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Abstract. Global incidence rate of non‑tuberculous myco‑
bacteria (NTM) pulmonary disease has been increasing 
rapidly. In some countries and regions, its incidence rate 
is higher than that of tuberculosis. It is easily confused 
with tuberculosis. The topic of this study is to identify two 
diseases using CT radioomics. The aim in the present study 
was to investigate the value of CT‑based radiomics to analyze 
consolidation features in differentiation of non‑tuberculous 
mycobacteria (NTM) from pulmonary tuberculosis (TB). A 
total of 156 patients (75 with NTM pulmonary disease and 81 
with TB) exhibiting consolidation characteristics in Shandong 
Public Health Clinical Center were retrospectively analyzed. 
Subsequently, 305 regions of interest of CT consolidation were 
outlined. Using a random number generated via a computer, 
70 and 30% of consolidations were allocated to the training 
and the validation cohort, respectively. By means of variance 
threshold, when investigating the effective radiomics features, 
SelectKBest and the least absolute shrinkage and selection 
operator regression method were employed for feature selec‑
tion and combined to calculate the radiomics score. K‑nearest 
neighbor (KNN), support vector machine (SVM) and logistic 
regression (LR) were used to analyze effective radiomics 
features. A total of 18 patients with NTM pulmonary disease 
and 18 with TB possessing consolidation characteristics in 
Jinan Infectious Disease Hospital were collected for external 
validation of the model. A total of three methods was used in 
the selection of 52 optimal features. For KNN, the area under 
the curve (AUC; sensitivity, specificity) for the training and 
validation cohorts were 0.98 (0.93, 0.94) and 0.90 (0.88, 083), 

respectively; for SVM, AUC was 0.99 (0.96, 0.96) and 0.92 
(0.86, 0.85) and for LR, AUC was 0.99 (0.97, 0.97) and 0.89 
(0.88, 0.85). In the external validation cohort, AUC values of 
models were all >0.84 and LR classifier exhibited the most 
significant precision, recall and F1 score (0.87, 0.94 and 0.88, 
respectively). LR classifier possessed the best performance 
in differentiating diseases. Therefore, CT‑based radiomics 
analysis of consolidation features may distinguish NTM 
pulmonary disease from TB.

Introduction

Global incidence rate of non‑tuberculous mycobacteria 
(NTM) pulmonary disease has been increasing rapidly (1,2). 
In the United States, the infection rate and prevalence 
of NTM exceed those of tuberculosis (TB) (3‑5). NTM 
pulmonary disease is globally prevalent. NTM is currently 
a key public health problem (6). The growth of NTM is 
slower than that of pulmonary TB, making the disease 
course longer. Further, the overall cure rate is low due to 
resistance to first‑line anti‑TB drugs. NTM predominantly 
affects the lungs (7), with patients exhibiting chronic basic 
diseases and low immunity being more susceptible to NTM 
pulmonary disease. The imaging manifestations and clinical 
features of NTM are similar to TB, resulting in a high 
rate of misdiagnosis (7). If patients with NTM pulmonary 
disease are treated for TB, the treatment opportunity will 
be delayed (8). Sputum mycobacterium culture and strain 
identification are currently the primary methods employed 
to distinguish NTM pulmonary disease from TB. However, 
both methods are time‑consuming, arduous and require strict 
laboratory standards (9). Additionally, the identification of 
strains is dependent upon a positive sputum mycobacterium 
culture, which poses a diagnostic challenge. However, the 
employment of computed tomography (CT) offers advan‑
tages, including rapid imaging, widespread availability and 
high‑resolution density, thereby enabling feasible discrimina‑
tion between diseases (10). Despite the advantages of CT, due 
to the high similarity of the pathogenesis and pathological 
features of NTM and TB, there is no reliable image feature 
to distinguish them (11). Consolidation is a common and 

CT‑based radiomics analysis of consolidation characteristics 
in differentiating pulmonary disease of non‑tuberculous 

mycobacterium from pulmonary tuberculosis
QINGHU YAN1,  WENLONG ZHAO1,  HAILI KONG1,  JINGYU CHI1,  ZHENGJUN DAI2,  DEXIN YU3  and  JIA CUI1

1Department of Radiology, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong 250013;  
2Huiying Medical Technology (Beijing) Co., Ltd., Beijing 100192; 3Department of Radiology, 

Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China

Received June 28, 2023;  Accepted November 2, 2023

DOI: 10.3892/etm.2024.12400

Correspondence to: Dr Jia Cui, Department of Radiology, 
Shandong Public Health Clinical Center, Shandong University, 
46 Lishan Road, Jinan, Shandong 250013, P.R. China
E‑mail: 584872500@qq.com

