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Purpose: We aimed to screen novel genetic biomarkers for use in a prognostic score (PS) 
model for the accurate prediction of survival outcomes for patients with colon adenocarci-
noma (COAD).
Methods: Gene expression and methylation data were downloaded from The Cancer 
Genome Atlas database, and the samples were randomly divided into training and validation 
sets for the screening of differentially methylated genes (DMGs) and differentially expressed 
genes (DEGs). Co-methylated genes were screened using weighted gene co-expression 
network analysis. Functional enrichment analysis was performed using the Database for 
Annotation, Visualization, and Integrated Discovery. Univariate and multivariate Cox regres-
sion analyses were performed to identify prognosis-related genes and clinical factors. 
Receiver operating characteristic curve analysis was carried out to evaluate the predictive 
performance of the PS model.
Results: In total, 1434 DEGs and 1038 DMGs were screened in the training set, among 
which 284 were found to be overlapping genes. For 127 of these overlapping genes, the 
methylation and expression levels were significantly negatively correlated. An optimal 
signature from 10 DMGs was identified to construct the PS model. Patients with a high PS 
seemed to have worse outcomes than those with a low PS. Moreover, cancer recurrence and 
the PS model status were independent prognostic factors.
Conclusion: This PS model based on an optimal 10-gene signature would help in the 
stratification of patients with COAD and improve the assessment of their clinical outcomes.
Keywords: colon adenocarcinoma, methylation, prognostic score model, independent 
prognostic factor

Introduction
Colorectal cancer (CRC) ranks fourth among the most fatal malignancies in the 
world, resulting in approximately 900,000 deaths each year.1 Occurring in the colon 
or rectum, CRC had previously been regarded as a single entity, but the term is 
being abandoned owing to the different etiologies, pathologies, treatments, drug 
responses, and prognoses of the disease based on tumor location.2,3 During malig-
nant transformation in the colon mucosa, 85–90% of tumors occur mostly in the 
form of adenomas, making colon adenocarcinoma (COAD) the most common 
pathological type of colon cancer.4 Despite that postoperative chemotherapy has 
been shown to decrease the risk of local cancer recurrence and metastasis, it has 
shown less benefits in improving the survival of patients with COAD. Additionally, 
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although postoperative chemotherapy is considered bene-
ficial for patients with stage III cancer, the benefits pro-
vided to those with stage II disease remain controversial.5 

Therefore, there is an urgent need to identify more char-
acteristic and valuable biomarkers for the early prediction 
and treatment of COAD in order to improve patient 
outcomes.

Recent studies have demonstrated the feasibility of stra-
tifying the risk of COAD and predicting its outcome by 
combining molecular characteristics with pathological fea-
tures of the tumor.6,7 For example, Yang et al developed 
a risk score model based on seven genes, which—when 
combined with tumor staging—showed good prognostic per-
formance in predicting the outcome of patients with colon 
cancer.8 Additionally, alterations in gene methylation have 
been found to mediate changes in the tumor phenotype and 
heterogeneity by affecting gene transcription in the early 
stages of carcinogenesis.9,10 On the basis of DNA methyla-
tion levels, Yang et al categorized 424 patients with COAD 
into seven subgroups with different prognoses, which con-
tributed to other studies exploring the tumor heterogeneity of 
COAD and to the development of personalized therapeutic 
strategies.11 Liu et al showed that heterogeneous nuclear 
ribonucleoprotein (HNRNPC) and YTH m6A RNA- 
binding protein 1 (YTHDF1)—two m6A RNA-methylated 
regulators that are abnormally expressed in COAD—were 
independent predictive indicators of the outcomes of patients 
with COAD and were not influenced by clinical factors.12 

Zhao et al indicated that the CXC motif chemokine ligand 3 
(CXCL3) and CXCL8 genes were aberrantly methylated and 
differentially expressed in COAD, with the decreased levels 
in expression of these two genes correlating with worse 
patient outcomes.13 However, considering the complexity 
and heterogeneity of COAD, additional genetic biomarkers 
need to be identified before the outcomes of patients with this 
disease can be predicted with accuracy. In this study, we used 
gene expression and methylation data of COAD from The 
Cancer Genome Atlas (TCGA) database to establish 
a prognostic score (PS) model based on differentially methy-
lated gene (DMG) signals for improving the assessment of 
clinical outcomes and aiding the development of therapeutic 
strategies against this malignant disease.

