable for

microarray analysis based on RNA quality (RIN$7.0).

RNA Amplification, Labeling and Array Hybridization
Sample amplification, labeling and hybridization were per-

formed following the Agilent One-Color Microarray-Based Gene

Expression Analysis protocol. Briefly, for each individual sample,

100 ng of total RNA were linearly amplified and labeled with

Cy3-dCTP using Agilent Low Input Quick Amp Labeling kit

(Agilent Technologies, Santa Clara, CA) according to the

manufacturer’s instructions. A mixture of 10 different viral poly-

adenylated RNAs (Spike-In Mix, Agilent Technologies, Santa

Clara, CA) was added to each RNA sample before amplification

and labeling, to monitor microarray analysis work-flow. Labeled

cRNA was purified with RNeasy Mini Kit (Qiagen, Milan, Italy),

and sample concentration and specific activity (pmol Cy3/mg

cRNA) were measured with a NanoDrop ND-1000 UV-Vis

spectrophotometer. A total of 1.65 micrograms of labeled cRNA

was fragmented by using the Gene Expression Hybridization kit

(Agilent, Santa Clara, CA) following the manufacturer’s instruc-

tions. A volume of 100 mL of hybridization solution was then

dispensed in the gasket slide and assembled to the microarray slide,

with each slide containing four arrays. Canine-specific oligo-arrays

(Canine V2 4x44k G2519F, Design ID 021193, Agilent Technol-

ogies, Santa Clara, CA) were used. Slides were incubated for 17 h

at 65uC in an Hybridization Oven (Agilent Technologies, Santa

Clara, CA), subsequently removed from the hybridization

chamber, quickly submerged in GE Wash Buffer 1 to disassembly

slides and then washed in GE Wash Buffer 1 for approximately 1

minute, followed by one additional wash in pre-warmed (37uC)

GE Wash Buffer 2. Hybridized slides were scanned at 5 mm

resolution using a G2565BA DNA microarray scanner (Agilent

Technologies, Santa Clara, CA). Default settings were modified in

order to scan the same slide twice at two different sensitivity levels

(XDR Hi 100% and XDR Lo 10%). Total RNA of 4 samples was

labeled twice and hybridized separately in different slides to

generate technical replicates.

Microarray data have been deposited in NCBI’s Gene

Expression Omnibus, and are accessible through GEO Series

accession number GSE50433.

Normalization of Microarray Data
The two linked images generated from the scanned slide were

analyzed together, data were extracted and background subtracted

by using the standard procedures contained in the Agilent Feature

Extraction Software version 9.5.1. All 51 samples were then

normalized together in a single run to avoid potential biases.

Normalization procedures were performed by means of the R

statistical software (http://www.r-project.org), and by using Spike-

In control intensities to identify the best normalization procedure.

Normalization using limma package always yielded better results

than cyclic loess normalization, thus quantile-normalized data

were used in all subsequent analysis. After normalization, spike

intensities are expected to be uniform across the experiments of a

given dataset. All control features and Spike-in were excluded

from subsequent analyses. Missing values (probes with Feature

Extraction flag equal to 0) were imputed by using the microarray

data analysis tool TIGR Multiple Array Viewer (TMEV) [24].

Statistical Analyses
To identify differentially expressed genes between ‘‘reference

samples’’ (differentiated and undifferentiated MCTs), a two-class

Table 2. DAVID functional annotation of the complete list of differentially regulated genes between differentiated and
undifferentiated MCTs.

Category Term Count p value Fold Enrichment

GO_BP_FAT GO:0000279,M phase 3 5.00E-03 2.28E+01

GO_BP_FAT GO:0022403,cell cycle phase 3 7.93E-03 1.83E+01

GO_BP_FAT GO:0022402,cell cycle process 3 9.62E-03 1.66E+01

GO_BP_FAT GO:0051301,cell division 3 1.15E-02 1.52E+01

GO_BP_FAT GO:0007049,cell cycle 3 2.02E-02 1.14E+01

KEGG_PATHWAY cfa04110:Cell cycle 27 1.14E-20 1.06E+01

KEGG_PATHWAY cfa03030:DNA replication 11 9.04E-10 1.50E+01

KEGG_PATHWAY cfa04114:Oocyte meiosis 12 3.70E-06 5.88E+00

KEGG_PATHWAY cfa04914:Progesterone-mediated oocyte maturation 9 1.41E-04 5.67E+00

KEGG_PATHWAY cfa04115:p53 signaling pathway 8 1.75E-04 6.49E+00

KEGG_PATHWAY cfa03420:Nucleotide excision repair 6 2.19E-03 6.33E+00

KEGG_PATHWAY cfa00240:Pyrimidine metabolism 7 6.36E-03 4.10E+00

KEGG_PATHWAY cfa00100:Steroid biosynthesis 4 6.69E-03 9.92E+00

GO, Gene Ontology; BP: Biological Process; p value: modified Fisher exact P value calculated by DAVID software;
Fold Enrichment defined as the ratio of the two proportions: input genes involved in a biological process and the background information.
doi:10.1371/journal.pone.0095481.t002
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unpaired test was implemented in the program SAM (Significance

Analysis of Microarrays) release 4.0 [25], enforcing a False

Discovery Rate (FDR) of 1% and a –fold change (FC) of 2.