Key words: radiomics, consolidation, CT, non‑tuberculous 
mycobacteria, pulmonary tuberculosis



YAN et al:  RADIOMICS IN DIFFERENTIATING PULMONARY DISEASE OF NTM2

important CT feature of NTM and TB (12). Consolidation 
characteristics of the diseases are similar, making it difficult 
to distinguish with the naked eye. CT‑based radiomics has 
exhibited potential in the diagnosis and differentiation of 
pulmonary diseases through high‑throughput extraction and 
mining data features (13,14). Due to differences in pathology 
between these two diseases (15), the possibility of identi‑
fying the diseases is further enhanced. In the present study, 
the value of CT‑based radiomics analysis of consolidation 
characteristics in differentiation of NTM pulmonary disease 
from TB was investigated. The present study aimed to estab‑
lish an effective classifier to provide a novel simple diagnosis 
method for NTM and TB.

Materials and methods

Patient population and ethical approval. The present study 
was approved by Shandong Public Health Clinical Center 
(Shandong Provincial Chest Hospital) Ethics Committee 
and the requirement for consent for this retrospective 
analysis was waived (approval no. 2019XKYYEC‑29). 
Subsequently, 89 patients with NTM pulmonary disease 
and 104 with TB undergoing CT imaging in the Shandong 
Public Health Clinical Center between January 2013 and 
July 2018 were retrospectively analyzed. At the same 
time, 27 patients with NTM pulmonary disease and 30 
with TB undergoing CT imaging in the Jinan Infectious 
Disease Hospital (Jinan, China) were also collected for the 
external validation of the model. All patients with NTM 
pulmonary disease were diagnosed twice using sputum 
culture and strains were identified as the same pathogenic 
bacteria (16,17). All patients with TB were identified using 
TB diagnosis and classification standard' issued by the 
China National Health Service Commission on November 
9th, 2017 (18). The sputum smears of each patient was posi‑
tive for acid‑fast bacilli at least once and was identified as 
Mycobacterium tuberculosis complex using the colloidal 
gold method (19). The inclusion criteria were as follows: 
i) Clinical symptoms upon laboratory examination or 
imaging consistent with TB infection; ii) CT images of the 
lung window and mediastinal window exhibited consolida‑
tion and iii) treatment was effective. Exclusion criteria were 
as follows: i) No consolidation features in CT images; ii) CT 
images displayed motion artifacts, poor image quality, 
large differences in scanning conditions or inconsistent 
layer thickness; iii) clinical suspicion of mixed infection 
and iv) presence of non‑infectious disease with similar 
presentation. Based on these criteria, 11 patients with NTM 
pulmonary disease and 23 with TB were excluded, leaving a 
total of 75 patients with NTM pulmonary disease, including 
46 males and 29 females (mean age, 57.1±13.5 years; range 
23‑86 years), and 81 with TB, including 53 males and 28 
females (mean age, 45.4±18.7 years; range, 17‑90 years).

CT examination. All patients whose lungs had been affected 
underwent a plain chest scan using a Philips 64‑slice spiral 
CT scanner (Philips Ingenuity) before treatment and quality 
correction standards were met prior to the CT scan. The 
patients were in the supine posture and underwent a scan 
extending from lung apices to the upper abdomen, with 

imaging acquisition commencing 5 cm inferior to the 
diaphragmatic dome at maximum inhalation. The CT scan‑
ning parameters were as follows: Diameter of the inspected 
detector, 64.000x0.625 mm; the rotation time was 0.5 sec; the 
pitch, 1.375; the tube voltage was 120 kV; the tube current was 
250‑400 mA, which was modulated using an automatic tube 
current; Field of view (FOV), 35‑40 cm; matrix was 512x512 
thickness of the slice, 5 mm.

Image pre‑processing, segmentation and extraction of 
radiomics features. All images were uploaded to Radiance's 
Radcloud platform V7.9 mics.huiyihuiying.com (Huiying 
Medical Technology Co., Ltd.) for further study. A total of two 
radiologists (10 and 25 years of experience) with expertise in 
chest disease assessed and delineated the consolidations in 
the lung window CT images (Window Width 1500, Window 
Level‑500). The radiologists were blinded to clinical informa‑
tion. The radiologists delineated the outline of the consolidation 
on all contiguous slices by manually sketching the region of 
interest (ROI), with the contour line in close proximity to the 
outer edge of the consolidation. The ROI entirely encompassed 
the consolidation. If the consolidation was close to the medias‑
tinum, chest wall and diaphragm, the radiologists drew 1 mm 
along the outside of the contour of the mediastinum, chest wall 
and diaphragm to avoid delineating the non‑consolidation. The 
halo caused by the surrounding exudation was not included. 
Finally, a senior radiologist reassessed all ROIs. If the differ‑
ence was ≥5%, the senior radiologist determined the boundary 
of the ROI (20).