Materials and Methods
Data Acquisition and Preprocessing
Gene expression data of 512 COAD samples and gene 
methylation data of 337 COAD samples together with the 

corresponding clinical data were downloaded from TCGA 
database (https://gdc-portal.nci.nih.gCOAD/). The gene 
expression data were generated using the Illumina HiSeq 
2000 RNA Sequencing platform. The methylation data 
were generated using the Illumina Infinium Human 
Methylation 450 BeadChip Kit and annotated using the 
RIlluminaHumanMethylation 450kanno.ilmn12.hg19 pack-
age. In total, 304 samples (comprising 285 COAD and 19 
normal samples) with overlapping gene expression and 
methylation data were used in this study. The analytical 
procedure is outlined in Figure S1. The 285 COAD samples 
were randomly divided into a training set (n = 142) and 
a validation set (n = 143); their clinical characteristics are 
listed in Table 1.

Differential Analysis of the Gene 
Expression and Methylation Data
The limma package (version 3.34.7)14 in R3.6.1 was used 
to perform the differential analysis between the COAD 
and normal samples, with the screening of the DMGs 
and differentially expressed genes (DEGs) being based 
on a false discovery rate (FDR) of <0.05 and a |log2 fold 
change (FC)| of >0.5. For this, a centered Pearson correla-
tion algorithm15 based on bidirectional hierarchical clus-
tering was used together with the pheatmap package 
(version 1.0.8)16 in R3.6.1.

Screening of Co-Methylated Genes
Weighted gene co-expression network analysis 
(WGCNA) was used to assess the correlations between 
the genes obtained. In the WGCNA algorithm, genes 
with similar changes in expression in the same biolo-
gical process category are clustered into one module. 
The methylation data were evaluated using the 
WGCNA (version 1.63) package17 in R3.6.1 to screen 
both the methylation level-related modules and the 
genes whose expression levels were considered to 
have a strong correlation with their methylation levels. 
Then, after mapping the DMGs to the WGCNA mod-
ules, the fold enrichment and the p values of the genes 
in each module whose expression and methylation 
levels were significantly correlated were calculated 
using the following hypergeometric algorithm:18 

f k;N;M; nð Þ¼ C k;Mð Þ�C n � k;N � Mð Þ=C n;Nð Þ, 
where N represents the methylation site, M represents 
the gene number in each module, and n represents the 
number of DMGs mapped to the modules. A p value of 
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<0.05 and a fold enrichment value of >1 were used to 
screen the significant modules.

Correlation Between the Gene 
Methylation and Expression Levels
The correlation between the methylation level of the 
DMGs and the expression level of the DEGs was evalu-
ated. The cor. test function in R3.6.1 was used to calculate 
the Pearson and Spearman correlation coefficients,19 and 
the genes with significant negative correlations were 
selected. Thereafter, those genes involved in the 
Biological Processes category of Gene Ontology (GO) 
and in Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways were enriched using the Database for 
Annotation, Visualization, and Integrated Discovery 
(DAVID, version 6.8) tool.20 A p value of <0.05 was 
selected to identify the significantly enriched results.

Construction of the Prognostic Score 
Model Based on Differentially Methylated 
Genes
The Survival package (version 2.41–1)21 in R3.6.1 was 
used to screen the prognosis-related DMGs by univariate 
Cox regression analysis, and then the independent prog-
nostic DMGs were screened using multivariate Cox 
regression analysis. A p value of <0.05 in the Log rank 
test was selected to identify the significant results. The 
Penalized package22 (version 0.9–50) in R3.6.1 was used 
to screen the optimal prognostic gene signatures on the 

basis of the Cox proportional hazards (Cox-PH) model. 
The optimized parameter “lambda” in the Cox-PH model23 

was obtained after performing 1000 rounds with the cross- 
validation likelihood method. Next, the optimal prognostic 
gene signatures were used to construct the PS model. The 
PS of each sample was calculated with the following 
formula: PS ¼∑coe fDMGs�MethylationDMGs, where 
coefDMGs represents the regression coefficient of the 
DMGs, and MethylationDMGs represents the methylation 
level of the DMGs. The samples were then categorized 
into high-risk and low-risk groups according to their med-
ian PS. Finally, Kaplan–Meier analysis was carried out to 
evaluate the associations between the model and the 
prognoses.