Gene expression data from 51 MCTs were analyzed to evaluate

the ability to classify MCT samples with a reduced set of

informative markers, by using a statistical approach for class

prediction implemented in the Prediction Analysis of Microarrays

(PAM) software, available online at http://www-stat.stanford.edu/

,tibs/PAM. This software uses the method of nearest shrunken

centroids to find out the minimal set of genes that provides the

greatest accuracy of class prediction. The program first performs a

discriminant analysis on ‘‘known’’ samples (Training Sample Set,

in this study these known samples were the 18 reference samples as

previously described) to choose the smallest panel of genes

providing the greatest accuracy of class prediction with the

smallest misclassification error. Subsequently, the program uses

the same panel of genes to predict a class for a set of ‘‘unknown’’

samples (in this study represented by 33 of 51 MCTs, for whose

grading the pathologists did not reach a consensus).

To confirm the correct choice of reference samples and PAM

class prediction results, hierarchical clustering (HCL) and principal

component analysis (PCA) on gene expression data were carried

out by using the TMEV suite.

All other statistical tests (linear regression, non-parametric

Spearman correlation analysis and Mann-Whitney test) were

carried out with the GraphPad Prism 5 software (San Diego, CA,

USA). Statistical significance was set at p,0.05.

Functional Annotation
The functional annotation analysis of differentially transcribed

genes was performed using the Database for Annotation,

Visualization and Integrated Discovery (DAVID) web-server

v.6.7 (http://david.abcc.ncifcrf.gov) [26]. Gene ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways included in the DAVID knowledgebase were consid-

ered. The following parameters were respectively used for GO

Biological Process and KEGG pathways: gene count 3, ease 0.05;

gene count 4, ease 0.05.

Quantitative Real Time PCR (qPCR)
Thirteen target genes selected through class prediction analysis

and three internal control genes (ICGs) were chosen for qPCR

amplification. For each transcript, gene-specific primers that

encompassed one intron and the most appropriate UPL probe

were designed by using the Universal Probe Library (UPL) Assay

Design Centre web service (Roche Diagnostics, Mannheim,

Germany). Putative intron-exon boundaries were inferred from

the UCSC Genome Browser and Ensembl Genome Browser

Databases (http://genome.ucsc.edu and www.ensembl.org).

First-strand cDNA was synthesized from 1 mg of total RNA

using the High Capacity cDNA Reverse Transcription Kit (Life

Technologies, Carlsbad, CA) according to the manufacturer’s

protocol and stored at 220uC until use. Primers specificity was

evaluated either in silico by means of the BLAST tool than

experimentally by Power SYBR Green I (Life Technologies,

Carlsbad, CA) amplification and melting curve analysis. qPCR

reactions (10 mL final volume) consisted of 1X LightCycler 480

Probe Master (Roche Applied Science, Indianapolis, IN), 300 or

600 nM forward and reverse primers (Eurofins MWG Operon,

Ebersberg, Germany) according to the assay set-up, 200 nM

human UPL probe and 2.5 mL of 1:100 diluted cDNA. qPCR

analysis was performed in duplicate in a LightCycler 480

Instrument (Roche Applied Science, Indianapolis, IN) using

standard PCR conditions (an activation step at 95uC for 10

minutes; 45 cycles at 95uC for 10 seconds and at 60uC for 30

seconds; a cooling step at 40uC for 30 seconds) and LightCycler

480 clear plates (Roche Applied Science, Indianapolis, IN). No-

template controls and no-reverse transcription controls were

included on each plate. Calibration curves, using a 3-fold serial

dilution of a cDNA pool, were performed. ICGs assay parameters

were comparable to that of the target genes; moreover, no

statistically significant differences were observed in their expression

profile between differentiated and undifferentiated MCT samples.

Data were analyzed with the LightCycler480 software release

1.5.0 (Roche Applied Science, Indianapolis, IN) by using the

second derivative method. Messenger RNA relative quantification

was performed by using the DDCt method [27], the arithmetic

mean of the three selected ICGs and a cDNA pool comprehending

two external MCT samples as calibrator.

Twenty-two MCT samples not processed on the array were

chosen for qPCR confirmatory analysis. All thirteen transcripts

selected with class prediction analysis (PAM analysis) were

amplified in duplicate as reported above. RQ values were finally

analyzed by using Multid-Genex software [28]. Clustering and

PCA were performed, adopting the following setting: mean center

scaling, Ward’s algorithm and Manhattan distance.

Survival Analysis
Survival time was defined as the interval from date of surgery to

death and was investigated by means of Kaplan–Meier survival

analysis, stratified by MCT molecular classification (differentiated

and undifferentiated MCTs). The log rank test was used to

compare survival time between groups.

For each selected target gene, a receiver-operator characteristic

(ROC) curve was created. For areas under curve .0.5, the cut-off

value (in terms of relative quantification value, RQ) that better

discriminated MCT associated with patient mortality was deter-

mined. On the basis of the chosen cut-off value, sensitivity and

specificity parameters, with 95% confidence intervals, were

calculated. All statistical tests were carried out in GraphPad Prism

5 software (San Diego, CA, USA). Statistical significance was set at

p,0.05.

