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Abstract

Out-of-hospital cardiac arrest continues to be adevastating condition despite advances

in resuscitation care. Ensuring effective gas exchangemust beweighed against the neg-

ative impact hyperventilation can have on cardiac physiology and survival. The goals of

this narrative review are to evaluate the available evidence regarding the role of venti-

lation in out-of-hospital cardiac arrest resuscitation and to provide recommendations

for future directions. Ensuring successful airway patency is fundamental for effective

ventilation. The airway management approach should be based on professional skill

level and the situation faced by rescuers. Evidence has explored the influence of differ-

ent ventilation rates, tidal volumes, and strategies during out-of-hospital cardiac arrest;

however, other modifiable factors affecting out-of-hospital cardiac arrest ventilation

have limited supporting data. Researchers have begun to explore the impact of venti-

lation in adult out-of-hospital cardiac arrest outcomes, further stressing its importance

in cardiac arrest resuscitation management. Capnography and thoracic impedance

signals are used tomeasure ventilation rate, although these strategies have limitations.

Existing technology fails to reliably measure real-time clinical ventilation data, thereby

limiting the ability to investigate optimal ventilation management. An essential step in

advancing cardiac arrest care will be to develop techniques to accurately and reliably

measure ventilation parameters. These devices should allow for immediate feedback

for out-of-hospital practitioners, in a similar way to chest compression feedback. Once

developed, new strategies can be established to guide out-of-hospital personnel on

optimal ventilation practices.
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1 INTRODUCTION

Approximately 360,000 adults suffer an emergency medical services

(EMS)-treated out-of-hospital cardiac arrest in the United States each
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year.1 Cardiac arrest continues to be a devastating condition for most

individuals with a current overall survival rate of around 10%.2 Out-

comes have improved since the introduction of the cardiac arrest

chain of survival in the early 1990s; however, there are still many
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areas of resuscitation science to be explored, which could potentially

improve patient outcomes.3,4 One of the most important links in the

chain is early high-quality cardiopulmonary resuscitation (CPR), with

an emphasis on chest compressions. However, guidelines provide res-

cuers with minimal direction on optimal ventilation management dur-

ing resuscitation.

Ventilation may play a crucial role in cardiac arrest resuscitation by

allowing for adequate oxygen administration and meaningful carbon

dioxide elimination, thereby improving cellularmetabolism.Modifiable

factors affecting out-of-hospital ventilation include rate, tidal volume,

ventilation delivery time, airway pressure, and timing with chest com-

pressions. The goals of this narrative review are to evaluate the avail-

able evidence regarding the role of ventilation in out-of-hospital car-

diac arrest resuscitation and to provide recommendations for future

directions.

1.1 Current guidelines

Although effective ventilationmanagementmay be an essential aspect

for all types of out-of-hospital cardiac arrest, research provides lim-

ited insight into the optimal ventilation parameters. Despite these lim-

itations, recommendations are provided for ventilation rate, ventila-

tion delivery time, tidal volume, and timingwith chest compressions.5-8

Guidelines do not address other ventilation components (eg, airway

pressures). Furthermore, these recommendations are uniform for all

types of out-of-hospital cardiac arrest, although different etiologies

may require unique ventilation strategies.

The American Heart Association Guidelines for Cardiopulmonary

Resuscitation and Emergency Cardiovascular Care supports the use

of bag-valve-mask ventilation and advanced airways (ie, supraglot-

tic airway or endotracheal intubation) to assist with oxygenation and

ventilation during out-of-hospital cardiac arrest.5,8 Airway manage-

ment strategy is typically based on professional skill level and the

situation faced by rescuers.5,8 Before placement of an advanced air-

way, interrupted ventilation cycles of 2 breaths every 30 compres-

sions or asynchronous ventilation with continuous compressions at a

rate of 10 breaths/min (ie, 1 breath every 6 seconds) are the currently

recommended ventilation strategies. After advanced airway place-

ment, guidelines recommend asynchronous ventilation at a rate of 10

breaths/min with continuous compressions.5-8

Guidelines recommend a tidal volume around 600 mL for adults, or

enough to produce visible chest rise, with each ventilation delivered

over 1 second. Supplemental oxygen use is recommended if available

and should be supplied at a minimum flow rate of 10–12 L/min or an

oxygen concentration of>40%.5,7

2 HOW DOES VENTILATION AFFECT THE
PHYSIOLOGY OF CARDIAC ARREST?

Several mechanisms to explain blood flow during cardiac arrest have

been described.9 A widely accepted theory involves the thorax acting

as a pump in a dynamic circuit of oscillating intrathoracic pressures.9-12

On chest compression release, the decline in intrathoracic pressure

causes blood to flow back into the heart and pulmonary circulation.

