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Advances in both sensor technologies and network infrastructures have encouraged the development of smart environments to
enhance people’s life and living styles. However, collecting and storing user’s data in the smart environments pose severe privacy
concerns because these data may contain sensitive information about the subject. Hence, privacy protection is now an emerging
issue that we need to consider especially when data sharing is essential for analysis purpose. In this paper, we consider the case
where two agents in the smart environment want to measure the similarity of their collected or stored data. We use similarity
coefficient function (& ;) as the measurement metric for the comparison with differential privacy model. Unlike the existing
solutions, our protocol can facilitate more than one request to compute & 4, without modifying the protocol. Our solution ensures
privacy protection for both the inputs and the computed F g, results.

1. Introduction

Advances in both sensor technologies and network infras-
tructures have encouraged the growth and the development
of smart environments. The concept of smart environments
is to promote the ideas of small world with great deal of
different smart devices such as sensors, microcontrollers,
handheld devices, and computers that connected via wired or
wireless networks [1]. These smart devices can automatically
collect real-time data from the users without human-to-
human or human-to-computer interaction. Note that smart
devices can collect large amounts of personal data when the
users are operating and interacting with the environment.
The organization and exploration of these heterogeneous
personal data require intelligent software agents (hereafter
we will refer to them as agents) to do the analysis in
order to trigger actions for the environment. A study of the
exploration of personal data has been conducted in [2].
There are many smart spaces (e.g., smart home, smart
building, and smart office) which have been proposed and
developed in the past few years to enhance a person’s envi-
ronment and way of life. For example, smart homes for
ubiquitous healthcare [3] can support patients who live

independently at home by providing health monitoring and
remote assistance [4]. Smart office can adapt itself to the user
needs and hence release the users from their routine tasks
[5]. In such environment, office workers can communicate,
collaborate, and work in a new and more efficient way.

Along with the potential benefits offered, the usage of
smart environment also raises some security and privacy
concerns to the data owners. Since a large amount of user’s
data is captured and possibly stored, issues arise relating
to the storage and usage of sensitive data. In the existing
implementations, there is no clear privacy protection in place.
This may cause the users feel uncomfortable to work or stay
in the smart environments. Therefore, data privacy is one of
the main challenges for acceptance and adoption of smart
environments.

The data privacy concern arising in the smart envi-
ronments is mainly about the usage of the collected data.
The intelligent software agents analyze the collected data to
understand the changes of the environment and perform
activity prediction. Some of the data collected from the users
may be sensitive and, hence, the access control to share
those data is becoming an important task. In a multiagent
smart environment, two or more agents may concurrently (or
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within a given period) collect data from the same user. A wide
range of data analysis operations entails a similarity mea-
surement between datasets collected. Based on the analysis
results, the smart environments can improve the experience
of their inhabitants by adapting the behavior of the users and
other conditions in the environment.

When users (or agents) wish to compare datasets col-
lected with other parties, a secure mechanism must be avail-
able to facilitate the computation in a secure manner. Assume
that two parties would like to find the similarity between their
collected datasets. We can utilize a measurement metric such
as similarity coeflicient for the comparison.

Similarity coeflicient (¥ s¢) is a function used to study
the coexistence of objects and the similarity of the objects.
Finding similarities between two datasets is an important task
in many research areas. The output from the comparison can
be involved in such contexts as the study of the coexistence
of species and the similarity of sampling sites [6, 7] (in
the context of ecological and biogeographical research), as
the matching of two given DNA sequences [8], or as the
assignment of a set of observations into subsets called clusters
[9] (in the clustering application). In the privacy preserving
data mining (PPDM) applications such as clustering [9,
10], the similarity coefficient is used to assign a set of
observations or data into subsets called clusters. Recently,
similarity coeflicient has also been applied in biometric areas
to solve identification problems such as iris and fingerprint
recognition [11].

L1 Motivation. Advances in data collection technologies
have led to an increasing number of data collected and stored
in smart environments. In the early age, collected data were
generally without considering security and privacy issues.
Therefore, previously stored data may contain a vast amount
of sensitive information. These data are important for the
analysis purpose and for the comparison with the newly
collected data in order to trigger accurate activity for the
changing of the environment. Recent discussions about user’s
data privacy with respect to the data collected in the smart
environment have shown that the public gradually realizes
that this may have a long-term impact on their everyday life.

