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Background:Most gastric cancers are diagnosed at an advanced ormetastatic stage with poor prognosis and sur-
vival rate. Fatty acid 2-hydroxylase (FA2H) with high expression in stomach generates chiral (R)-2-hydroxy FAs
((R)-2-OHFAs) and regulates glucose utilization which is important for cell proliferation and invasiveness. We
hypothesized that FA2H impacts gastric tumor growth and could represent a novel target to improve gastric can-
cer therapy.
Methods: FA2H level in 117 human gastric tumors and its association with tumor growth, metastasis and overall
survival were examined. Its roles and potential mechanisms in regulating tumor growthwere studied by genetic
and pharmacological manipulation of gastric cancer cells in vitro and in vivo.
Findings: FA2H level was lower in gastric tumor tissues as compared to surrounding tissues and associated with
clinicopathologic status of patients, which were confirmed by analyses of multiple published datasets. FA2H de-
pletion decreased tumor chemosensitivity, partially due to inhibition of AMPK and activation of themTOR/S6K1/
Gli1 pathway. Conversely, FA2H overexpression or treatment with (R)-2-OHFAs had the opposite effects. In line
with these in vitro observations, FA2H knockdown promoted tumor growth with increased level of tumor Gli1
in vivo. Moreover, (R)-2-OHFA treatment significantly decreased Gli1 level in gastric tumors and enhanced
tumor chemosensitivity to cisplatin, while alleviating the chemotherapy-induced weight loss in mice.
Interpretation: Our results demonstrate that FA2H plays an important role in regulating Hh signaling and gastric
tumor growth and suggest that (R)-2-OHFAs could be effective as nontoxic wide-spectrum drugs to promote
chemosensitivity.
Fund: Grants of NSF, NIH, and PAPD.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Gastric cancer is one of the leading causes of cancer-related death
since most gastric cancers are diagnosed at advanced or metastatic
stages when the tumor is usually considered unresectable, and progno-
sis is poor, resulting in low survival rate [1]. Most patients presenting
advanced gastric cancer are treated upfront with chemotherapy which
has been shown to improve survival and quality of life [2]. However,
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cancer chemotherapy resistance often develops, limiting treatment effi-
ciency [3]. Therefore, it is urgent to identify novel therapeutic targets for
better treatments of gastric cancer and to establish newbiomarkers use-
ful for its early detection in high-risk populations.

Cancer cells commonly have characteristic changes in glucose and
fatty acid (FA) metabolism to support cell proliferation and metastasis
[4] and altered lipid composition is increasingly recognized as a signa-
ture of cancer [5–7]. Hydroxylated FAs (OHFAs) are FA derivatives that
are naturally occurring inmammalian cell lipids. TheOHFAs inmamma-
lian cells can be provided by microorganisms or food intake [8], and are
also generated by endogenous hydroxylases [9]. FA 2-hydroxylase
(FA2H) specifically introduces a chiral (R)-hydroxyl group at the second
carbon of long chain FAs [10]. During the course of our studies on alter-
ations in FAmodifications in regulating tumor growth,we identified the
FA2Henzymeasnovel regulator of gastric tumorigenesis. FA2H is highly
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Research in context

Evidence before this study

Cancer cells acquire characteristic changes in FA metabolism to
support cell proliferation andmetastasis and altered lipid composi-
tion is increasingly recognized as a signature of cancer. Palmitic
acid impairs carcinoma development by modulating membrane
fluidity. Fatty acid 2-hydroxylase (FA2H) specifically introduces
a chiral (R)-hydroxyl group at the second carbon and is highly
expressed in stomach. However, potential involvement of this
structural modification in gastric tumor growth is not clear.

Added value of this study

We describe here for the first time the aberrant suppression of a
specific fatty acid hydroxylation pathway in advanced gastric can-
cers. We demonstrate its association with tumor growth, metas-
tasis and overall survival of the patients, which is verified by
analyses of multiple public data sets. This FA2H-mediated path-
way plays an important role in regulating Hedgehog signaling
and gastric tumor growth both in vitro and in vivo.