Results

Animals
Dogs characteristics are shown in Table S1, including the 2

population subsets (GEP cohort, n = 51, and dogs not on array,

n = 22). Histological grading and mitotic index of reference

samples used for class prediction analysis are shown in Table

S2. All included dogs received some form of treatment, consisting

of surgery (n = 54), surgery and systemic treatment (n = 12),

radiation therapy and systemic treatment (n = 3), systemic

treatment (n = 3), and a combination of surgery, radiation therapy

and systemic treatment (n = 1).

DNA Microarray Validation
DNA microarray experiments were individually performed in

51 MCT samples, characterized by a RIN$7. Technical replicates

(labeling and hybridization) were conducted for 4 samples

arbitrarily chosen. Linear regression analysis of the entire dataset

for each technical replicate revealed a r2 ranging between 0.973

and 0.993 with a p,0.001. Non parametric Spearman correlation

analysis of all samples considering RQ values obtained by qPCR

target gene amplification and corresponding normalized DNA

microarray data showed positive and significant results for all

validated genes (Table 1).
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Gene Expression Profiling of Reference Samples
The transcriptome of reference samples, e.g., differentiated

(n = 13) and undifferentiated (n = 5) MCT samples was compared

by using the SAM program. The unpaired t-test with FDR of 1%

and FC of 2 revealed a total of 597 differentially expressed genes

(DEGs, 147 down-regulated and 450 up-regulated). The complete

list of DEGs and corresponding FC is reported in Tables S3–S4.

To explore the functional significance of the observed differences,

enrichment analysis of up- and down-regulated genes was carried

out by using GO Biological Processes and KEGG Pathways

analysis through DAVID web-server. Among the 597 DEGs, only

352 had a unique gene identity that could be assigned to GO

Biological Process and KEGG Pathway. The following GO

Biological Processes were found to be differentially regulated: M-

phase, cell cycle phase, cell cycle process, cell division and cell

cycle (Table 2). The GO Biological Process definition for DEGs

partially reflected what was described for KEGG pathways: cell

cycle, DNA replication, oocyte meiosis, progesterone-mediated

oocyte maturation, p53 signaling pathway, nucleotide excision

repair, pyrimidine metabolism and steroid biosynthesis.

DEGs dataset obtained through the transcriptome comparison

of differentiated and undifferentiated reference samples was

analyzed by HCL and PCA. Both HCL tree and PCA clearly

identified, without overlapping, two main groups, being attribut-

able to differentiated and undifferentiated reference samples

(Figures 1–2). The first three components accounted for a

substantial fraction (79.883%) of the total variance. This result

confirmed that the samples chosen as reference samples were good

as Training Sample Test for class prediction analysis.

Class Prediction Analysis
Gene expression data from all 51 MCT samples were analyzed

to evaluate the ability to classify ‘‘unknown’’ samples with a

reduced set of informative markers. Differentiated and undiffer-

entiated reference MCTs were used as ‘‘known’’ samples. The

nearest shrunken centroid analysis implemented in the PAM

program was effective in discriminating between differentiated and

undifferentiated reference samples with a 100% accuracy

(misclassification error of 0), thereby selecting 13 transcripts. This

minimal gene set was then used in the cross-validation procedure

yielding a probability of correct identification (about 100%) for all

33 remaining samples (Figure 3). The class prediction analysis

allowed the identification, among the unknown samples, of a total

of 7 undifferentiated and 26 differentiated MCTs.

The magnitude and pattern of gene expression of selected

transcripts are represented in Figure 4. The heat map comparing

the two groups displayed relatively consistent alterations in gene

expression between the two categories. The statistical approach

(PCA of all 51 MCT samples restricted to gene expression data of

the 13 selected genes) confirmed this result. In details, the first

three components, accounting for 99.924% of the total variance,

identified two groups. The x-axis, explaining almost all the

variance (99.746%), separated samples referable to the two

identified categories (Figure 5).

qPCR Analysis
The mRNA expression of the 13 target genes was finally

evaluated by qPCR. A complete list of the thirteen selected target

genes and the three ICGs (including sequences IDs used for primer

design, primer pair sequences, probes and amplicon size) is

presented in Table S5. Calibration curves revealed a PCR

efficiency comprised in the range of acceptability (90–110%), an

error value ,0.2 and a dynamic range .9 cycles (except for

centromere protein P (CENPP), characterized by a dynamic range

of 6 cycles: Table S6). Table 3 showed the relative quantification

values of each target gene in the 39 differentiated and 12

undifferentiated samples. Except for gelsolin (GSN), that was

significantly down-regulated in undifferentiated group, all remain-

ing target genes were significantly up-regulated (p,0.001) from

about 2- up to 7-fold in undifferentiated MCTs. Spearman

correlation analysis between FC obtained through DNA micro-

array and qPCR analysis was statistically significant (Spearman

r = 0.88, p,0.001).

Survival Analysis
The molecular classification into differentiated and undifferen-

tiated MCTs was considered as stratification variable for a survival

time analysis (Figure 6). Differentiated MCTs showed a survival

probability of 94% after 12 months, stabilizing at 90% after 15

months. Undifferentiated MCTs survival probability stabilized at

50% after 13 months. The survival curves of differentiated and

undifferentiated samples were significantly different (p = 0.0026).