Let us consider a practical scenario where two agents
(each embedded with a sensor) would like to analyze and
extract useful information from the datasets they collected
from the users. To improve the performance and accuracy
of the changing condition in the environment, data from the
same (or different) subject must be gathered and used for
the analysis. These analyses require collaboration between
agents and sharing of data collected by each sensor. However,
the release and sharing of sensitive information raises some
privacy concerns for the users.

In a context-sensitive environment, access to a resource
requires the collection of confidential information. For
instance, if the location of a person is used to grant access to
resources such as printer and projector, the information about
the acceptance or rejection of using a device will violate the
person’s privacy [12]. Consequently, privacy concerns arise in
terms of how to control the sharing of sensitive information
with other users or agents.
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1.2. Problem Statement. In this paper, we will consider the
comparison of both data types (old and newly collected data)
for the similarity measurement. We define the problem in
this paper as follows: let X = {x,x,,...,x,} and Y =
{y1> ¥2>--.> ¥} be two binary datasets belonging to two agents
(a requestor and a supporter, resp.). We assume that the
requestor wants to measure the similarity between X and Y
without revealing X to the supporter. At the same time, the
supporter is willing to participate if (1) Y will not be revealed
to the requestor and (2) no extra information can be derived
from the final output.

Since the same datasets may be used for several similarity
measurements, we design our protocol to facilitate more than
one computation (without modifying the protocol). To sup-
port multiple similarity coefficients, we utilize a semitrusted
anonymizer in our protocol to answer the requests from the
requestor.

The execution of our protocol should preserve a number
of fundamental security properties as described in [13]. In
particular, all players must ensure that no extra information
will be revealed other than the computed output (privacy
is protected) and the output of the protocol is according to
the prescribed functionality (correctness is guaranteed). We
require all computations in our protocol to be performed
in an encrypted form by utilizing a semantically secure
homomorphic cryptosystem in our protocol design. The
details of the homomorphic cryptosystem will be discussed
in Section 3.1.

1.3. Organization of the Paper. This paper is organized as
follows. Section 2 introduces the background for this research
and discusses related works in the literature. Section 3
describes the technical preliminaries of our work, followed by
the details of our private similarity coefficients computation
protocol in Section 4. The analysis and discussion of our
protocol are presented in Section 5 and our conclusion is
presented in Section 6.

2. Background and Related Work

2.1. Similarity Coefficients. Binary data is a representation of
presence or absence of an attribute in the given objects. The
value “1” is used to show the presence of the attribute while
“0” is used to represent the absence of the attribute. Hence, a
binary dataset is composed of a series of strings with “1” and
“”

Let X = {x; | i = 1,2,...,nfandY = {y; | i =
1,2,...,n} be two binary datasets, where x;, y; € {0,1} and
Cxy = {(x; ) | i = 1,2,...,n}. We further specify the
following summation variables.

(i) a is the number of (x;, ¥;) = (1,1) in Cyy.
(ii) b is the number of (x;, y;) = (1,0) in Cxy-
(iii) c is the number of (x;, ¥;) = (0,1) in Cyy.
(iv) d is the number of (x;, ¥;) = (0,0) in Cxy.
In the relevant literature [14, 15], a is known as “positive

match,” b and ¢ are known as “mismatch,” and d is referred to
as “negative match?”
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The computation of similarity coefficient & ¢, is based
on the summation variables. A large number of F 4, have
been proposed in the literature. Similarity coefficient choice
is based on some criterion. An important consideration
is the inclusion or exclusion of negative match d in the
computation. For some data, the absence of an element in
both objects would indicate similarity, but, in certain cases,
this might not be true. Hence, we can divide the similarity
coeflicients into two types.

The first type takes into consideration negative matches.
For example, Russell and Rao [16] introduced the similarity
coeflicient of this type that can be expressed as follows:

a
a+b+c+d’

@

This similarity coefficient represents the proportion of posi-
tive matches in the dataset. Note that the denominator in (1)
is actually the size of the dataset, n.