Implications of all the available evidence

Our results not only demonstrate the effect of FA2Hon theHedge-
hog signaling and growth of gastric cancer, but also emphasize
the potential of its enzymatic product (R)-2-hydroxy fatty acids
could be effective as nontoxic wide-spectrum drugs to improve
chemosensitivity. Given that gastric cancers are usually diag-
nosed at an advanced or metastatic stage with resistance to che-
motherapy, our results provide a promising approach to improve
the clinical management and the outcomes of the patients.
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expressed in brain, skin, colon and stomach [11,12], and is essential for
the normal functioning of multiple organ systems [13]. In addition, it
impacts differentiation of various cell types and has been shown to reg-
ulatemembrane trafficking of nutrient transporters [13,14]. There is ev-
idence to demonstrate that FA2H and racemic 2-OHFA improve
sensitivity to Elisidepsin (PM02734), a synthetic plasma membrane-
disrupting cyclodepsipeptide drug in cancer treatment in vitro and
in vivo, presumably by regulating membrane drug interaction [15,16].
The resulting (R)-2-hydroxy FAs ((R)-2-OHFAs) are incorporated into
sphingolipids that induce apoptosis at significantly lower concentra-
tions as compared to non-OH counterparts in C6 glioma cells, suggest-
ing that FA2H and (R)-2-OHFAs induce specific proapoptotic signaling
although this remains little studied [17].Moreover, FA2H silencing facil-
itates cell growth and inhibits cAMP-induced cell cycle exit and growth
arrest in D6P2T Schwannoma cells [18], indicating diverse functions of
FA2H in regulating signaling pathways as related to cell proliferation.

FA2H is highly expressed in stomach [12], but whether it plays any
role in the development of gastric tumors remains unexplored. Hedge-
hog (Hh) signaling is critical in the development and homeostasis of
many organs and tissues. Constitutive activation of the Hh pathway is
intimately involved in the genesis and maintenance of gastric cancer
and is associatedwith poor prognosis in gastrointestinal cancer patients
[19]. Regulation of Hh signaling is complex in cancer cells and itsmolec-
ular mechanisms have not been completely understood. The classical
Hh signaling pathway involves translocation of a G protein-coupled
receptor-like protein Smoothened (SMO) to the primary cilium, phos-
phorylation of suppressor of fused (SUFU) and translocation of the Gli
zinc-finger transcription factors to the nucleus, where they induce ex-
pression of Hh target genes that control cell growth, survival, and differ-
entiation [20]. Moreover, Gli activation by multiple non-canonical
pathways including mTOR/S6K1 and MAPK has also been identified
[21], which explains the disappointing results of SMO inhibitors in can-
cer treatment.

Involvement of the energy sensing mTOR in Hh signaling suggests
that specific changes in nutrient utilization as regulated by FA2H may
play a role in the development of gastric cancer. Herein, we examined
the potential involvement of FA 2-hydroxylation in the documented
carcinogenic Hh signaling pathway and its associated resistance to che-
motherapy [22]. Our results demonstrated an important role of a spe-
cific FA modification pathway in gastric cancer development and
revealed its potential usefulness in disease diagnosis and treatment.

2. Materials and methods

2.1. Collection of human tissue samples

Paired 117 human gastric cancer tissues and adjacent normal tissues
were collected immediately after surgical resection in the Department
of General Surgery of the First Affiliated Hospital of Soochow University
(Suzhou, China) from2008 to 2012. Twenty-three patientswere treated
with radical gastrectomy (RG), 66 with RG/XELOX, 21 with RG/TP and 7
with palliative surgery/TP. Written informed consent was obtained
from all patients in this study, which was approved by the Biomedical
Research Ethics Committee of Soochow University.