Radiomic feature extraction and selection. Using Radcloud 
platform, 1,409 radiomics quantitative image features were 
extracted from the CT images. The functions were classi‑
fied into four groups. The first group (first‑order statistics) 
comprised 18 features that quantitatively described the 
distribution of voxel intensity in the CT images through 
common and basic indicators. The second group (features 
based on shape and size) contained 14 three‑dimensional 
features that reflected the shape and size of the area. The third 
group (texture features) consisted of grey level run‑length 
and co‑occurrence texture matrices and size zone matrix 
and neighboring gray tone difference and gray level depen‑
dence matrix. The fourth group (1,302 features through 14 
filters) were exponential, square, square root, logarithm, 
gradient, local binary patterns‑2D and wavelets [low‑high‑low 
(LHL), low‑high‑high (LHH), high‑low‑low (HLL), (LLH), 
high‑low‑high (HLH), high‑high‑high (HHH), high‑high‑low 
(HHL), and low‑low‑low (LLL)].

To enhance the model reliability and decrease the feature 
dimension, three methods were used. Variance threshold was 
used to remove features with variance <0.8. Secondly, the 
k‑best method (21) was employed to remove features with 
P‑value >0.05. To establish a more refined model, the least 
absolute shrinkage and selection operator (LASSO, version 
1.0.2) algorithm was used to formulate a penalty function to 
compress select regression coefficients (22). It includes three 
steps: LASSO path, mean Square Error path and coefficients 
in LASSO model. These steps were performed 50 times in the 
case of random initialization. Finally, the most frequent fixed 
features were selected for modeling.
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Statistical analysis. Based on the selected features, numerous 
supervised learning classifiers were used for classification 
(version 7.9, Huiying Medical Technology Co., Ltd.) anal‑
ysis (23). Three supervised learning models were employed in 
the present study: K‑nearest neighbor (KNN), support vector 
machine (SVM) and logistic regression (LR). KNN is a basic 
classification and regression method (24). SVM is a general‑
ized linear classifier for binary classification of data according 
to supervised learning, with decision boundary being the 
maximum margin hyperplane for learning samples (25). 
LR is a generalized linear model, in which logistic function 
is used for regression and classification (primarily 0/1 clas‑
sification). The area analysis under the receiver operating 
characteristic (ROC) curve (AUC) was used to illustrate the 
predictive performance of radiomic characteristics. When the 
sensitivity and specificity were the largest, the optimal cut‑off 
value was selected. A total of 4 indicators to evaluate the 
AUC and prediction accuracy of the training and validation 
sets. It includes P [accuracy=true positive/(true positive + false 
positive)]; R [recall rate=true positive/(true positive + false 
negative)]; F1 score [1 score=P * r * 2/(P + R)]; Support: to 
evaluate the performance of the classifier. P<0.05 was consid‑
ered to indicate a statistically significant difference.

Results

A total of 381 ROIs (203 NTM pulmonary disease and 
178 TB) were manually outlined (Fig. 1A and B) in the CT 
images of 192 patients (Table I). Computer‑generated random 
numbers were utilized to assign 70% of ROI to the training 
data cohort and 30% to the verification data cohort. Using the 
variance threshold method, 456 features were selected for the 
models. Subsequently, best K method was employed in the 
selection of 315 features and then the LASSO algorithm was 
used to select 52 optimal features (Fig. 2). Of 52 radiomics 
features, 34 were texture analysis, one was shapes and 17 
were first‑order statistical feature groups. ROC curve analysis 
for both the training and validation cohort for differentiating 
between NTM pulmonary disease and TB is illustrated in 
Figs. 3 and 4.

Three classifiers were used to analyze the characteristics 
of the radiomic AUC; 95% CI, sensitivity and specificity of the 
training cohort and verification cohort are shown in Table II. 
In the training cohort, AUC [95% confidence interval (CI)], 
sensitivity and specificity of the KNN, SVM, and LR classi‑
fiers were 0.98 (0.95‑1.00), 0.93 and 0.94, 0.99 (0.97‑1.00), 0.96 
and 0.96 and 0.99 (0.97‑1.00), 0.97 and 0.97, respectively. In 
the validation cohort, these were 0.90 (0.82‑0.97), 0.88 and 
0.83, 0.92 (0.84‑1.00), 0.86 and 0.85 and 0.89 (0.81‑0.96), 0.88 
and 0.85, respectively. In the external verification cohort, these 
were 0.84 (0.66‑0.82), 0.65 and 0.83, 0.90 (0.78‑0.92), 0.94 
and 0.77 and 0.95 (0.84‑0.96), 0.94 and 0.87, respectively. The 
ROC curves of the three classifiers are shown in Figs. 3 and 4. 
All cohorts had a significant AUC value >0.84.