In the second type, we do not consider negative matches
in the computation. For example, the Jaccard coeflicient [17]
can be calculated as follows:

a
a+b+c @
As shown in (2), the Jaccard coefficient is independent of the
summation variable d.

In the asymmetric type of binary data, the positive
matches are usually more significant than the negative
matches [18, 19]. However, the inclusion or exclusion of neg-
ative matches in the similarity coefficients is still an ongoing
issue in many research areas [14, 20]. We refer readers to [21]
for a comprehensive similarity coefficients list (the authors
compiled a list of 76 binary similarity coefficients).

In this paper, we particularly consider the similarity
coefficients for binary data, but with the correct size of
each summation variable in Section 2.1, the agent is able to
compute dissimilarity coefficients of two datasets (i.e., X and
Y). We do not discuss further dissimilarity coefficients in this
paper, but we would like to stress that our protocol is also
applied to dissimilarity coefficients computation.

2.2. Related Work. Data privacy protection is still a major
concern in smart environments, although there have been
efforts to protect personal information of the users by using
mobile agents [22] and deploying security framework [23]
and context-based solutions (e.g., context-sensitive services
[12] and context-aware interface [24]). Context is often
referred to as information used to identify activities or events
that have occurred in the smart environment. Also, some
security and privacy risk models have been proposed in the
literature to help users (or designers) to identify and prioritize
privacy risks for a specific application [25, 26]. Other specific
solutions such as cloaking area creation schemes have been
used to protect the location privacy of the users [27]. How-
ever, these solutions do not consider the privacy protection
for data collected or stored in the environments. Instead, they
try to prevent the leakage of sensitive information during the
real-time data collection. Since our work in this paper is on
the privacy protection for data analysis, we will focus our

discussions on the existing solutions for the secure similarity
measurement.

Various procedures and protocols for testing the simi-
larity (or homogeneity) of two or more datasets have been
proposed in the literature. Private matching is a practical
problem to find common data from the joint databases
without revealing any private information to any party [28].
The general approach was studied by Agrawal et al. in
[29] which has motivated many researchers to find efficient
solutions to address the private matching problem.

In 1982, Yao introduced the first two-party computation
protocol (also known as millionaires’ problem) in [30]. His
idea is to allow two individuals to compare their richness
without revealing their wealth to each other. The protocol is
secure if no parties learn extra information from the protocol
execution. Since then, many secure computation protocols
have been proposed to solve problems such as secure mul-
tiparty computation [13] and cooperative computation [31].
As proved by Goldreich et al. in [32], there exists a secure
solution for any functionality which can be represented as a
combinatorial circuit. However, the generic construction of
circuit evaluation is somehow inefficient for a large number
of parties because the cost for large input can be very high.

The first secure protocol to evaluate & 5 in the semi-
honest setting was proposed in [33]. As shown in [34], the
solution in [33] is not secure due to its potential to leak the
private input of one party. Hence, another protocol with the
malicious model is proposed in [34].

The most related work to our solution is the differential
similarity computations proposed in [35]. Several two-party
protocols have been proposed to compute exact and threshold
similarities based on a specific # o (e.g., scalar product and
cosine similarity). In their designs, the same protocol cannot
be used to facilitate another & ¢.. A substantial modification
is needed in order to use the same protocol to compute for
other functions. Since there is no best # 4 in the literature,
we may need to consider the computation results from more
than one F ¢, In this paper, we will design a solution that can
be used to facilitate any # g¢ computation without modifying
the existing protocol.

3. Technical Preliminaries

3.1. Homomorphic Encryption Scheme. In our protocol
design, we utilize a multiplicative property from the homo-
morphic encryption scheme (i.e., ElIGamal [36]) as our pri-
mary cryptographic tool. Let Enc () denote the encryption
of m with the public key, pk. Given two ciphertexts Enc, (m,)
and Enc(m,), there exists an efficient algorithm -, to
compute Encp, (m,; - m,).

3.2. System Model. Our protocol consists of the following
main players.

(i) Anonymizer of: a semitrusted party who helps to
facilitate the computation requests.

(ii) Requestor: a party who wants to learn the similarity
between two binary datasets. The requestor will send
a computation request to <.
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FIGURE 1: Overview of the proposed model.