To understand whether the target gene modulation was

associated with an increased incidence of MCT-related mortality,

ROC curve analysis was performed for each target. A significant

association with MCT-related mortality was evidenced for Fork-

head box M1 (FOXM1), GSN, Flap structure specific endonucle-

ase 1 (FEN1) and Karyopherin alpha 2 (KPNA2). Specifically, the

area under the ROC curve (AUC) for FOXM1 gene showed a

value of 0.79 (95% CI: 0.60–0.98), and this one estimated the test

global performance. By using the cut-off of 0.5540 arbitrary units

(AU, RQ value), test sensitivity and the specificity were 87.5%

(95% CI, 47.35% –99.68%) and 62.79% (95% CI, 46.72% –

77.02%), respectively. Overall, 1 out of 28 cases with FOXM1,

0.5540 AU and 7 out of 23 cases with FOXM1.0.5540 AU died

because of MCT. With a RQ value ,0.5540 AU the survival

probability stabilized at 94% after 15 months, whereas for a RQ

value .0.5540 AU the survival probability was 67% after 13

months. The two survival curves significantly differed (p = 0.0092:

Figure 7A). About GSN, the best cut-off value was 3.749 AU

(AUC: 0.74; 95% CI, 0.53–0.96), with a sensitivity of 75.0% (95%

CI, 34.91%–96.81%) and a specificity of 67.44% (95% CI,

51.46%–80.92%). On the whole, 2 out of 31 cases with GSN .

3.749 AU and 6 out of 20 cases with GSN ,3.749 AU died of

MCT. With a RQ value .3.749 AU the survival probability

stabilized at 92% after 15 months, while with a RQ value ,3.749

AU the survival probability was 65% after 13 months. The two

survival curves were significantly different (p = 0.0147: Figure 7B).

The AUC value for FEN1 was 0.72 (95% CI, 0.51–0.93). By using

a cut-off of 0.8155 AU, the test sensitivity and specificity were

75.0% (95% CI, 34.91% –96.81%) and 69.77% (95% CI, 53.87%

–82.82%), respectively. Overall, 2 out of 33 cases with FEN1,

0.8155 AU and 6 out of 18 cases with FEN1.0.8155 AU died

because of MCT. The survival probability with RQ ,0.8155 was

96% after 12 months and stabilized at 92% after 15 months,

whereas with RQ .0.8155 was 68% after 9 months and stabilized

at 61% after 13 months. The two survival curves significantly

differed (p = 0.0037: Figure 7C). Finally, the best identified cut-off

value for KPNA2 was 0.4823 AU (AUC: 0.82; 95% CI, 0.65–

0.99), with sensitivity and specificity of 87.5% (95% CI, 47.35%–

99.68%) and 69.77% (95% CI, 53.87%–82.82%), respectively.

Overall, 1 out of 31 cases with KPNA2,0.4823 AU and 7 out of

20 cases with KPNA2.0.4823 AU died because of MCT. With a

RQ value ,0.4823 the survival probability stabilized at 97% after

5 months, while with a RQ value .0.4823 the survival probability

was 60% after 15 months. Even in this case, the two survival

curves were significantly different (p = 0.0024: Figure 7D).
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qPCR Confirmatory Analysis
The potential use of a simplified gene expression profile that

could be translated into a diagnostic platform to rapidly and

accurately distinguish between differentiated and undifferentiated

MCTs was finally evaluated. This step of validation consisted in

the evaluation of the gene expression profiling of the 13 selected

transcripts, by using a qPCR approach, in an independent cohort

of 22 MCT samples. This step permitted to verify their utility to

provide a molecular classification being independent from classical

histological grading. Tumor samples were graded by pathologists

who were unaware of the molecular results. Follow up data were

also collected for each case.

Data collected from qPCR analysis were analyzed by using the

MultiD-Genex software. Clustering and PCA results are reported

in Figure 8A–B. In PCA, the first two principal components

accounted for 71.32% of the total variance. Both analyses showed

the separation of samples into two main groups named Group 1

and 2, referable to differentiated and undifferentiated MCTs,

respectively. Particularly, if we consider the histological grading,

Group 1 (differentiated, n = 14) consisted of 7 Patnaik-G1 and G2

or 14 Kiupel L cases while Group 2 (undifferentiated, n = 8)

Figure 1. Hierarchical clustering and heat map of differentiated and undifferentiated reference samples. Hierarchical clustering was
performed using gene expression data of 597 differentially expressed genes obtained through the comparison of reference samples (13
differentiated and 5 undifferentiated mast cell tumors) with SAM, fixing a fold change of 2 as well as a False Discovery Rate of 0.01 as parameters. Red
and green indicates up- and down-regulated genes relative to the mean expression in all samples, respectively. Samples were hierarchically clustered
into differentiated (left, yellow) and undifferentiated (right, red) and based on the Pearson correlation coefficients and average linkage clustering.
Genes were hierarchically clustered based on Pearson correlation coefficients and average linkage clustering. Units of the bar legend: absolute values.
doi:10.1371/journal.pone.0095481.g001
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consisted of 2 Patnaik-G1, 4 G2, 2 G3 or 5 Kiupel L and 3 H

MCTs. By considering the outcome (dogs dead for MCT are

indicated in red), in Group 2 50% of cases died for MCT, while in

Group 1 only one case died during the follow up for MCT-

unrelated causes; therefore it was not considered in the survival

analysis (Figure 8C). The comparison of the two survival curves

yielded a statistically significant difference (p = 0.0018); the survival

probability of Group 2 stabilized at 38% after 5 months.