Screening of Independent Prognostic 
Clinical Factors
Univariate Cox regression analysis was used to screen the 
clinical factors associated with the disease prognosis, and 
multivariate Cox regression analysis was then applied to 
screen the independent prognostic clinical factors. Results 
with a p value of <0.05 in the Log rank test were con-
sidered significant. The samples were then categorized into 
different groups on the basis of the independent prognostic 
clinical factors, following which the prognostic model was 
evaluated by correlation analysis. Prognostic models based 
on the clinical factors and on the clinical factors combined 
with DMGs were also constructed and their predictive 
performances were compared using the area under the 

Table 1 Clinical Characteristics of the Included 285 COAD Samples

Clinical Characteristics Training Set (N=142) Validation Set (N=143) Entire Set (N=285)

Age(years, mean±sd) 64.60±2.15 65.34±13.44 64.97±13.14
Gender(Male/Female/-) 77/64/1 75/67/1 152/131/2

Pathologic M(M0/M1/-) 96/23/23 98/15/30 194/38/53

Pathologic N(N0/N1/N2/-) 86/34/21/1 78/39/25/1 164/73/46/2
Pathologic T(T1/T2/T3/T4/-) 5/25/94/17/1 2/17/102/20/2 7/42/196/37/3

Pathologic stage(I/II/III/IV/-) 27/53/34/23/5 16/57/49/15/6 43/110/83/38/11

KRAS mutation(Yes/No/-) 10/13/119 11/10/122 21/23/241
Microsatellite instabilityt(Yes/No/-) 3/32/107 8/42/93 11/74/200

Lymphatic invasion(Yes/No/-) 36/87/19 39/88/16 75/175/35
Colon polyps present(Yes/No/-) 36/64/42 36/72/35 72/136/77

Colon polyps history(Yes/No/-) 77/27/38 24/89/30 101/116/68

Radiation therapy(Yes/No/-) 3/117/22 2/113/28 5/230/50
Recurrence(Yes/No/-) 30/104/8 29/101/13 59/205/21

PS model status (High/Low/-) 70/71/1 71/71/1 141/142/2

Death(Dead/Alive/-) 29/112/1 38/104/1 67/216/2
Overall survival time (months, mean±sd) 33.14±29.75 33.14±30.49 33.14±30.07
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receiver operating characteristic (ROC) curve (AUC) and 
C-index values. The ROC curves were analyzed with the 
pROC24 package (version 1.14.0) in R3.6.1, whereas the 
C-index values were calculated using the survcomp25 

package (version 1.34.0) in R3.6.1.

Real-Time Reverse Transcription– 
Polymerase Chain Reaction
Six COAD tissues and six paracancerous tissues were 
selected for the identification of their gene expression 
levels using the real-time reverse transcription–polymerase 
chain reaction (RT-qPCR). RNA was extracted from the 
tissues using RNAiso Plus (N8010560, Takara, Japan) and 
reversed transcribed to cDNA using the ReverTra Ace® 

qPCR RT Master Mix (FSQ-201, TOYOBO, Japan). The 
PCR mixture contained 5 μL of 2× PowerUp SYBR Green 
Master Mix (A25742, Thermo Fisher Scientific, USA), 4.6 
μL of cDNA, 0.2 μL of forward primer, and 0.2 μL of 
reverse primer, and the reaction was carried out in 
a 7900HT Fast Real-Time PCR system (Applied 
Biosystems, USA). The primers used in this study are 
listed in Table S1. This study was approved by the 
Ethics Committee of the Fourth Affiliated Hospital of 
China Medical University (NO. EC-2021-HS-026) and 
conducted in accordance with the Declaration of 
Helsinki. All patients signed informed consent forms.

Results
Screening of DMGs and DEGs in the 
Training Set
In total, 1434 DEGs and 1038 DMGs between the COAD 
and normal samples were screened in the training set (Figure 
S2A–D). The heatmaps showed that both the DEGs and 
DMGs could be used to distinguish the tumor samples 
from the normal ones, suggesting the reliability of the 
results. Venn diagram analysis revealed that there were 284 
overlapping genes between the DEGs and DMGs (Figure 
S2E). The expression and methylation levels of these genes 
were different between the COAD and normal samples.