(iii) Supporter: a party who collaborates with the reques-
tor to perform the homomorphic operations.

Note that a supporter can also make a computation
request to /. We can assume that the players are intelligent
software agents communicating with each other in the same
or from different smart environments. We can select any
agent as the anonymizer if it does not collect data to be
used for the computation. The interactions of players in our
proposed system are shown in Figure 1.

3.3. Adversary Model. In general, there are two types of
adversary models that can be considered: (1) the semihonest
model and (2) the malicious model. In the semihonest model,
all parties follow the prescribed action in the protocol but
might attempt to learn extra information from the interme-
diate computations.

In the malicious model, a malicious party might arbi-
trarily deviate from the protocol for their own gain, such
as performing active steps to interrupt the execution of the
protocol in order to gain access to private data. In this
paper, we assume that all players are semihonest parties
(“honest-but-curious”). They follow the prescribed actions
in the protocol but might be interested to learn some extra
information from the data they received during the protocol
execution or from the final output.

3.4. Security Model. Generally, a two-party computation
problem is cast by specifying a random process that maps
pairs of inputs to pairs of outputs [37]. In the setting of a
two-party computation, the requestor (with input X) and the
supporter (with input Y) jointly compute for the function
f(X,Y) while preserving some security properties such as the
correctness of the output and the data privacy [38].

Let IT be a protocol between the two players. Then,
we can denote the requestor’s output by IT.(X,Y) and the
supporter’s output by II.(X,Y). Since only the client gets
the output in our case, we can simply denote II(X,Y) =
I1(X,Y). The perspective of the client and the server during
the execution of protocol IT on input (X,Y) can be denoted
as VIEwg(X, Y) and VIEW?(X, Y), respectively. Note that
the view of each party includes their local input, their output,
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and their messages received from the other party. We now
formally define our usage of the term privacy in our protocol
(adapted from [39]) as follows.

Definition 1 (privacy with respect to semihonest behavior).
Let f:{0,1}" x {0,1}* — {0, 1}" be a probabilistic polyno-
mialtime function. One says that a two-party computation
protocol IT securely computes f in the presence of semihon-
estadversariesif forevery X, Y € {0,1}" : TI(X,Y) = f(X,Y).
Also, there exist probabilistic polynomial-time algorithms S
and S, such that

{SC (X’ f (X Y))}X,Ye{o,l}*

Il o

{VIEWE (X, Y)} (3)

X,Ye{o,1}"

e

{Ss Ml xyeon = [VIEWG (X, Y), } (4)

XYe{o,1}*’
Cc

where = denotes computational indistinguishability accord-

ing to the families of polynomial-size circuits. One refers the

reader to [39] for the definition of computational indistin-

guishability.

Note that we can simulate each player’s view by using a
probabilistic polynomial-time algorithm, only given access
to the party’s input and output. Thus, we only need to show
the existence of a simulator for each player that satisfies the
requirements of (3) and (4).

3.5. Differential Privacy. Differential privacy is a strong
notion of privacy that guarantees the privacy protection in
the presence of arbitrary auxiliary information. Intuitively, it
aims to limit the information leakage from the output while
a small change on the inputs. The formal definition is defined
as follows.

Definition 2 (e-differential privacy [40]). A randomized
function % satisfies e-differential privacy if, for any two
neighboring datasets D, and D, differing on at most one
element and all S € Range (%),

Pr[# (D) € S| <exp(e) xPr[# (D,) €S]. (5)

Definition 3 (global sensitivity [41]). The global sensitivity of
afunction F: 2 — Ris

AF = max|[F (D)) - F(D,)], (6)
over all pairs of neighboring datasets D, and D,.

Theorem 4 (Laplacian mechanism [41]). ForF: 9 — R, %
achieves e-differential if # (D) = F(D) + Lap(AF/e).

The parameter € is a small positive value which is used to
control the trade-oft between data privacy and data utility. A
smaller value of € will guarantee a higher privacy, but the data
utility can be affected.

For & oo computation, we can think of D; = (X,Y)
and D, = (X, Y'), where Y and Y’ are only differing in one
element. The change of one element in Y will increase (or
decrease) the mismatch value (b or ¢) by 1 and also affects the
value of a or d. Therefore, AF for each F 54 can be different
depending on the formula used.
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3.6. Notations Used . We summarize the notations used here-
after in this paper in the Notations section.