Blood flows from the pulmonary circulation to the left side of the heart

and out to the systemic circulation during the active chest compression

downforce due to an increase in intrathoracic pressure.13 Contrary to

the chest pump (ie, thoracic pump) theory described above, the car-

diac pump theory hypothesizes that direct compression of the ventri-

cles generates forward blood flow.9,11,12

When a positive pressure breath is delivered, this leads to

a decrease in venous return and subsequent decline in cardiac

output.14-16 Therefore, ventilation may play a pivotal role by affecting

the intrathoracic and intravascular pressures.17,18

2.1 Importance of ventilation

Satisfactory levels of oxygen are available during the first few minutes

of cardiac arrest before the initiation of chest compressions, particu-

larly in witnessed ventricular fibrillation/tachycardia arrests (ie, non-

asphyxia precipitated arrests).19-22 However, as the resuscitation pro-

gresses, ventilation becomesmore important as oxygen is depleted and

carbon dioxide (CO2) levels begin to rise.
23-25 Studies have shown that

without sufficient ventilation, hypoxemia, hypercapnia, and acidemia

can result.25-30 Managing ventilation in low blood flow states like

out-of-hospital cardiac arrest becomes a delicate balance between

ensuring adequate oxygenation and removal of carbon dioxide while

avoiding the potential adverse hemodynamic effects of ventilation (eg,

diminished coronary perfusion and venous return) and avoiding pro-

longed interruptions of effective chest compressions.22,31-33

Ventilation is essential for CO2 removal. In low blood flow states,

less CO2 is delivered to the lungs for elimination, which results in

the accumulation of CO2 in the body.25 Rising CO2 levels can lead

to a decrease in serum pH and a decreased affinity between oxygen

and hemoglobin. The resultant hypercarbic, hypoxemic, and acidotic

state leads to ineffective cardiac contractility, reduced systemic vascu-

lar resistance, and an increase in pulmonary vascular resistance.34-38

This suboptimal metabolic state decreases the threshold for ventricu-

lar dysrhythmia development and is associatedwith ineffective cardiac

defibrillation.25,39-42

2.2 Impact of ventilation on pulmonary and
systemic hemodynamics

Ventilation impacts the hemodynamics of both the pulmonary and sys-

temic systems.25 Poorly aerated lungs lead to increased pulmonary

vascular resistance and a subsequent decline in pulmonary blood

flow.43,44 Decreases in alveolar oxygen levels contribute to pulmonary

artery vasoconstriction as the body attempts to shunt blood to better-

oxygenated areas of the lungs.43,44 This increased resistance to pul-

monary blood flow may inhibit blood flow from the right heart to the

left heart, decreasing the effectiveness of chest compressions.
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Hyperventilation can have negative impacts on cardiac physiol-