2.2. Gene expression data analysis

The raw data of the Affymetrix Human Genome U133 Plus 2 and
U133A microarray in CEL format were downloaded from Gene Expres-
sion Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). Three
datasets with normal and cancer samples were accessed through
GSE13911 [23], GSE29272 [24] and GSE79973 [25]. One genechip
dataset for cancer samples with corresponding survival data was
obtained from GSE62254 [26]. Self-developed R (version 3·4·1,
http://cran.r-project.org/) scripts were used for the bioinformatics
analysis. The “affy” package (version 1·50·0) in Bioconductor (https://
bioconductor.org) was applied to pre-process Affymetrix arrays [27].
The Microarray Suite 5·0 (MAS5) algorithm was taken for the probe
set expression summaries [28]. The implementations of background
correction, between-array normalization, and probeset summarization
were undertaken with the “mas5” function in the “aff” package. The
“limma” package (version 3·28·21) in Bioconductor was utilized to de-
termine significant changes in gene expression between cancer and
normal samples [29,30]. Empirical Bayes methods for assessing differ-
entially expressed genes were implemented by the “eBayes” function
in the “limma” package. P values adjusted by the Benjamini-Hochberg
correction were used to evaluate the significance level for differentially
expressed genes. P value b .05 was considered as the significance
threshold.

2.3. Survival analysis

R programswere developed to perform the sample classification and
prognostic analysis. Patients were stratified into two subgroups accord-
ing to the media value of the mRNA expression level or immunohisto-
chemistry definition. The Kaplan-Meier survival plots were yielded,
using the “survminer” package (version: 0·4·0, https://cran.r-project.
org/web/packages/survminer/index.html). The P value generated from
the log-rank test was applied to indicate the statistical significance of
survival difference between different subgroups. P value b 0·05 was
considered as the significance threshold.

2.4. Immunohistochemistry

Tissueswerefixedwith formalin, embedded in paraffin, cut into sec-
tions of 5 μm in thickness and stained by IHC as previously described

http://www.ncbi.nlm.nih.gov/geo/
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[31]. Briefly, sectionswere affixed to slides and incubatedwith the poly-
clonal antibody recognizing human FA2H or human Gli1 at 1:200 dilu-
tion at room temperature for 2 or 3 h. The proteins were visualized
using a tissue staining kit (Zhongshan Biotechnology, Beijing, China)
and staining scores were evaluated using two blinded researchers.
Five random regions were analyzed based on the percentage of cells
stained positively per section with scoring criteria as follows: 0, 0–5%;
1, 6–25%; 2, 26–50%; 3, 51–75%; 4, N75%. The staining intensity was
scored as: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong). The
final score was calculated by the multiple of the intensity and extent
score. A final score of 0 was considered as −; 1–4 as +; 5–8 as ++;
9–12 as +++. In our study, ++ or +++ was considered as positive
expression, and – or + as negative. Antibodies used in this study are
listed in supplementary Table 4.

2.5. Cell culture

Human gastric cancer cell lines MKN45, SGC7901, HGC27, MGC803,
AGS and normal gastric cell line GES1 were obtained from the Cell Bank
of the Chinese Academy of Sciences (Shanghai, China) and grown in
RPMI Medium 1640 (Hyclone) containing 10% FBS (Gibco),
100 units/ml penicillin G sodium, and 100 μg/ml streptomycin sulfate
(Gibco) and cultured at 37 °C under 5% CO2.

2.6. Preparation of FA/BSA complexes

FFAs were dissolved in ethanol and precipitated with the addition of
half molar equivalence of 1 M NaOH. Ethanol was then evaporated
under nitrogen gas and reconstituted in water at 60 °C for 30 min to
yield a final concentration of 21 mM. The FA emulsion was added
dropwise to 2 volumes of 30% BSA in PBS pre-warmed at 37 °C. The
FA/BSA (2:1) solutionwas gentlymixedon a shaker for 1 h at room tem-
perature and stored inmultiple aliquots at−70 °C prior to experiments.