Discussion

The transcriptome of canine mammary tumor, hemangiosar-

coma, osteosarcoma, lymphoma, urinary bladder cancer, histio-

cytic sarcoma and melanoma has been recently characterized by

using a DNA microarray approach

[3,4,5,6,7,8,9,10,11,12,13,14,15].

To the best of authors’ knowledge, with the exception of a

recent study comparing the proteome of 5 Kiupel L and 5 H

MCTs [29], this is the first report focusing on the molecular

characterization of canine MCT. Its importance in veterinary

medicine is due not only to the high tumor frequency, but also to

the highly variable biological behavior, often difficult to be

predicted [16,30].

In this scenario, we analyzed the transcriptome of 51 canine

primary cutaneous MCTs aiming at identifying a gene signature of

MCT aggressiveness and predicting a priori its biological behavior.

The primary objective of this study was to provide a basis for the

development of a simple diagnostic platform that could rapidly

and accurately distinguish between differentiated and undifferen-

tiated MCTs and support the histological grading, whose

prognostic value is still questionable. Such a tool might be of

great value to diagnose and treat MCT. Additionally, pet owners

would greatly benefit from a more accurate survival time

expectance when weighing their dog’s quality of life and their

own monetary obligations in treatment decisions. Finally, the

analysis of gene signature may allow the elucidation of either a

single gene or a gene network that may be manipulated for

treatment purposes.

To this aim, we performed preliminary HCL and PCA

investigations by using the whole dataset (all informative genes)

obtained by microarray analysis, but the extreme variability

observed among the 51 samples tested did not permit to clearly

separate samples into well-defined groups. Indeed, the sum of the

first 2 principal components accounted for less than 30% of the

total variance (data not shown). Thus, to define a reduced

transcriptional profile permitting a better category assignment, we

decided to use differentially expressed genes among the categories

assigned by histological grading. Accordingly, the transcriptome

was compared among Patnaik-G1, G2 and G3 MCTs and

between Kiupel L and H MCTs by using SAM tool. In the first

case, no differentially expressed genes were observed, due either to

the high variability among samples or the imprecise/subjective

grading. In the second case, a set of differentially expressed genes

was observed, but the resulting PCA evidenced two partially

overlapped categories (data not shown). The failure of these

approaches prompted us to use an alternative approach, consisting

in the choice of known reference samples to be used in class

prediction analysis.

The choice of MCT cases to be used as known samples was

based on histological criteria (2-tier histologic grading system and

mitotic index) that permitted to obtain a 100% concordance

among all pathologists. Statistical analysis of microarray data

supported the choice and confirmed that reference samples

belonged to two distinct categories.

Pathways analysis of DEGs revealed that cell cycle, DNA

replication, nucleotide excision repair, p53 signaling pathway and

pyrimidine metabolism were among the pathways deregulated in

undifferentiated MCTs compared to well differentiated MCTs. In

particular, our data highlights pathways that are important in rate

of proliferation, malignant transformation, response to DNA

damage and nucleotide metabolism. An altered expression of

genes within these functional categories has been previously

reported in the literature for other solid tumors, and these genes

properly characterized the tumor when compared to its normal

counterparts [3,7]. In addition, the cell-cycle signature has been

described to be useful to stratify canine and human osteosarcomas

according to their biological behavior in vivo [10].

The class prediction analysis identified a set of 13 transcripts

involved in malignant transformation that were able to accurately

separate MCT samples into differentiated and undifferentiated

ones. This panel of genes did not match with the proteins recently

identified by using a proteomic approach. In this latter study, 5

Kiupel L and 5 H MCTs were compared, and in H MCTs a

modulation of four stress response proteins (HSPA9, PDIA3,

TCP1A and TCP1E) as well as of proteins mostly associated with

cell motility and metastasis (WDR1, ACTR3, ANXA6, ANXA2,

ACTB and transferrin) was observed [29]. Conversely, most genes

here identified are coordinately regulated during mitosis [31,32]

and/or are part of the DNA damage checkpoint. Cell cycle

pathway is in fact often deregulated in cancer during malignant

transformation, and the increased DNA repair gene expression is

most likely a consequence of increased DNA replication. As an

Figure 2. Principal component analysis of differentiated and
undifferentiated reference samples. Analysis was performed using
gene expression data of 597 differentially expressed genes obtained
through the comparison of reference samples (13 differentiated and 5
undifferentiated mast cell tumors) with SAM, fixing a fold change of 2 as
well as a False Discovery Rate of 0.01 as parameters. Each colored
sphere corresponds to a reference sample (differentiated mast cell
tumors are indicated in yellow, while undifferentiated ones in red). The
value of each principal component is reported on the graph. The sum of
the three principal components accounted to the 79.883% of the total
variance.
doi:10.1371/journal.pone.0095481.g002
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Figure 3. Class prediction analysis. Plot of cross-validated probabilities and test probabilities for sample classification. (A) On x-axis individual
reference samples: 1–5 undifferentiated mast cell tumor samples, 6–18 differentiated mast cell tumor samples; on y-axis the probability of being
classified as undifferentiated (blue rhombus) or differentiated (red squares). (B) On x-axis individual unknown samples; the probability of being
classified as undifferentiated (blue rhombus) or differentiated (red squares).
doi:10.1371/journal.pone.0095481.g003