4. Our Solution

In this section, we will explain the details of our computation
protocol, in particular, the computation phases for each
player.

4.1. Private Similarity Coefficients. At the preliminary phase,
the semitrusted anonymizer (&) generates an ElGamal cryp-
tosystem key pair (pk, pre;) and sends the public key pk,
to all the agents. For simplicity, let us assume that there are
only two agents (Alice and Bob) in the protocol. We assume
that there exists a secure channel for key exchange and data
transmission.

Phase 1. Alice first randomly selects a prime number 7 to
replace each x; € X as follows:

! {)
Xi = {[—1

Next, Alice encrypts Z and each x, € X' by using pk,
(e.g. Ency (xf)). Alice sends Encpkﬁ(i‘ ) and (7, Ency X'
to &/ and Bob, respectively.

itx; =1

7
it x; =0. @)

Phase 2. Bob replaces each y; € Y as follows:

7
yl _Z-’

Next, Bob encrypts y/ € Y' with pk, to produce
Encpk%(Y') = {Encpkﬂ(yi') | i = 1,2,...,n}. Note that the
sequence of all encrypted data is the same as its sequence
order in the original dataset.

ity, =1 ®)
it y; = 0.

Phase 3. In this phase, Bob computes Ency (X 'Y") by using
the homomorphic multiplicative property. The multiplication
is done in accordance with the sequence i of x; and y,
(e.g. Encpkg(xlf)-hEncpkg(yi' ) = Encpk%)(x; yi' )). Next, Bob
randomly permutes elements in Encpk%ﬂ(X'Y'). We assume
that there exists an efficient shuffle protocol 7 which ran-
domly changes the sequence of elements in Enc_ (X Y.

For simplicity, let M = Ency (X'Y') and M’ = n(M). Bob
transmits M’ to & without revealing M to any party.
Phase 4. After receiving M' from Bob, o/ decrypts each
ml{e M’ with its private key pr:
) I
Dec,, (Encpkﬁ (xiyi )) =X ;. 9)

Next, &/ examines the decrypted values and computes the
summation variables as follows:

7, increases a by 1

2

) f >
', increases ¢ by1

increases b by 1 (10)

7°, increases d by 1.

Computation phases for Alice (Requestor)
Input: X = {x; | i=1,2,...,n}, x; € {0,1}
Output: Enc, (X')

/+Phase 1x/
Initialise: I = 0;
Randomly selects a prime numbers Z;
fori=1tondo
if x; = 1 then
x; =1
else
x,' =774
end if
Encrypts x| with pk, (e.g., Enc (x));
end for
Encrypts Z with pk, (e.g., Encpk%({ ));
Let Ency (X') = {Ency (x)) |i=1,2,...,n}%
Sends Encpk%(i ) to o;
Sends 7 and Encpk%)(X') to Bob;

ALGORITHM l: Requestor’s computation phases.

At the end of this phase, &/ obtains all the summation
variables needed to compute F .

Phase 5. Alice (or Bob) makes a request & to & to compute
for a chosen F ¢, (i.e., Jaccard). The anonymizer computes
F 3¢(X,Y) and adds Laplacian noise Lap(AF/e) to the
computed result. At last, of sends Floo. (X, V) = F oo(X,Y) +
Lap(AF/e) to Alice (or Bob). Note that this phase can be used
to compute any & ¢ in [21] without repeating Phases 1 to 4.

We show the pseudocode for requestor, supporter, and
anonymizer in Algorithms 1, 2, and 3, respectively.

4.2. Computing Sensitivity. In Phase 5, the anonymizer adds
a Laplace noise to the computed result of the requested simi-
larity coefficient function before it releases the mixture to the
requestor. The amount of noise to be added is proportional
to the sensitivity AF of the requested function. For instance,
the sensitivity of the requested function is the measurement
of the changes of the output (i.e., & ;) when a small change
happens in the input (a, b, ¢, or d).