In the training cohort, the precision of the three models 
was >0.94 and recall rate and F1 score were >0.93 (Table III). 
In the validation cohort, the precision of the three models was 
>0.83 with a recall rate and F1 score >0.86. Combining the 
precision, recall and F1 scores revealed that LR outperformed 
the other classifiers. In the external verification cohort, the 

precision of the three models was >0.77, the recall rate was 
>0.65 and F1 score was >0.69. LR classifier had the highest 
precision, recall and F1 score.

Discussion

NTM is a conditional pathogen caused by Mycobacteria other 
than M. tuberculosis complex and Mycobacterium leprae, 
which commonly exist in water and soil. A total of 191 species 
has been discovered, but only a few can cause disease (17,26‑28). 
Individuals typically contract the disease via the environment, 
with water and soil being key (7,26,27). Additionally, the inci‑
dence rate of NTM pulmonary disease is increasing in United 
States, Germany, Canada and Taiwan (29‑32). The clinical 
symptoms and pathology of NTM pulmonary disease are diffi‑
cult to distinguish from TB and NTM is prone to natural drug 
resistance. The diagnosis of NTM pulmonary disease and TB 
is achieved via etiological detection. However, this is slow and 
complex, negatively impacting clinical treatment (17). In the 
misdiagnosis of NTM pulmonary disease as TB, the use of 
anti‑TB treatment results in the delay of proper treatment, a 
prolonged course of disease, poor prognosis and possible treat‑
ment failure (33). Therefore, discovering simple and effective 
diagnostic methods is necessary.

Conventional CT is one of the primary detection methods 
for NTM pulmonary disease and pulmonary TB. However, 
CT manifestations of NTM pulmonary disease are complex 
and typically perceived as conditions such as consolidation, 
bronchiectasis, cavities and bronchial dissemination, which 
are difficult to distinguish from TB (34,35). Koh et al (36) 
discovered that bronchiolitis, consolidation and bronchiectasis 
can be perceived on CT images of NTM pulmonary disease, 
which often involve >5 lobes. If bronchiectasis involving the 
middle lobe of the right lung and the tongue segment of the 
upper lobe of the left lung is observed in CT images, along 
with cavities and nodules, NTM pulmonary disease should be 
considered (37). In some studies (11,15), probability of NTM 
consolidation is significantly lower than that of pulmonary TB. 
However, in other studies (12,34), the consolidation of conven‑
tional CT does not significantly differentiate NTM and TB.

Necrotizing granulomatous inflammation is the key char‑
acteristic lesion of tuberculosis, NTM pulmonary disease, 
Coccidiosis and cryptococcosis (37‑41). NTM pulmonary 
disease is more prone to suppurative necrosis than TB, while 
pink and basophilic necrosis caused by TB are more common 

Table I. Allocation of ROIs to training, validation and external 
verification cohort.

    External
  Training Validation verification
ROIs Total cohort cohort cohort

NTM 203 124 32 47
TB 178 119 30 29

ROI, region of interest; NTM, non‑tuberculous mycobacteria; TB, 
tuberculosis.
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than NTM pulmonary disease (42). NTM pulmonary disease 
possesses more giant or bizarre multinucleated giant cells 
compared with TB (43). The aggregation of epithelial‑like cells 
leads to proliferative granuloma in NTM and caseous necrosis 
is less than that in TB (15). NTM pulmonary disease may 

result in atypical lesions, in which tissue cell aggregation with 
no granuloma is seen, which is common in immunodeficient 
patients (44,45). Consolidation of NTM pulmonary disease is 
less common than TB, with low incidence, less granuloma and 
more suppurative necrosis. It is difficult to observe differences 

Figure 2. Radiomic feature extraction and selection. (A) Variance threshold was used to select 461 radiomics features (variance threshold=0.8) from 1,409 
features. (B) Select K best was used to select 299 radiomics features. LASSO algorithm was used to select 63 features corresponding to the optimal α value. 
(C) LASSO path. (D) MSE path. (E) Coefficients in LASSO model. LASSO, least absolute shrinkage and selection operator; MSE, Mean Square Error.