Screening of Co-Methylated Genes Using 
WGCNA
In the WGCNA algorithm, the power value is the most 
important parameter influencing the average connectivity 
degree and the independence of the modules. An adjacency 
matrix was defined on the basis of preconditions for an 
approximate scale-free network distribution. Because the 

power value of the adjacency matrix was determined to be 7 
when the square of the correlation coefficient was up to 0.9 
(Figure 1A), this same power value was used to establish the 
co-methylation modules. In total, 11 modules were obtained 
using the following parameters: minSize = 150 and cutHeight 
= 0.995 (Figure 1B). We further determined the correlations 
between the modules and clinical factors. As shown in 
Figure 1C, the red module showed a significantly 
positive correlation with microsatellite instability (r = 0.44, 
p = 6 × 10–257) and disease status (r = 0.35, p = 8 × 10–157). 
There were also positive correlations between the green mod-
ule and microsatellite instability (r = 0.46, p = 6 × 10–279). 
Additionally, the brown module was negatively correlated 
with Kirsten rat sarcoma viral oncogene (KRAS) mutations 
(r = –0.38, p = 4 × 10–184). We further mapped the DMGs onto 
modules obtained using the WGCNA algorithm. In total, 963 
DMGs were common to the methylation site genes 
(Figure 1D and E and Table S2). In total, 521 DMGs were 
significantly enriched in four modules (black, blue, magenta, 
and red modules) with a fold enrichment value of >1.

Correlations Between Gene Methylation 
and Expression Levels
The 284 overlapping genes obtained from the Venn analy-
sis of the DEGs and DMGs and the 521 DMGs obtained in 
the WGCNA co-methylation analysis were merged, 
whereupon 149 overlapping genes were obtained. We 
further calculated the correlations between the methylation 
and expression levels of these 149 genes and found sig-
nificant negative correlations between the levels (p < 0.05) 
overall (Figure 2A). We then performed calculations for 
each of the 149 genes and found significant negative 
correlations between the methylation and expression levels 
in 127 genes. GO functional enrichment analysis of these 
127 genes revealed them to being enriched in the 
Biological Processes terms, such as signal transduction, 
potassium ion transport, and cell−cell signaling. 
According to the KEGG pathway analysis, these genes 
were also enriched in pathways related to cell adhesion 
molecules, calcium signaling, PI3K−AKT signaling, and 
leukocyte transendothelial migration, among others 
(Figure 2B and C).

Construction of the Prognostic Score 
Model
Among the 142 samples in the training set, one sample had 
no corresponding prognostic data. Therefore, univariate Cox 
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regression analysis was carried out using the other 141 sam-
ples to screen prognosis-related DMGs from the 127 DMGs. 
In total, 51 DMGs were found to be related to prognosis in 
COAD (Table S3). These 51 DMGs were further analyzed 
using multivariate Cox regression analysis, whereupon 24 
independent prognostic DMGs were screened (Table S4). In 
order to use the least number of genes to produce the best 
prediction results, an optimal signature from 10 of these 24 
independent prognostic DMGs was identified using the Cox- 
PH model (Table 2); namely, copine 8 (CPNE8), FGR proto- 
oncogene, Src family tyrosine kinase (FGR), frizzled class 
receptor 8 (FZD8), guanidinoacetate N-methyltransferase 
(GAMT), junctional adhesion molecule 2 (JAM2), 

proopiomelanocortin (POMC), PR/SET domain 6 
(PRDM6), protein kinase AMP-activated catalytic subunit 
alpha 2 (PRKAA2), TAL bHLH transcription factor 1, ery-
throid differentiation factor (TAL1), and transmembrane 
inner ear (TMIE).

The PS model was constructed on the basis of the least 
absolute shrinkage and selection operator (LASSO) coeffi-
cient and the methylation levels of the 10 optimal DMGs, 
and the PS was calculated for each sample. The samples 
were then categorized into high and low score groups 
according to their median PS. Patients with a high PS 
seemed to have worse outcomes than those with a low 
PS in the training set, validation set, and entire set 

Figure 1 Co-methylation analysis using WGCNA. (A) Network topology for different soft-thresholding powers (left panel, the red line represents a scale-free fit index of 
0.9) and mean connectivity values (right panel, the red line represents a mean connectivity of 1). (B) Clustering dendrograms of genes and module colors, in which 11 co- 
methylation modules with different colors were constructed. (C) Module–trait associations. Each row represents a module eigengene, and each column represents a clinical 
feature. Each cell contains the corresponding correlation coefficient and p value. (D) Venn plot of the differentially methylated genes (DMGs) in the WGCNA modules that 
overlapped with differentially expressed genes after DMG mapping to the WGCNA modules. (E) Histogram showing the enrichment-fold value of the different modules.
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(Figure 3A–C). Consistently, survival analyses of these 
three data sets showed that patients with a high PS were 
significantly associated with a worse survival ratio 
(Figure 3D–F). The ROC curves showed that the PS 
model had good predictive performance, with AUC values 
of 0.932, 0.816, and 0.890 in the training, validation, and 
entire set (Figure 3G), respectively, suggesting that reli-
able results were obtained.