Figure 4. Gene expression profiling of marker genes in differentiated and undifferentiated MCT samples. Heat map and hierarchical
clustering of all samples analyzed by DNA microarray using probes referable to the transcripts identified by class prediction analysis. Red indicates up-
regulated and green down-regulated genes relative to the mean expression in all samples. For display purposes, samples in each class (differentiated
and undifferentiated) were clustered separately and arranged from differentiated (left, yellow) to undifferentiated (right, red). Genes were
hierarchically clustered separately based on the Pearson correlation coefficients and average linkage clustering. Units of the bar legend: absolute
values.
doi:10.1371/journal.pone.0095481.g004
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example, pathways as cell cycle checkpoint, mitosis, spindle cell

genes and DNA repair were found to be commonly up-regulated

in canine mammary tumor and human breast cancer [5]. Most of

the genes here identified for their over-expression in undifferen-

tiated MCTs are involved in cell cycle and are described below.

Cyclin B2 (CCNB2) has a function at the transition from G2 to

mitosis. Experimental evidence suggested that CCNB2 promoter

activity is down-regulated by tumor suppressor p53 gene [33] and

it may function as an oncogene [34]. An over-expression of this

gene has been previously observed in human cervical cancer,

invasive breast carcinoma, human astrocytoma, human pituitary

adenoma, and canine osteosarcoma [31,34,35,36,10]; in addition,

the relative expression of serum circulating CCNB2 mRNA in

human cancer patients was significantly higher than in normal

controls and benign disease group, and significantly correlated

with cancer stage and metastasis status. Thus, it may have

potential clinical applications in screening and monitoring of

metastasis and therapeutic treatments [37].

The Forkhead box M1 (FOXM1) is an oncogenic transcription

factor of the Forkhead family, whose expression is excluded in

quiescent or differentiated cells, but highly elevated in proliferating

and malignant cells [38]. FOXM1 is over-expressed in a variety of

human tumors and plays a critical role in cancer development and

progression [38].

Cell division cycle 20 homolog (CDC20) promotes spindle

assembly checkpoint-mediated mitotic arrest through the mitotic

checkpoint complex, induces apoptosis through degradation of

anti-apoptotic proteins and triggers mitotic exit through CCNB

Figure 5. Principal component analysis of array-processed
samples using marker gene data. Each colored sphere corresponds
to an individual sample classified by PAM analysis (differentiated mast
cell tumors are indicated in yellow, while undifferentiated ones in red).
The value of each principal component is reported on the graph. The
sum of the three principal components accounted to the 99.924% of
the total variance.
doi:10.1371/journal.pone.0095481.g005

Table 3. Target genes mRNA expression in differentiated and undifferentiated MCT samples.

Target genes qPCR results (RQ values ± SD)

Differentiated MCTs (n = 39) Undifferentiated MCTs (n = 12) p value FC

CCNB2 0.2560.18 0.9760.28 p,0.001 3.88

CDC20 1.8461.22 6.1562.93 p,0.001 3.34

CDCA8 0.4160.21 1.1360.38 p,0.001 2.76

CENPP 0.5860.24 1.0960.34 p,0.001 1.88

FEN1 0.7060.18 1.3060.59 p,0.001 1.86

FOXM1 0.4960.20 1.7161.25 p,0.001 3.49

GSN 5.8062.39 1.9961.20 p,0.001 0.34

KPNA2 0.4360.10 0.7860.27 p,0.001 1.81

NUF2 0.3960.23 2.7662.57 p,0.001 7.08

NUSAP1 0.2960.09 0.7460.36 p,0.001 2.55

PRC1 0.4360.28 2.0561.11 p,0.001 4.77

RAD51 0.2260.10 0.7360.20 p,0.001 3.32

UBE2S 0.7460.19 1.4760.63 p,0.001 1.99

Data are expressed in arbitrary units. FC: -fold change.
doi:10.1371/journal.pone.0095481.t003

Figure 6. Survival curve of differentiated vs. undifferentiated
mast cell tumors. Kaplan-Meyer survival plot stratified by molecular
classification (differentiated and undifferentiated MCTs).
doi:10.1371/journal.pone.0095481.g006
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degradation [39]. Recent studies have shown that CDC20 may

function as an oncoprotein, promoting the development and

progression of human cancers [40]. Results here obtained are in

accordance with human literature, where an up-regulation of this

gene was observed in cervical cancer, primary non-small cell lung

cancer, pancreatic ductal adenocarcinoma, urothelial bladder

cancer and colorectal cancer, too [31,41,42,43,44]; therefore, it

may serve as a potential prognostic biomarker, as already

described in human oncology.