ogy and survival.22,31,32 The increased intrathoracic pressure caused

by excessive positive pressure ventilation leads to decreased venous

return and subsequent decreased cardiac output.14-16 Downstream

effects include a reduction in coronary and cerebral perfusion pres-

sures,which are essential components of improvedout-of-hospital car-

diac arrest outcomes.45

Factors leading to increased intrathoracic pressure include exces-

sive ventilation rate, increased tidal volume, and decreased expiration

time (ie, auto-PEEP). Although excessive positive pressure ventilation

leads to decreased venous return and cardiac output, managing out-of-

hospital cardiac arrest without ventilation can lead to increased pul-

monary vascular collapse, atelectasis, and shunting.25,43,44

2.3 Effect of ventilation on the development of
atelectasis during CPR

During cardiac arrest resuscitation, atelectasis likely occurs due to

direct lung injury and pulmonary congestion caused by the per-

sistent chest compression force and is worsened by ineffective

ventilation.46-48 A porcine model showed that animals receiving no

ventilation had about twice the amount of alveolar atelectasis forma-

tion than those receiving positive pressure ventilation.47 The resul-

tant loss of alveolar volume contributes to ineffective gas exchange

leading to hypoxemia, hypercapnia, and acidosis and ultimately worse

outcomes.48,49

2.4 Ventilation provided by chest compressions and
intrathoracic airway collapse

The lungs collapse during chest compressions and subsequently

expand due to the negative intrathoracic pressure generated by chest

wall recoil upon compression release. This act of passive ventilation

creates pressure changes within the thorax, resulting in the move-

ment of gas within the airway. However, the tidal volumes gener-

ated by compression-only CPR are insufficient to support sufficient

gas exchange.27,29,50-52 Chest compressions without positive pressure

ventilation produce average tidal volumes of 156 mL in intubated and

paralyzed adult patients.52 In paralyzed adult patientswithout a patent

airway, tidal volumes are considerably lower and may approach zero

or even be negative.52,53 Adult out-of-hospital cardiac arrest patients

receiving compression-onlyCPRwith theuseof amechanical compres-

sion device showed median tidal volumes of 41.5 mL.50 A recent study

evaluating guideline-compliant compression depth (median of 2.2 in.)

in adult out-of-hospital cardiac arrest patients observed amedian tidal

volumeof 7.5mLduring compressions,with thehighest observed value

being 45.8mL.51 The overwhelmingmajority of recorded tidal volumes

were<20mL.51

Intrathoracic airway collapse (occurring when the end-expiratory

lung volume falls below airway closing capacity), the loss of

intercostal muscle tone, and the downforce generated by chest

compressions contribute to these insignificant volumes.54 Although a

small amount of positive end-expiratory pressure (PEEP) may counter-

act this phenomenon and generate tidal volume during chest compres-

sions, the optimal amount of PEEP needed to offset airway collapse

while not causing detrimental hemodynamic effects is unknown.52-55

3 HOW IS VENTILATION CURRENTLY
MEASURED IN THE OUT-OF-HOSPITAL
SETTING?

Due to limitations with current technology, ventilation is difficult to

measure in the out-of-hospital setting. The most commonly measured

ventilation characteristic is the rate, which can be assessed in real-time

by an observer or in monitor software analyzed after a resuscitation

attempt. However, other ventilation parameters are difficult to mea-

sure in the out-of-hospital setting. Common strategies for assessing

ventilation in out-of-hospital cardiac arrest resuscitation attempts are

addressed below.

3.1 Capnography

Capnography plots the concentration of CO2 throughout the respira-

tory cycle. End-tidal CO2 (EtCO2) refers to the concentration ofCO2 at

the end of exhalation and is usually the value displayed on cardiacmon-

itors. The displayed EtCO2 value represents the highest measurement

in a ventilation cycle, and under a normal physiologic state is between

35 and 45 mm Hg.55 Capnography has many different applications in

themanagement of out-of-hospital cardiac arrest resuscitation, includ-

ing endotracheal tube confirmation, assessing for endotracheal tube

dislodgement, ensuring chest compression quality, detection of return

of spontaneous circulation, aiding in termination of resuscitation deci-

sions, and optimizing ventilation.55-61 Pulmonary blood flow is the pri-

mary determinant of EtCO2 values in low blood flow states (ie, cardiac

arrest).58,61

Capnographic fluctuations during out-of-hospital cardiac arrest

may not allow for reliable guidance of ventilation during resuscitation

attempts. Figure 1 illustrates chest compression waveform artifacts

that can be seen during resuscitation and compares it with a capno-

gramwithout artifacts in Figure 2. EtCO2 readings are also affected by

changes in minute ventilation, chest compressions, cardiac arrest eti-

ology (eg, unwitnessed arrest, pulmonary embolism, asphyxia precipi-

tated arrest), cardiac arrest duration, and the administration of bolus

medications (eg, sodium bicarbonate and epinephrine).27,57,58,61-66

Chest compression-generated tidal volumes (dependent on

intrathoracic airway patency, patient physiology, and equipment error)