Screening of Independent Prognostic 
Factors
Univariate Cox regression analysis was used to screen the 
clinical factors related to prognosis. The pathologic 

M (M0/M1), pathologic N (N0/N1/N2), pathologic 
T (T1/T2/T3/T4), pathologic stage (I/II/III/IV), lymphatic 
invasion, recurrence, and PS model status were the factors 
found to have an impact on prognosis. Next, those factors 
with statistical significance were analyzed using multivari-
ate Cox regression analysis, with the results showing 
recurrence and the PS model status (high/low) as being 
independent prognostic factors in the training set, valida-
tion set, and entire set (Table 3). Moreover, in these three 
data sets, both the high and low PS model statuses had 
a higher hazard ratio than recurrence. As expected, in all 
three data sets, patients with tumor recurrence had poorer 
survival outcomes than those without recurrence. We 

Figure 2 Correlation analysis and functional enrichment. (A) Correlation scatter plot showing the overall correlation between the methylation level and expression level. 
(B) Pie chart showing the significantly enriched KEGG pathways. (C) Bubble diagram showing the significantly enriched Gene Ontology biological processes.
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further grouped the patients into those with and without 
tumor recurrence to evaluate the prognostic performance 
of the PS model. For all three data sets, patients with 
a high PS in the recurrence group were associated with 
a worse prognosis. Similarly, in the training set and entire 
set, patients with a high PS in the group without recur-
rence had poorer survival outcomes than those with a low 
PS. In the validation set, patients with a high PS in the 
group without recurrence also seemed to have poorer 
survival outcomes than patients with a low PS, but the 
differences were not statistically significant (Figure 4).

Prognostic Performances of the Different 
Models
Considering the independent predictive value of recurrence, 
we also constructed a recurrence-based prognostic model for 
COAD. The ROC curve analysis showed that this model had 
limited predictive performance, with an AUC of 0.564 
(0.569–0.823; p = 5.830E-02) and a C-index of 0.561. By 
contrast, the prognostic performance of the PS model was 
much better, with an AUC of 0.890 (0.861–0.881; p = 9.48E- 
10) and a C-index of 0.715. Furthermore, we constructed 
a combined model (ie, combining the recurrence score and 
PS), which the ROC curve analysis revealed to have the 
highest predictive performance (AUC = 0.912; 0.875– 
0.875; p = 3.14E-13) among the three prognostic models 
developed in this study (Table S5 and Figure 5).

RT-qPCR Validation of the Results
The expression levels of the 10 optimal DMGs were 
evaluated using RT-qPCR. Except for the expression levels 

of FGR, FZD8, POMC, and TAL1, those of the other six 
genes were significantly lower in the tumor tissues than in 
the paracancerous tissues (p < 0.05) (Figure S3). Although 
the expression levels of FGR, FZD8, POMC, and TAL1 
were also lower in the tumor tissues, the differences were 
not statistically significant (p > 0.05). The verification 
results were essentially consistent with the results of the 
bioinformatics analysis.

Discussion
With the development of medical technology, more studies 
have been carried out in recent years to elucidate the 
pathogenesis of COAD, the prognosis of which remains 
poor despite the great advancements in surgical treatments 
and drug therapies. Prognostic biomarkers could be 
a means by which to obtain feedback on the potential 
progression and recurrence of a disease or the survival 
outcomes, which would help in the stratification of the 
afflicted patients.26 An accurate prognosis has been 
shown to contribute to both the determination of health-
care decisions for patients and the development of indivi-
dualized treatment strategies for patients with COAD.27,28