2.7. Plasmid and siRNA transfection

Transfection of a pcDNA-FLAG-h FA2H plasmid (provided by
Dr. Hama Hiroko) was performed using Lipofectamine™ 2000
(Invitrogen). Transfection of siRNAs targeting human Gli1 or FA2H
used Lipofectamine™ RNAiMax (Invitrogen) at a final concentration of
20 nM as described. The sequences specific for human Gli1 (5′-CUCC
ACAGGCAUACAGGAU-3′) and human FA2H (5′-GGCTAAAGAGAAGC
AGTTT-3′) were selected based on their potency to inhibit the target
gene expression. A scrambled siRNA was used as a negative control.
Most experiments were performed at 3 days after transfection.

2.8. Protein extraction and Western blotting

Whole cell lysates were prepared with RIPA lysis buffer containing
cocktails of protease and phosphatase inhibitors (Sigma). Proteins sep-
arated by SDS-PAGEwere transferred to nitrocellulosemembranes, and
themembraneswere blockedwith 5% non-fatmilk and probedwith the
indicated primary antibodies (1:500–1000 dilution). After incubation
with horseradish peroxidase-conjugated secondary antibodies
(1:5000 dilution), the proteins were visualized by chemiluminescence
and signals were quantified by ImageJ software (version: 1·4·3) as pre-
viously described [32].

2.9. Cell viability assay

Cell viability was determined using an MTT assay kit (Amresco,
USA). After treatments cells seeded in 96-well plateswere incubated
with MTT solution-containing culture medium for 4 h and formation
of the formazan product was measured at 490 nm in a microplate
reader.
2.10. Cell wound healing assay

Confluent cells grown in six-well plates were scratched with sterile
tips, washed with PBS and cultured in growing media. Cells were
photographed at 0, 24, 48, 72 h and wound closure (%) was evaluated
by the TScratch software (version: 1·0).

2.11. Cell migration assay

The ability of cell migration was evaluated with 24-well transwell
plates (Corning Incorporated, USA). Briefly, cells were seeded into the
upper chamber in serum-free RPMI 1640 and the lower chamber was
filled with RPMI 1640 containing 10% FBS. 24 h later, cells that had mi-
grated through themembranewere stainedwith 0·5% crystal violet and
counted. Migration levels were quantified by counting the invaded cells
in five random regions per sample.

2.12. Subcutaneous xenograft

SPFgradeBALB/cnudemice (16-18g, 3–5weeks old,male)werepur-
chased fromShanghai SLRC laboratoryAnimal Co., Ltd. (Shanghai, China).
Nudemicewere injectedwith 5×106 gastric cancer cells subcutaneously
into the left and rightdorsalflank, respectively. Sevendaysafter injection,
mice were randomly separated into different groups (n= 5 per group)
on day 0. Then, the mice received cisplatin (3 mg/kg) on days 1, 8 and
15. 2-OHPA enantiomers (15 μmol/kg) were injected intraperitoneally
ondays 1, 4, 8, 11, 15 and18. Bodyweight and tumor sizeweremeasured
twice a week. At the endpoint, tumors were harvested, weighted and
stored for further analysis. Quantity analysis of protein expression in xe-
nograft tumors was conducted by Image-Pro Plus (version: 6·0). All ani-
mal experimental procedures were approved by the Animal Ethics
Committee of Soochow University (Suzhou, China).

2.13. Statistical analysis

All experiments presentedwere repeated for at least three times and
n indicate the number of biological replicates per treatment condition
for in vitro experiments or the number of mice per treatment group
for in vivo experiments. Results are expressed as means ±SEM and the
student's t-test or ANOVA was used to compare means between two
groups. Analysis of IHC results was performed by Chi-squared test or
Fisher's exact test. A two-tailed P value b 0·05 was considered statisti-
cally significant.