Cell division cycle associated protein 8 (CDCA8) is a

component of the chromosomal passenger complex (CPC), a

complex that acts as a key regulator of mitosis. The CPC complex

has essential functions at the centromere in ensuring correct

chromosome alignment and segregation and is required for

chromatin-induced microtubule stabilization and spindle assem-

bly. It exhibited frequent and robust up-regulation in cervical

cancer and chemoresistant ovarian cancer [45,46].

NUF2 (NDC80 kinetochore complex component, homolog) or

CDCA1 (cell division cycle associated protein 1) is another

component of the essential kinetochore-associated NDC80 com-

plex, which is required for chromosome segregation and spindle

checkpoint activity during mitosis. An over-expression of this

transcript has been previously observed in colorectal and gastric

cancers, as well as in serous adenocarcinomas [47,48]. The

silencing of this gene through RNA interference leads to increased

apoptosis [48], and suggests that its expressional control could be

utilized for molecular target therapy in patients affected by

colorectal and gastric carcinoma [47].

Nucleolar and spindle-associated protein 1 (NUSAP1) plays a

role in spindle microtubule organization. An over-expression of

this gene has been reported in cervical cancer, grade III versus

grade I meningioma, in recurrent prostate cancer after radical

prostatectomy and breast cancer [31,49,50,51]. It has been also

suggested as an early molecular marker of ductal carcinoma in situ

and invasive carcinoma [51] and as a prognostic factor in

metastatic melanoma where it is negatively associated with survival

[52].

Protein Regulator of Cytokinesis 1 (PRC1) is present at high

levels during the S and G2/M phases of mitosis but its levels drop

dramatically when the cell exits mitosis and enters the G1 phase.

Further than its role in human cervical cancer [31], it has been

recognized as a therapeutic gene for its cancer-specific over-

expression in breast cancer cell lines and patient tissues [53].

Centromere protein P (CENPP) is a novel centromere protein

that has an important role during interphase of cell cycle and it is

required for proper kinetochore function and mitotic progression

[55]. An overexpression of centromere proteins has been observed

in various types of human cancers and was significantly correlated

with tumor grade and survival [54,55,56,57,58].

Ubiquitin-conjugating enzyme E2S (UBE2S) gene encodes a

member of the ubiquitin-conjugating enzyme family that works

with the anaphase-promoting complex ubiquitin ligase ubiquity-

lating protein substrates whose degradation regulates progress

through mitosis [59]. In a recent work in breast cancer [60]

authors identified, through weighted gene co-expression network

analysis, a cluster of proliferation-related genes including UBE2S

Figure 7. Survival curves for mortality due to mast cell tumor, stratified by marker gene mRNA expression cut point. (A) FOXM1. The
cut-off chosen was 0.5540 AU (FOXM1,0.5540 AU: n = 28; FOXM1.0.5540 AU: n = 23). (B) GSN. The cut-off chosen was 3.749 AU (GSN .3.749: n = 31;
GSN ,3.749 AU: n = 20). (C) FEN1. The cut-off chosen was 0.8155 AU (FEN1,0.8155 AU: n = 33; FEN1.0.8155 AU: n = 18). (D) KPNA2. The cut-off
chosen was 0.4823 AU (KPNA2,0.4823 AU: n = 31; KPNA2.0.4823 AU: n = 20).
doi:10.1371/journal.pone.0095481.g007

Canine Cutaneous Mast Cell Tumor Transcriptome

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e95481



Canine Cutaneous Mast Cell Tumor Transcriptome

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e95481



that, when up-regulated, were correlated to increased tumor grade

and were associated with poor survival.

The last gene belonging to mitosis pathway, namely GSN, was

the only gene down-regulated in undifferentiated MCTs. It has

been reported to be an onco-suppressor participating in the

regulation of the apoptotic process and interacting with p53 [61].

Its over-expression causes cell cycle arrest or delay at the G2/M

phase of the cell cycle and inhibition of tumor growth, as

demonstrated in an orthotopic bladder cancer nude mouse model

[62]. GSN is down-regulated in human breast cancer tissues

compared to controls and its transcript level is linked with

metastasis development and death [63]. Furthermore, GSN has

been proposed as serum biomarker and potential target for gene

therapy in human osteosarcoma [64].

Other two potential markers, Flap endonuclease 1 (FEN1) and

RAD51 are involved in DNA repair pathway. FEN1 is a structure-

specific endonuclease best known for its critical roles in Okazaki

fragment maturation, DNA repair and apoptosis-induced DNA

fragmentation [65]. It plays an essential role in maintaining

genomic stability and preventing tumorigenesis, thus acting as a

tumor suppressor [66]. FEN1 is significantly up-regulated in

multiple human cancers and its aberrant expression in tumor cells

is associated with hypomethylation of the CpG islands within the

FEN1 promoter [67].

RAD51 protein plays a key role in homologous recombination.

It has been shown to be up-regulated in many human cancers,

especially higher grade, chemoresistant and radioresistant tumors

[68]. Expression is tightly regulated in normal cells, with

dysregulation leading to genomic instability and possibly contrib-

uting to oncogenesis [68]. RAD51 mRNA amount was increased

in laser-microdissected mammary simple carcinomas when com-

pared to adenomas or non neoplastic mammary gland of the same

dog, indicating a genomic instability in RAD51-expressing cells in

carcinomas [69,70].