In this study, through the screening of gene expression 
and methylation data of COAD from TCGA database, 
combined with WGCNA, 127 genes were revealed to be 
differentially expressed and methylated between the 
COAD and normal samples and also showed 
a significant negative correlation between their methyla-
tion and expression levels, suggesting that the expression 
of these genes in COAD was regulated by their level of 
methylation. DNA methylation has been shown to alter 
various signaling pathways in the occurrence and devel-
opment of COAD.29 For example, the accumulation of 
abnormal DNA sites in intestinal epithelial cells promotes 
the occurrence of COAD.30 It is well known that the 
overexpression of both JAK and STAT can promote the 
proliferative and invasive activities of tumor cells. In 
a study on gene methylation, abnormally methylated 
genes in COAD were found to be significantly enriched 
in the JAK–STAT signaling pathway.31 Additionally, the 
promoter methylation of Wnt target genes was proven to 
be a strong predictor of poor prognosis in patients with 
COAD.32 In our present study, enrichment analysis 
revealed that the 127 genes were mainly involved in path-
ways related to cell adhesion and cell migration, calcium 
signaling, and PI3K−AKT signaling. The altered expres-
sion of cell adhesion molecules has been demonstrated to 
be involved in the regulation of tumor cell migration and 

Table 2 The 10 Optimal DMGs Signatures Screened by Cox-PH 
Model

Symbol Multi-Variate Cox Regression 
Analysis

LASSO Coef

HR 95% CI p value

CPNE8 1.236 1.152 −1.668 1.67E-02 0.7192

FGR 0.822 0.645–0.949 1.16E-02 −0.6967

FZD8 0.651 0.471–0.899 9.07E-03 −1.3679
GAMT 1.245 1.122–1.612 1.96E-02 1.0238

JAM2 0.811 0.632–0.941 1.99E-02 −0.4314

POMC 0.765 0.596–0.981 3.50E-02 −0.4315
PRDM6 1.331 1.015–1.747 3.91E-02 1.1104

PRKAA2 1.127 1.019–1.321 1.39E-02 0.1403

TAL1 1.532 1.164–2.017 2.37E-03 0.9890
TMIE 0.781 0.613–0.996 4.62E-02 −0.8437
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to promote the destruction of tissue cohesion, which is the 
central process during tumor progression.33 Calcium sig-
naling has also been proven to play important roles in the 
development and progression of CRC. It has been sug-
gested that a slightly elevated level of intracellular Ca2+ 

signaling could facilitate the occurrence and progression 
of CRC, whereas a sustained Ca2+ influx and a Ca2+ over-
load might lead to cancer cell death.34 Raynal et al 
revealed that targeting calcium signaling could reactivate 
tumor suppressor genes, which might be a novel cancer 
treatment strategy.35 Centuori et al found that deoxycholic 
acid could promote mitogen-activated protein kinase 
(MAPK) gene activation by regulating calcium signaling 
in colon cancer cells, which resulted in the continuous 
activation of the epidermal growth factor receptor 
(EGFR) gene, suggesting that this may be the mechanism 
underlying its role in the regulation of colon cancer 
progression.36 Hence, given that some of the 127 genes 

in our study were enriched in calcium signaling events, we 
speculate that these crucial genes are involved in the 
progression of COAD via these functional pathways.

Additionally, 24 of the 127 genes that had an indepen-
dent prognostic value were screened, and a PS model was 
established on the basis of the optimal signature obtained 
from 10 of those genes (CPNE8, FGR, FZD8, GAMT, 
JAM2, POMC, PRDM6, PRKAA2, TAL1, and TMIE). 
The expression levels of these 10 genes were verified to 
be consistent with the results of the bioinformatics analy-
sis. The expression of FZD8 has been found to be elevated 
in metastatic prostate cancer, with the high expression 
level being positively correlated with the tumor progres-
sion and metastasis.37 Chen et al showed that FZD8 could 
predict a worse prognosis in gastric cancer as well as 
facilitate tumor invasion and metastasis by regulating the 
beta-catenin pathway.38 GAMT, a p53 target, has been 
implicated in p53-dependent apoptosis and the regulation 

Figure 3 Predictive performance of the prognostic score model. Prognostic score distribution (upper panel), scatter plot of the overall survival time distribution of the 
samples (middle panel), and heatmaps of the methylation level patterns of the 10 differentially methylated genes with prognostic score changes (lower panel) in the training 
set (A), validation set (B), and entire set (C). Kaplan–Meier survival curves for patients with high and low prognostic scores in the training set (D), validation set (E), and 
entire set (F). (G) Receiver operating characteristic curves showing the predictive performance of the prognostic score model in the three data sets.
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Table 3 Screening of Independent Prognostic Factors by Univariate and Multivariable Cox Regression Analysis