can cause artifacts (ie, oscillations) in EtCO2 waveforms, which may

hinder accurate interpretation of CPR quality and ventilation.67-71

One strategy to assist with the interpretation of EtCO2 waveforms

with oscillations is to use the maximum EtCO2 recorded between

uninterrupted ventilations, as this likely reflects accurate alveolar

CO2.
68 However, this strategy may be unreliable during a fluctuating



NETH ET AL. 193

F IGURE 1 Capnogramwith EtCO2 waveform chest compression artifact

resuscitation. New strategies are being explored, which may allow

for reliable real-time ventilation feedback (similar to compression

feedback).71,72 Algorithms are being developed to aid in the inter-

pretation of waveforms and provide rescuers with more reliable

ventilation rate feedback.70-74

3.2 Thoracic impedance signal

Thoracic impedance signal has also been proposed as a method to

measure and provide reliable ventilation feedback during CPR.72,75-78

Thoracic impedance signals use data recorded from defibrillator pads

to assess ventilation rate through changes induced by chest wall

movement (ie, lung volume).78,79 Similar to capnography, the thoracic

impedance signal is often affectedby chest compressionsmaking venti-

lation rate interpretation challenging.72,75,76,78 Techniques to calculate

tidal volumedata arebeingexplored, although theydonot appear accu-

rate at this time.76,77 Additionally, the majority of thoracic impedance

signal data is assessed after the resuscitation, with an inability to

provide real-time ventilation rate feedback to rescuers using existing

technology.71,72,75

4 HOW ARE VENTILATIONS CURRENTLY
DELIVERED?

Ensuring effective airwaypatency is vital to successful ventilationman-

agement in out-of-hospital cardiac arrest. While many strategies for

airway management exist, the majority of resuscitation attempts are

managed initially with basic airway skills (ie, upper airway positioning

and bag-valve-mask ventilation).80 Patient anatomy, external factors

(eg, blood, secretions, positioning), and poor technique contribute to

thedifficulties of performing effectivebag-valve-mask ventilation. Pre-

vious studies have shown that a 2-person bag-valve-mask technique

is more effective than 1-person bagging and is recommended assum-

ing an adequate number of rescuers are available.81,82 Additionally,

because bag-valve-mask ventilation does not create a secure passage

of air into the lung, gastric insufflation and aspiration can develop.83,84

After basic airway management, successful placement of an

advanced airway (ie, supraglottic airway, endotracheal intubation)

occurs ∼80% of the time.80 These devices allow a more direct path-

way into the trachea and lungs, and in theory, should supply more

effective ventilation and oxygenation. Supraglottic airway devices (eg,

esophageal tracheal airway, laryngeal mask airway [LMA], King LT
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F IGURE 2 Capnogramwithout chest compression artifact

[Ambu Inc.], and i-gel [Intersurgical Ltd.]) are typically quicker to insert,

require less training, and canbeplacedby less skilled personnel than an

endotracheal tube.85-87 Themain limitations of advanced airwayplace-

ment include a reduction in chest compression fraction (due to longer

pause length for airwayplacement), thepotential for amisplacedordis-

lodged airway (eg, esophageal intubation) leading to ineffective venti-

lation and oxygenation, and potential injury to surrounding soft tissue

structures.88-93

Until recently, research comparing the placement of a supraglottic

airway device versus endotracheal intubation in out-of-hospital car-

diac arrest has been limited to observational studies that suggested

endotracheal intubation may be a superior technique.94-104 How-

ever, in 2018 two large randomized controlled trials compared out-

of-hospital emergencymedical technician and paramedic performance

of the 2 strategies. The 3000 subject multicenter cluster-crossover

randomized trial, Pragmatic Airway Resuscitation Trial (PART), com-

pared the King LT to endotracheal intubation as the initial strategy for

advancedairwaymanagement in adult out-of-hospital cardiac arrest.87

Patients managed initially with the King LT showed higher survival

at 72 hours compared to those initially managed with endotracheal

intubation. Rates of return of spontaneous circulation, hospital sur-

vival, a favorable neurologic outcome at discharge, and initial airway

attempt success were also higher in the King LT group. The main lim-

itation of the trial is the pragmatic design, which only controlled for

the initial advanced airway management strategy, with clinical teams

determining all other resuscitation and post-resuscitation care.87 Sim-

ilar to PART, the 9289 patient multicenter cluster-randomized clini-

cal trial, AIRWAYS-2, compared the i-gel to endotracheal intubation

as the initial device for advanced airway management in adult out-of-

hospital cardiac arrest patients.105 No significant differencewas found

between the 2 groups for the primary outcome of the modified Rankin

Scale score at hospital discharge or 30 days. However, in patients who

ultimately received advanced airway management, the i-gel outper-

formed endotracheal intubation.105 Additionally, initial ventilationwas

more likely to be successful in the i-gel group comparedwith the endo-

tracheal intubation group, and there was no difference in adverse out-

comes (ie, aspiration and vomiting) between the groups.105

A non-inferiority trial comparing endotracheal intubation to bag-

valve-mask ventilation in a physician-driven EMS system was also

published in 2018. This 2043-subject study failed to demonstrate

non-inferiority or inferiority for survival with a favorable 28-day

neurological function of either technique.106 Prior studies evaluating
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the use of a bag-valve-mask device during out-of-hospital cardiac