For simplicity, we use Jaccard’s index to demonstrate
how to compute the sensitivity of a similarity coefficient. We
denote Jaccard’s index between P and Q as _#(P,Q). Let us
consider X, Y, and Z to be three binary datasets such that Y
and Z are the same except for one bit:

AF (Jaccard) = |7 (X, Y) - 7 (X, Z)|

a atl

_l|a+b+c_a+b+cl|

|| +1
“la+b+c

n
|

As shown in (11), the difference between #(X,Y) and
J(X,Z) is at most 1/(a + b + c). Therefore, the anonymizer
can set AF(Jaccard) < 1/(a+b+¢).

Since the anonymizer is designed to facilitate more than
one request, it needs to ensure that the noise being added will
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Computation phases for Bob (Supporter)
Input: Y ={y; |i=1,2,...,n}, 5, € {0,1}

Output: M’

/«Phase 2/

Receives 7 and Enc, (X') from Alice (from Phase 1);
fori=1tondo

if y;, =1 then
y =1%
else
y=t
end if
Encrypts y; with pk, (e.g., Ency., (¥);
end for
Let Encpk%(Y') = {Encpk%(yi') li=1,2,...,n}
/+Phase 3/

/I homomorphic multiplicative property
fori=1tondo
// computation of Encpkg(x; )
Computes Enc, (x})- nEncy ( s
end for
Let M = {Encpk%(x;yi’) li=1,2,...,n}
Shuffles M such that M’ = 7(M);
Sends M’ to o;

ALGORITHM 2: Supporter’s computation phases.

not affect the utility of the function. When the same request
is received from the same (or different) requestor, a random
noise should be used. This is to make sure that no party can
learn the actual score for F g

5. Analysis and Discussion

5.1. Correctness and Utility Analysis. The output of our pro-
tocol is correct and accurate if all parties follow the protocol
faithfully. Let us assume that both the requestor and the
supporter are semihonest. At Phase 3, the multiplication of
X" and Y’ will give a correct result due to the multiplicative
property of the ElGamal cryptosystem. Therefore, we can
ensure that the anonymizer will receive the correct outputs
(a, b, ¢, and d) after the decryption. Note that the outputs at
Phase 4 can be viewed as f(X,Y) = at® + b2? + ¢t + de°.
The coefficients for variables in f(X,Y) are the summation
variables defined in Section 2.1.

In terms of utility, we can expect our protocol to achieve
high accuracy. Our utility analysis is based on a set of
similarity coeflicients instead of specific function.

5.2. Security Analysis. To illustrate the efficacy of the security
protection of our protocol in the presence of semihonest
adversaries, we briefly explain how to simulate the view
of each player using their respective inputs and outputs
only (ie., simulator &, for the requestor and & for the
supporter). If such simulation is indistinguishable from real
world execution, it implies that the protocol does not reveal
any extra information under semihonest model.

Computation phases for Anonymizer &
Input: Computation request %
Output:F im(X> Y)

/«Phase 4x/
Initialise:a = 0,b=0,c =0and d = 0;
Receives Encpk%;({ ) from Alice (from Phase 1);
Receives M' from Bob (from Phase 3);
/] decryption operation to obtain ¢
Computes DeCW (Encpkw (2));
fori=1tondo
// decryption operation to obtain x; y!
Computes Dec,,.. (Encpkg (x; yl.’ ));
if x|y, = ¢’ then
Increases a by 1;
else if x]y/ = 7 then
Increases b by 1;
elseif x/y/ = ¢' then
Increases c by 1;
elseif x/y, = #° then
Increases d by 1;
else
stop (error)
end if
end for

/«Phase 5%/
for each #Z do

Computes F 44(X,Y);

Generates Laplacian noise Lap (AF/e);

Returns F'o (X, Y) = F co(X,Y) + Lap (AF/e);
end for

ALGORITHM 3: Anonymizer’s computation phases.

Let us assume that &, simulates all internal coin flips
of the requestor as described in our protocol. For instance,
it simulates n ElGamal ciphertexts sent from the requestor
to the supporter. Next, let us assume that & simulates all
internal coin flips of the supporter as described in our pro-
tocol. This simulator simulates n ElGamal ciphertexts as the
homomorphic multiplicative results. Based on the simulation
for both parties, the computational indistinguishability for
our protocol appears to hold on first inspection.