Clinical Characteristics Uni-Variable Cox Multi-Variable Cox

HR (95% CI) p value HR (95% CI) p value

Training set (N=141)

Age(years, mean±sd) 1.032[0.999–1.065] 5.32E-02 – –

Gender(Male/Female) 2.012[0.915–4.430] 7.18E-02 – –

Pathologic M(M0/M1) 5.405[2.421–12.07] 3.92E-06 3.055[0.409–22.784] 2.76E-01
Pathologic N(N0/N1/N2) 1.859[1.205–2.869] 3.73E-03 1.225[0.423–3.543] 7.08E-01

Pathologic T(T1/T2/T3/T4) 2.141[1.084–4.227] 2.18E-02 1.318[0.380–4.572] 6.63E-01

Pathologic stage(I/II/III/IV) 2.130[1.423–3.187] 1.22E-04 1.868[0.204–3.684] 8.47E-01
KRAS mutation(Yes/No) 1.967[0.469–8.250] 3.46E-01 – –

Microsatellite instabilityt(Yes/No) 0.461[0.217–4.605] 3.45E-01 – –

Lymphatic invasion(Yes/No) 2.377[1.091–5.180] 2.48E-02 1.021[0.252–4.142] 9.77E-01
Colon polyps present(Yes/No) 2.475[0.819–7.480] 9.75E-02 – –

Colon polyps history(Yes/No) 1.178[0.413–3.358] 7.59E-01 – –

Radiation therapy(Yes/No) 0.810[0.274–5.604] 5.64E-01 – –
Recurrence(Yes/No) 2.213[1.020–4.803] 3.92E-02 1.893[1.155–5.007] 1.99E-02

PS model status (High/Low) 3.046[1.143–22.40] 7.89E-04 2.224[1.928–8.894] 2.71E-03

Validation set (N=142)

Age(years, mean±sd) 1.014[0.989–1.038] 2.71E-01 – –
Gender(Male/Female) 1.390[0.727–2.657] 3.17E-01 – –

Pathologic M(M0/M1) 2.974[1.093–8.092] 2.51E-02 1.976[0.276–14.137] 4.98E-01
Pathologic N(N0/N1/N2) 1.969[1.325–2.928] 1.18E-03 1.946[0.738–5.129] 1.78E-01

Pathologic T(T1/T2/T3/T4) 3.184[1.458–6.953] 3.66E-03 1273[0.732–13.703] 4.63E-01

Pathologic stage(I/II/III/IV) 1.790[1.146–2.796] 9.85E-03 0.671[0.148–3.048] 6.05E-01
KRAS mutation(Yes/No) 1.133[0.362–3.547] 8.30E-01 – –

Microsatellite instabilityt(Yes/No) 0.818[0.527–6.938] 9.98E-01 – –

Lymphatic invasion(Yes/No) 1.875[0.905–3.886] 8.58E-02 – –
Colon polyps present(Yes/No) 0.764[0.323–1.726] 4.93E-01 – –

Colon polyps history(Yes/No) 0.656[0.193–2.23] 4.96E-01 – –

Radiation therapy(Yes/No) 0.902[0.211–5.706] 4.08E-01 – –
Recurrence(Yes/No) 2.221[1.152–4.280] 1.71E-02 1.396[1.173–3.398] 1.46E-02

PS model status (High/Low) 2.096[1.075–4.088] 2.99E-02 2.866[1.153–7.122] 2.34E-02

Entire set (N=183)

Age(years, mean±sd) 1.021[1.001–1.040] 3.77E-02 1.048[1.019–1.079] 1.20E-03
Gender(Male/Female) 1.625[0.988–2.672] 5.34E-02 – –

Pathologic M(M0/M1) 4.102[2.263–7.435] 2.29E-05 1.088[0.217–5.463] 9.19E-01

Pathologic N(N0/N1/N2) 1.879[1.406–2.511] 3.72E-05 1.605[0.605–2.682] 5.24E-01
Pathologic T(T1/T2/T3/T4) 2.541[1.527–4.226] 5.55E-04 2.149[0.883–5.229] 9.18E-02

Pathologic stage(I/II/III/IV) 1.948[1.454–2.608] 4.97E-06 1.608[0.481–5.370] 4.40E-01