arrest resuscitation demonstrated an association with improved

survival and neurologic outcomes as compared to those managed with

a supraglottic airway device or endotracheal intubation.100,107-110

However, these observational studies have been limited by confound-

ing by indication and resuscitation time bias, as supraglottic airways

are often placed after other airway management techniques have

failed. Additionally, endotracheal intubation may be a surrogate for a

prolonged resuscitation.111,112

Decisions for airway management strategy and device selection in

adult out-of-hospital cardiac arrest should be based on each unique sit-

uation and rescuer experience level.8 EMS professionals must receive

adequate training and continuous quality improvement (CQI) to ensure

effective airway patency while also ensuring airway management is

not interfering with the other aspects of CPR known to improve

outcomes.113,114

4.1 Mechanical ventilation

Limited evidence exists evaluating the role of mechanical ventila-

tion in out-of-hospital cardiac arrest resuscitation. Pneumatically pow-

ered automatic transport ventilators may be considered for pro-

longed resuscitations.115 These devices appear to provide effective

gas exchange during CPR, and similar oxygenation and ventilation as

compared tomanual ventilation (ie, bag-valve-mask ventilation).116-119

The automatic transport ventilators also offers the advantage of allow-

ing EMS professionals to perform other tasks during the resusci-

tation, which may be particularly valuable in agencies with limited

personnel.119 EMS professionals need to understand the effect of dif-

ferent ventilation modes, tidal volumes, ventilation rates, inspiratory

times, airway pressures, and PEEP have on the patient’s physiology

during CPR. Those using the automatic transport ventilators should be

familiar with the operational advantages and challenges of their spe-

cific device.

Oxygen-powered resuscitatorsmayoffer amore practical approach

to out-of-hospital mechanical ventilation due to their decreased cost,

decreased size, and more simplified design. Oxygen-powered, flow-

limited resuscitators can be used in either automatic ormanual modes.

The automatic mode delivers a set oxygen flow rate until a spec-

ified airway pressure is achieved, and redelivers oxygen when the

device registers lack of flow (typically with every chest compression-

decompression).120 Duringmanualmode, the rescuermanually admin-

isters an inspirationwith a set oxygen flow rate by pressing a button on

the device. The inhalation stops after the button releases or once a set

pressure limit is reached. Select devices (eg, Oxylator) provide poten-

tially valuable feedback on airway obstruction (by clicking) and during

an ineffective mask seal, or supraglottic airway misplacement (by not

delivering the next inspiration).

Per the current American Heart Association guidelines, the use of

manually triggered, oxygen-powered, flow-limited resuscitators may

be considered in patients without an advanced airway in place.115 The

use of the automatic mode is currently discouraged during CPR due

to the potential for increased PEEP, which may lead to compromised

hemodynamics.115 Recent studies have challenged this theory, and

have shown good outcomeswith the use of the automaticmode.120-122

Oxygen-powered resuscitators have shown adequate oxygenation and

ventilation during CPR.121-126 These devices may also add the advan-

tage of leading to less gastric insufflation as compared to bag-valve-

mask ventilation.124,125

The literature does not support any significant benefit of mechan-

ical ventilation over manual ventilation. EMS professionals using

these devices should have sufficient training and CQI processes in

place to ensure appropriate application and recognition of potential

complications.127 Back-up manual ventilation devices (ie, bag-valve-

mask) should be readily accessible in case of mechanical device fail-

ure or oxygen source depletion.115 Device expense, initial EMS per-

sonnel training, CQI, high oxygen consumption, and need for a power

source (in some automatic transport ventilator devices) limit the use of

mechanical ventilation forwidespreadout-of-hospitalCPRapplication.

5 WHAT EVIDENCE IS AVAILABLE
REGARDING VENTILATION RATES AND
STRATEGY?

Many approaches for ventilation delivery in out-of-hospital cardiac

arrest resuscitation have been assessed. Strategies include passive

oxygenation with no positive pressure ventilation to various rates and

methods of supplying positive pressure ventilation (eg, ventilationwith

interrupted compressions and asynchronous ventilation with continu-

ous compressions).