3. Results

3.1. FA2H expression is lower in gastric cancer tissues than in surrounding
normal tissues and is inversely associated with Gli1 expression

To investigate potential role of FA2H in the process of gastric carci-
nogenesis, we first compared the level of the FA2H and Gli1 protein in
primary human gastric cancer and surrounding normal tissues. Consis-
tent with previous reports [12] and the pilot immunohistochemistry
(IHC) staining experiments in mouse stomachs (data not shown), our
results demonstrated that FA2H protein was abundantly expressed in
normal human gastric tissues, and its level was significantly lower in
primary gastric cancer tumors (Fig. 1a, Supplementary Fig.1a, two sam-
ple t-test P=0·0479). Conversely, level of theHh signaling effecter Gli1
showed the opposite regulation that its overall expression level in can-
cer tissues was significantly higher (Fig. 1a, Supplementary Fig.1b, two
sample t-test P = 0·0011). Moreover, IHC staining confirmed the low
or absent expression of FA2H and high abundance of Gli1 (Fig. 1b).
These differences were strengthened by statistical significance from
the comparison between the 117 gastric cancer tissues and correspond-
ing adjacent noncancerous tissues (Fig. 1c, Supplementary Table 1).
These gastric cancer tissues showed significantly lower FA2H
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Fig. 1. FA2Hexpression is significantly reduced in gastric cancer tissues. a)Western blotting for Gli1 and FA2Hproteins in gastric cancer tumors. Eighteen randomly selected pairs of gastric
cancer tumors (T) andmatched surrounding normal tissues (N) are presented. b) IHC staining of Gli1 and FA2H in representative carcinoma and the surrounding tissue of gastric cancer
(scale bar, 100 μm). c) Column scatter plots showing the difference of Gli1 and FA2H expression between 117 human gastric cancer tumors and matched surrounding normal tissues.
Statistical significance are indicated with asterisks, where ***, P b 0·001. d) Scatter plot diagram showing a trend of the negative relationship between Gli1 and FA2H expression levels
in 117 gastric cancer tissue samples.
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expression (one-wayANOVA P b 0·001) and higher Gli1 level (one-way
ANOVA P b 0·001). These results imply not only a potential counterbal-
ance with Gli1 expression, but also a probably involvement of FA2H in
gastric carcinogenesis.

To explore its potential involvement of prognostic significance, we
examined the FA2H expression level in different pathological subtypes.
Subgroup analysis for the 117 cancer tissues by LNM status (with or
without LNM) evidenced a superior expression level of FA2H and an in-
ferior level ofGli1 (Supplementary Fig. 1c-d, one-wayANOVAPb 0·001)
in samples without LNM. When stratifying according to TNM stage (I-II
or III-IV), the advanced stage (III-IV) tumors showed significantly less-
ening FA2H level and remarkably elevatedGli1 expression (Supplemen-
tary Fig. 1e-f, one-way ANOVA P b 0·001). Further molecular subtype
classification of involved gastric tumors based on gene expression re-
vealed that Gli1 was positively expressed in 24 out of 61 FA2H positive
tumors, versus in 49 out of 56 FA2H negative tumors, indicating an
apparently opposite trend in the expression of these two genes. The sta-
tistical significance revealed by the correlation analysis further validated
this inverse association [Pearson correlation coefficient (R) =−0·506,
P b .001, Fig. 1d]. Association analysis uncovered that having smaller
tumor size (≤5 cm), shallower tumor invasion (T1–2), negative LNMsta-
tus, negative venous invasion, or earlier TNM stage conferred a higher
possibility of positive FA2Hexpression andnegativeGli1 expression.Ad-
ditionally,well-differentiated gastric cancers also conferred greater like-
lihood of positive FA2H expression (Supplementary Table 2), suggesting
the prognostic potential of FA2H for gastric cancers.