KRAS mutation(Yes/No) 1.429[0.590–3.459] 4.28E-01 – –
Microsatellite instabilityt(Yes/No) 0.482[0.239–4.182] 5.98E-02 – –

Lymphatic invasion(Yes/No) 2.033[1.202–3.441] 6.96E-03 1.484[0.389–1.851] 6.79E-01

Colon polyps present(Yes/No) 1.172[0.617–2.227] 6.28E-01 – –
Colon polyps history(Yes/No) 0.851[0.392–1.849] 6.83E-01 – –

Radiation therapy(Yes/No) 0.861[0.183–9.207] 3.41E-01 – –

Recurrence(Yes/No) 2.266[1.381–3.719] 8.83E-04 1.853[1.443–3.634] 7.29E-03
PS model status (High/Low) 3.897[2.216–6.851] 2.31E-06 3.275[1.559–6.880] 1.74E-03
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of ATP homeostasis, which might explain the metabolic 
features of tumor cell survival.39,40 As a junction adhesion 
molecule, JAM2 has been shown to be involved in tumor 
cell processes, with Lian et al suggesting that protein 
tyrosine phosphatase type IVA member 3 (PTP4A3) 
could facilitate colon cancer cell adhesion through its 
interaction with this molecule.41 POMC has been 

implicated in various cellular functions. Lin et al proposed 
that POMC could be a possible therapeutic target and used 
as a biomarker for predicting the outcome of breast cancer, 
given that its expression is a tumor-initiating feature.42 

PRDM6, a transcriptional repressor, is involved in the 
inhibition of cell proliferation and survival.43 PRKAA2, 
also named adenosine monophosphate (AMP)-activated 

Figure 4 Survival analysis using recurrence as the independent prognostic factor. Kaplan–Meier survival curves for the training set (A), validation set (B), and entire data set 
(C). The left panel shows the survival status of patients with or without tumor recurrence in the three data sets; the middle panel shows the survival status of patients with 
a high or low prognostic score in the “recurrence” group; and the right panel shows the survival status of patients with a high or low prognostic score in the “without 
recurrence” group.
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protein kinase (AMPK), regulates cellular energy balance, 
which has been found to be involved in tumor growth. The 
activation of AMPK has been demonstrated to inhibit 
colon cancer cell invasion44,45 and growth.46,47

The clinical prognosis of tumors is usually predicted 
through the histopathological evaluation of tumor tissue 
samples. However, recent studies have found that there 
may be significant differences in the clinical outcomes of 
patients at the same disease stage. The usual tumor patho-
logic T, N, and M staging provides limited information and 
cannot be used to predict the response to treatment.48 

Some patients with advanced COAD can remain stable 
for many years, but recurrence, rapid tumor progression, 
and patient death are associated with approximately 20– 
25% of patients with TNM stage I/II disease.49 In this 
study, we found that the pathologic T, N, and M stages 
were not independent prognostic factors of COAD. In fact, 
the heterogeneity of the large number of samples that came 
from patients in different countries may also have affected 
the results of this study.

Compared with the recurrence model, the PS model 
based on the 10 genes had a better predictive perfor-
mance, with high AUC and C-index values, and had an 
independent prognostic value in COAD. This model 
could be used to stratify patients with COAD into high 

and low PS groups, with different survival outcomes. 
Additionally, combining the PS model with clinical fac-
tors and tumor recurrence could further improve its pre-
dictive performance. To our best knowledge, there are not 
many published studies on the use of differential gene 
expression and methylation levels combined for predict-
ing the prognosis of COAD. The prognosis prediction 
model constructed by Yin et al, which was based on 
more genes (13) than our PS model, had an AUC value 
of only 0.825, less than that of our model (0.912).50 

However, the clinical value of our PS model should be 
further evaluated and confirmed in multicenter rando-
mized controlled studies.

Conclusion
Through the screening of gene expression and methylation 
data of COAD from TCGA database, combined with 
WGCNA, crucial genes with differences at both the gene 
expression and methylation levels were found between the 
COAD and normal samples. These genes were involved in 
the progression of COAD via pathways related to cell 
adhesion molecules, cell migration, and calcium signaling. 
We established a PS model based on an optimal 10-gene 
signature and demonstrated that it had better predictive 
performance and independent prognostic value in COAD 
than other models. These findings should contribute to the 
improved assessment of the clinical outcomes of patients 
with COAD and the development of therapeutic strategies 
against the disease.
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