Previous research suggests that passive oxygenation offers mini-

mal effective alveolar ventilation and is likely not the optimal strat-

egy for ventilationmanagement, particularly in prolongedandasphyxia

precipitated arrest.27,29,50-52 However, a strategy of passive oxygena-

tionwithout positive pressure ventilation has shown an association for

improved survival during the first few minutes of resuscitation.128,129

While not fully understood, this may be due to the oxygen reserve

present in the body at the moment of cardiac arrest. As researchers

identify optimal ventilation strategies to use during cardiac arrest

resuscitation, rescuers must continue to understand the effects

the lack of ventilation may have on out-of-hospital cardiac arrest

physiology.25,43,44

Recommendations for the ideal compression-to-ventilation ratio

have frequently changed over the years. Before 2000, American Heart

Association CPR guidelines suggested a 5:1 ratio for 2-person CPR

without an advanced airway.3,130 Guidelines shifted to recommending

the 15:2 ratio before advanced airway placement after the discovery

that a 5:1 ratio was associated with a decreased number of total com-

pressions per minute and less favorable perfusion pressures.130-132

Several different ratios were subsequently explored (eg, 100:2, 50:2,

50:5, 30:2, and 15:1), ultimately changing to the 30:2 compression-to-

ventilation ratio recommended today.5,7,26,133-137

In an attempt to help limit prolonged chest compression pauses

associated with ventilation, researchers have evaluated how
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asynchronous ventilation with continuous compressions compared to

the traditional interrupted approach.128,138,139 A cluster-randomized

trial allocated EMS practitioners to either continuous compressions

(10 breaths/min) or interrupted compressions (with a 30:2 ratio)