5.3. Privacy Analysis. In general, each player must ensure
that it only releases the required data during the protocol
execution. We assume that all communications in our pro-
tocol execution are via an authenticated channel, and the
anonymizer will not reveal its private key to others as well. In
order words, only the anonymizer can learn the summation
variables after the decryption operation.

Based on the dataset Encpkg(X') computed by the
requestor, the supporter is not able to distinguish which
ciphertext is the encryption result of t or ¢ ', This is because
the ElGamal cryptosystem is semantically secure [42], such
that the encryption of the same message will produce dif-
ferent ciphertexts due to randomization in the encryption
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process. Hence, the supporter learns nothing about X by
knowing Enc (X ")and t.

5.4. Comparisons with Existing Work. In this section, we will
compare our protocol with the private similarity computa-
tions (PSE) proposed in [35]. In PSE, there are two types
of settings that can be used to achieve the differential privacy:
(1) data owners locally add noise to partially computed result
(e.g., set intersection) and (2) anonymizer is responsible
for inserting noise during the similarity computation. In
both settings, all parties (data owners and anonymizer)
must decide which F g, to be used in the computation.
Unlike P§E, our protocol does not require the data owners
to specify F g before the protocol begins. Instead, the
anonymizer will compute any # ¢, requests by the requestor
in Phase 5 and inserts noise into the computation result to
preserve the differential privacy of the private inputs.

The main limitation of $'€ is its protocol design which
only can be used to compute a specific # g in each round
of its protocol execution. All parties are required to start the
protocol again even though they use the same inputs and
F ¢ in the new computation. In addition, the same protocol
requires substantial modifications before it can be used to
facilitate other & g¢. Unlike the solution in [35], our design
can be used to facilitate more than one & 4. In particular,
we allow the requestor to send multiple requests (for distinct
F g¢) to the anonymizer using the same protocol. The data
owners do not need to repeat computation steps from Phase
1to Phase 4 if they use the same datasets as the inputs for the
computation.

Another distinction between our protocol and PS8E is
the roles of each participating party. In P$'E, the data owners
must cooperate with each other to decrypt the homomor-
phically encrypted value in order to learn the computation
result while the anonymizer takes part in the protocol by
computing the intermediate results (e.g., set intersection). In
our solution, the data owners only cooperate to compute the
multiplicative operation while the anonymizer is responsible
to perform the decryption operation and noise generation for
each & ;o request.

In terms of complexity, our protocol achieves a significant
lower computational overhead as the 9P&%. Practically,
running two or more protocols (using same datasets) for
different & ¢, will incur high computation costs. Although
the second setting in 2’$'E can achieve the same complexity
as our protocol, however, it only can be used to compute one
F g4 Note that both the basic construction of 8¢ and our
protocol are based on the homomorphic cryptosystem.

6. Conclusion

Due to the advances in ubiquitous technologies and the
demands of data privacy protection, a secure mechanism
is required to increase the confidence of the users in the
smart environments. In this paper, we have proposed a secure
protocol to compute F o within differential privacy model
for data privacy protection in smart environments. Although
our target area is a smart environment, the same solution
can be applied to other related areas such as pervasive

or ubiquitous computing [43] and intelligent environments
[44].

In order to preserve differential privacy, the anonymizer
needs to compute distinct noise for each request especially
when the requestor sends the same F ¢ request. This is
because the identical output may allow the adversary from
learning the private dataset of the owner or noise added to
the computation result. Since the same request for a specific
F g may output two slightly different results (due to the
noise added by /), we can ensure that the result from our
protocol execution will not compromise the privacy of any
data owner. Hence, agents in smart environments can utilize
our protocol to compare datasets with other entities without
compromising the data privacy of the users.

Notations

X: Private dataset from the requestor

Y: Private dataset from the supporter

X;: ith element of X

¥t ith element of Y

n: Size of the private input

Z: Prime number chosen by anonymizer
R: Computation request from requestor
pky: Public key of the anonymizer

pre: Private key of the anonymizer

Ency_(-): Encryption operation using pke,
Dec,,_(): Decryption operation using pre

I Shuftling protocol

F sz Similarity coefficient function
AF: Sensitivity of F ¢

Flow: Similarity coeflicient with noise.
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