Finally, Karyopherin a 2 (KPNA2) has recently emerged as a

potential biomarker in multiple human cancer forms [71]. Owing

to its role in nucleocytoplasmic transport, where it mediates the

translocation of a multitude of proteins, KPNA2 is involved in

many cellular processes [72]. The aberrant high levels observed in

human cancer tissue (i.e., gastric adenocarcinoma and epithelial

ovarian cancer) have been associated with poor prognosis,

prompting the idea that KPNA2 plays a role in carcinogenesis

[73,74]. Studies in cancer cells demonstrated that KPNA2

deregulation affects malignant transformation, thus it was consid-

ered a potentially relevant therapeutic target [72].

Molecular pathology, a scientific approach defining cancer

subtypes based on the underlying molecular footprints, has led to

the discovery of subtypes in several different tumors. Nevertheless,

it has been demonstrated that this approach works at its best when

cancer subtypes based on genetic profiles are already known:

whenever the different subtypes of the same cancer and the

number of patients belonging to each of them are known, then a

statistical model could be built to associate a specific gene

expression profiling, typical of a subtype of cancer, to an individual

patient [75]. In the present study, the approach of using well

known histological categories did not produce useful results; thus,

an alternative approach consisting of a predictive analysis was

used. Alternative statistical methods to identify subtypes exist, but

they can generate classifications that lack clinical relevance [75].

Nevertheless, in the present work we were able to separate MCTs

in two molecular subtypes that did not perfectly match with

Patnaik-G1, G2, G3 or Kiupel L and H grades, defined by

conventional histological grading. Conversely, they referred to

differentiated and undifferentiated MCTs, whose prognosis was

largely documented in the literature [76] and here confirmed by

survival analysis.

Meanwhile, presented results confirmed the usefulness of a

transcriptomic approach in the definition of a signature that could

segregate molecular subtypes of the same tumor with different

survival probabilities [3,10,77]. Thus, the molecular classification

coupled with the histological grading, universally recognized as a

reference for MCT prognosis prediction but still presenting some

gaps (i.e., Patnaik-G2 MCT), might permit a better characteriza-

tion of the biologic behavior of the tumor.

As genome-wide gene expression profiling is cost-prohibitive

and impractical, we selected 13 simple qPCR assays to stratify

MCTs into differentiated and undifferentiated cases. The reliabil-

ity of the gene set was tested, by means of a qPCR approach, upon

a separate cohort of MCT samples for which a complete follow up

was available. Even in this case, we observed a statistical significant

association between molecular classification and survival time,

confirming the potential usefulness of these results to develop a

rapid and relatively cheap benchtop diagnostic test based on the

expression of 13 genes that can classify canine MCTs into one of

these 2 subgroups, and enabling a direct clinical application of our

results. Worth mentioning, in veterinary medicine a benchtop

diagnostic test composed of 4 genes has been previously proposed

for canine lymphoma [11].

As a whole, this study allowed us to fill a gap in the tumor

understanding and it contributed to the uncertainty about the

relevance and utility of morphological classification systems. In

addition, the transcripts here identified not only may predict

prognosis (relative quantification values were significantly associ-

ated with poor survival), but may also be selected as future targets

for therapy (gene therapy or chemotherapy), as previously

reported in various human cancers [37,47,53,64,72].

In the future, a study population with a larger sample set of

tumors might provide a more robust basis to confirm and refine

segregation between differentiated and undifferentiated MCTs.

Conclusions

In conclusion, the transcriptome of canine cutaneous MCT was

characterized for the first time by using a DNA microarray

approach. Data obtained allowed the identification of a signature

of aggressiveness in canine MCT; particularly, a set of 13 potential

biomarkers identified through a class prediction analysis segregat-

ed MCT samples into two distinct molecular categories, namely

differentiated and undifferentiated MCTs. The molecular classi-

fication into differentiated and undifferentiated MCTs as well as

the mRNA expression of FOXM1, GSN, FEN1 and KPNA2 were

significantly associated with survival. The prognostic value of the

Figure 8. qPCR confirmatory analysis. Marker genes identified by class prediction analysis were amplified in an independent cohort of 22 mast
cell tumors in order to comprehend their utility for mast cell tumor classification. Clustering analysis and PCA of gene expression data were
performed using MultiD-Genex software for qPCR data, using the following settings: mean center scaling, Ward’s algorithm and Manhattan distance.
(A) Clustering tree and (B) principal component analysis of independent mast cell tumor samples. Cases characterized by MCT-related death are
indicated in red. The two groups identified are named group 1 and 2 (differentiated and undifferentiated MCTs, respectively). (C) Kaplan-Meyer
survival plot stratified by molecular classification (group 1 and 2).
doi:10.1371/journal.pone.0095481.g008
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molecular classification was also confirmed in a separate cohort of

MCT cases, for which an accurate follow up was available. Thus,

this set of genes could be useful to develop a benchtop diagnostic

test that could support canine MCT histological grading and

consequently having prognostic relevance. Finally, analysis of gene

signature allowed elucidation of single genes or genetic pathways

(mitosis and DNA repair), which could be considered for future

diagnostic and treatment purposes as already performed in human

oncology.
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