in the management of non-asphyxia adult out-of-hospital cardiac

arrest patients.139 Advanced airway management was deferred until

approximately 6 minutes into the resuscitation.139 No difference in

survival or neurologic function was found between the 2 groups.139

Hyperventilation during CPR likely leads to harm. While current

guidelines recommenda ventilation rate of 10breaths/min, the optimal

ventilation rate when performing asynchronous ventilation with con-

tinuous compressions is not known.5-7 The porcinemodel described by

Aufderheide showed an associationwith excessive ventilation rate and

poor outcomes.31,32 Animals ventilated with a rate of 30 per minute

resulted in decreased coronary perfusion pressure and survival as

compared to those ventilated at a rate of 12 per minute.31,32 This

finding was attributed to increases in intrathoracic pressure (associ-

ated with an increased ventilation rate), which is thought to inhibit

venous blood flow back to the right heart.31,32 Hyperventilation also

leads to hypocapnia and subsequent cerebral vasoconstriction, fur-

ther reducing cerebral perfusion and increasing the chance for worse

outcomes.46,140,141 While rescuers need to avoid excessive ventilation,

ventilating at lower rates may also lead to poor outcomes. Animals

receiving 2 breaths/min in 1 study were found to have significantly

lower carotid blood flow and brain-tissue oxygen tension compared to

those receiving 10 breaths/min.142 A recent human study evaluating

adult out-of-hospital cardiac arrest patients receiving greater or less

than 10 breaths/min found no difference in outcomes between the 2

groups.143

5.1 Effect of varying tidal volumes

Previous research has evaluated the effect varying self-inflatable bag

sizes have on tidal volume delivery, peak airway pressures, and rate

of gastric insufflation in non-intubated out-of-hospital cardiac arrest

patients. Wenzel et al144 showed that patients ventilated with a

500 mL (pediatric) self-inflating bag received significantly less tidal

volume (365 mL vs 779 mL) and developed less peak airway pres-

sure when compared to a 1000 mL (adult) bag. All patients received

∼50%FiO2 via bag-valve-mask; no difference in oxygen saturationwas

noted.144 Another study evaluated a 1100 mL (medium-sized) versus

a 1500 mL bag, in patients who received room air oxygen with bag-

valve-maskventilation.145 Themedium-sizedbag supplied significantly

less tidal volume (624 mL vs 738 mL) while having a similar impact

on sufficient ventilation (no difference in PaCO2).
145 Patients venti-

lated with the medium-sized bag had significantly lower PaO2 than

those in the larger bag group; however, supplemental oxygen was not

administered.145 A similar study compared the use of a 700 mL (pedi-

atric) versus a 1500mL bag on patients receiving bag-valve-mask ven-

tilation without supplemental oxygen.146 The results were consistent

with the previous showing lower recorded tidal volumes (455 mL vs

719 mL) while still preserving effective ventilation.146 Finally, alter-

ing the grip on the self-inflating bag may also affect delivered tidal

volumes.147

6 HOW DOES VENTILATION AFFECT
OUT-OF-HOSPITAL CARDIAC ARREST
OUTCOMES?

A majority of EMS personnel ventilate at significantly high rates

during CPR, which may have clinical importance.31,32,78,148-150 In

a porcine model, animals ventilated at 30 versus 12 breaths/min

showed decreased survival (likely through decreased coronary perfu-

sion pressure).31,32 Vissers et al143 published a retrospective analysis

of 337 intubated out-of-hospital cardiac arrest patients using EtCO2

and ventilator pressure data to evaluate the impact ventilation rate

had on out-of-hospital cardiac arrest outcomes. Groupswere stratified

based on the 10 breaths/min recommendation of current guidelines.5-8

The mean ventilation rate was 15.3 breaths/min.143 The authors con-

cluded a ventilation rate of ≤10 breaths/min was not associated with

significantly improved outcomes (eg, return of spontaneous circula-

tion, survival to hospital discharge, and 1-year survival with a favor-

able neurological outcome) compared to a ventilation rate of >10

breaths/min.143

Despite the lack of outcome data, a recent study further stresses

the importance of ensuring effective ventilation in the management of

out-of-hospital cardiac arrest. Chang et al79 retrospectively examined

560 adult patients with out-of-hospital cardiac arrest who received

bag-valve-mask ventilation by EMS practitioners with a ratio of 30

chest compressions interrupted by 2 ventilations. Defibrillation pads

recorded bioimpedance ventilation waveforms (ie, lung inflation) dur-

ing chest compression pauses, which measured ventilation delivery.

Outcomes were assessed in pre-specified groups, in those patients

with ventilation waveforms in <50% versus 50% or more of pauses.

The researchers report the resuscitation attempts where ventila-

tion was measured in at least 50% of the pauses were associated

with significantly increased rates of return of spontaneous circulation

and survival, with an increased likelihood of a favorable neurological

outcome.79

7 CURRENT CHALLENGES AND FUTURE
DIRECTIONS

While auditory and visual prompts have been shown to assist with

ideal ventilation delivery rates, existing technology fails to measure

and deliver feedback on real-time out-of-hospital ventilation data

reliably.151,152 This hinders the ability to investigate optimal ventila-

tion management in out-of-hospital cardiac arrest. As such, an impor-

tant next step in advancing cardiac arrest resuscitation care will be to

develop ameans tomeasure ventilation parameters.

Techniques using thoracic impedance signals and capnography to

measure ventilation rate have been described, although these strate-

gies comewith previously noted limitations.70-72,74,75 New devices are
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being developed to measure ventilation rate, tidal volume, inspiratory

time, and expiratory time.153,154 Evaluation for air leakage can also

be monitored.153 Two recently described devices attach between a

manual bag resuscitator and the airway device (ie, mask, supraglottic

airway, or endotracheal tube), measuring airflow and estimating

ventilation parameters.153,154 Ventilation feedback can be delivered,

assisting rescuers in the delivery of high-quality ventilation.153,154 The

use of these devices by out-of-hospital practitioners showed an asso-

ciation for improved ventilation performance based on pre-specified

targets.153,154 However, these studies were performed in a simulated

environment withmanikins.153,154

It will be important for future devices to deliver reliable and accu-

rate ventilation parameters, provide immediate feedback to out-of-

hospital personnel, be cost-effective, able to be used with various air-

way management techniques, and be durable in the out-of-hospital

environment. Once developed, researchers should be able to deter-

mine the optimal ventilation strategy for all etiologies of out-of-

hospital cardiac arrest resuscitation.

8 CONCLUSIONS

Out-of-hospital cardiac arrest continues to be a devastating condition

despite advances in resuscitation care. Although ventilation is impor-

tant to out-of-hospital cardiac arrest physiology, there is limited evi-

dence to support ideal ventilation management during CPR. Recent

studies suggest that ventilation is associated with outcomes from out-

of-hospital cardiac arrest. New devices and strategies should be devel-

oped to guide out-of-hospital personnel on optimal clinical perfor-

mance.
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