Figure 1. Region of interest (A) Male 63‑year‑old patient with a consolidation of NTM pulmonary disease in the right superior lobe. (B) Male 60‑year‑old 
patient with similar consolidation of PTB in the right superior lobe. NTM, non‑tuberculous mycobacteria; PTB, pulmonary tuberculosis.
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in the pathological features of NTM and TB in conventional 
CT images, resulting in decreased differential diagnosis of TB.

Radiomics has developed substantially in recent years. 
Radiomics involves converting medical images into 
high‑dimensional images, extracting data features through 
quantitative high‑throughput and the analysis of the data 
for decision support (46). The sensitivity and predictive 
value of radiomics is significant in screening of small 
pulmonary nodules and diagnosis, treatment and prog‑
nosis of lung cancer (47‑49). Radiomics may also detect 
common inflammatory lesions (50,51). Deep learning has 
been employed (25,52,53) to distinguish NTM pulmonary 
disease and TB, along with use of the cavity characteristics 
of radiomics to distinguish the two diseases. Consolidation 
features are common CT features of NTM pulmonary disease 

and TB. CT data extracted via high‑throughput radiology 
reflect differences in the pathological characteristics of NTM 
and TB, compensating for fewer differences observed by the 
naked eye and the loss of information.

Here, consolidations of NTM pulmonary disease and TB 
were noted as ROIs. High‑throughput image features were 
computed. A total of 52 radiomics features were obtained 
from the ROIs, of which 34 were texture analysis, one was 
shape and 17 were first‑order statistical feature groups. Three 
supervised learning classifiers (KNN, SVM and LR) were 
used to analyze the extracted lung consolidation features. 
In the training cohort, the AUC values of models were all 
>0.98, 95% CI was 0.95‑1.00, the sensitivity was >0.93 and 
the specificity was >0.94. In the validation cohort, the AUC 
values were all >0.89, 95% CI was 0.81‑0.96, the sensitivity 

Figure 3. ROC curve of training cohort. ROC curves of (A) K‑nearest neighbor, (B) Support vector machine and (C) Logistic regression classification. AUC, 
area under the curve; ROC, receiver operating characteristic.
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was >0.86 and the specificity was >0.83. AUC values of 
the ROC curve were all significant and their sensitivity 
and specificity as >0.83. In the external validation set, the 
AUC value was similar to that of internal validation set. 
In the present study, the characteristics of the classifiers 
were analyzed using clinical indicators (accuracy, recall, 
F1 score and support). The precision of models was >0.77, 
the recall rate was >0.65 and F1 score was >0.69. Further, 
the LR classifier yielded the highest precision, recall, and 
F1 score, which were >0.86, 0.87 and 0.87, respectively. 
From the results, it was observed that the radiomics features 
derived from consolidations held potential in differentiating 
between NTM pulmonary disease and TB. Although in some 
studies, the CT imaging characteristics of NTM pulmonary 
disease consolidations observed through traditional clinical 
methods differ from those of TB (16,40), results obtained by 

naked eye may be subjective. However, the present radiomics 
characteristics of consolidations have potential to distinguish 
between NTM pulmonary disease and TB. Radiomics anal‑
ysis of consolidation characteristics of pulmonary diseases 
has the advantages of objectivity, quantification, stability and 
non‑empirical dependence. Consequently, radiomics analysis 
possesses value in clinical application. Using radiomics 
characteristics to distinguish NTM pulmonary disease from 
TB is a promising, non‑invasive and simple method. The 
early diagnosis of NTM pulmonary disease may improve the 
quality of life of patients and treatment of the disease, espe‑
cially for resource‑deficient medical systems in developing 
countries (54,55).

There are certain limitations to the present study. First, 
to ensure the homogeneity of the image, 5‑mm‑thick images 
were used, which may result in loss of information. Second, 

Figure 4. ROC curve of validation cohort. ROC curves of (A) K‑nearest neighbor, (B) Support vector machine and (C) Logistic regression classification. AUC, 
area under the curve; ROC, receiver operating characteristic.
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the sample size was small. Multicenter studies with larger 
sample sizes are required to validate the present results. ROI 
segmentation was performed manually, which may have been 
affected by subjective bias. Lastly, only consolidation was 
investigated and other characteristics were ignored, which 
may have resulted in incomplete information.

In the present study, radiomics features based on CT 
imaging were effective in identifying NTM pulmonary disease 
and TB consolidation. Additionally, LR classifier outper‑
formed the other classifiers in the recognition of consolidation 
of NTM pulmonary disease in patients.
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