3.2. Low FA2H expression is associated with a poor survival in gastric
cancer

Given the observed significant difference of FA2H gene expression
in comparison between different pathological conditions, we
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hypothesized the prognostic value of FA2H gene in gastric cancer. To
test this,we assessed the prognostic impact of FA2H andGli1 expression
on overall survival (OS) in our gastric cancer cohort. Kaplan-Meier esti-
mator showed low FA2H expression (Fig. 2a, log rank test P b 0·001)
and high Gli1 level (Fig. 2b, log rank test P b 0·001) were associated
with poor survival, which also coincideswith the observed inverse asso-
ciation between FA2H and Gli1 expression (Fig. 1d). Moreover, univar-
iate and multivariate Cox proportional hazards model analyses were
also undertaken to screen prognostic factors with significant impact
on OS of gastric cancers. Besides clinical factors including tumor size,
depth of tumor invasion, lymph node metastasis, degree of differentia-
tion, venous invasion, neural invasion, and TNM stage, univariate analy-
sis also suggested that higher FA2H expression and lower Gli1
expression were both significant predictors for better OS of the 117 in-
volved gastric cancers (P b 0·05, Supplementary Table 3). Further Cox's
proportional hazard model analysis demonstrated that only the depth
of tumor invasion, LNM status and FA2H expression were verified to
be independent prognostic factors for the overall survival of involved
gastric cancers (P b 0·05, Supplementary Table 3).

To further define the prognostic effects of FA2H for OS of gastric can-
cer, the overall cohort was subgrouped to reassess the hazard and
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FA2H in various subgroups showed statistical significance (Fig. 2c).
FA2H expression status had significant prognostic relevance in
patients in TNM earlier stage (P = 0·001) and those with smaller
tumor size (P b 0·001). However, FA2H expression status did not signif-
icantly predict OS in the subgroup of gastric cancer patients in TNM III-
IV stage (P = 0·130) or with larger size tumor (P = 0·057). Patients
with negative FA2H expression had a significantly poorer survival
than did those patients with positive expression, no matter LNM status
(Supplementary Fig. 2a, without LNM: log rank test P=0·002; Supple-
mentary Fig. 2b, with LNM: log rank test P = 0·004). However, sub-
group analysis by TNM stage revealed the prognostic value of FA2H
expression level in TNM I-II stage (Supplementary Fig. 2c, log rank test
P b 0·001), but not in TNM III-IV stage (Supplementary Fig. 2d, log
rank test P = 0·110). Interestingly, significant inverse association
between FA2H and Gli1 expression could be observed in subgroups
without LNM (Supplementary Fig. 2e, P = 0·016), with LNM (Supple-
mentary Fig. 2f, P = 0·006), and in TNM I-II stage (Supplementary
Fig. 2 g, P = 0·005), but not in cohort in TNM III-IV stage (Supplemen-
tary Fig. 2 h, P=0·078). These results evidenced the prognostic value of
the FA2H gene for gastric cancer, especially for those in TNMearly stage.
 (−) / FA2H(+)

/61

/50
/11

/25
/36

/39
/22

/37
/24

/47
/14

/43
/18

/48
/13

HR (95% CI)

3.735 (2.379−5.862)

3.625 (2.081−6.314)
2.281 (0.974−5.339)

3.391 (1.249−9.205)
2.564 (1.522−4.319)

3.111 (1.431−6.762)
2.347 (1.274−4.323)

2.732 (1.460−5.112)
4.637 (2.339−9.192)

4.028 (2.254−7.198)
2.314 (1.088−4.921)

4.691 (2.616−8.411)
2.245 (1.102−4.577)

3.008 (1.557−5.809)
1.881 (0.831−4.258)

P−value

<0.001***

<0.001***
0.057

0.017*
<0.001***

0.004**
0.006**

0.002**
<0.001***

<0.001***
0.029*

<0.001***
0.026*

0.001**
0.130

0.5 1 2 3 4 5 6 7

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++
++ +++++++++++++++++++++++++++++ ++++++++++++++++++++++++++ +

onths
75 100

) FA2H(low)(n=150)+
e

normal
tumor

GSE13911 GSE29272 GSE79973

Microarray Dataset

2 t
ra

ns
fe

re
d 

FA
2H

 g
en

e 
ex

pr
es

si
on

lo
g

7

9

11

***
***

**

Kaplan-Meier curves for overall survival of 117 gastric cancer samples according to the
nition (− indicates negative, + indicates positive). The color-shaded areas around the
s (HR) between low and high expression of FA2H by patient subgroups. Estimates with
stratified according to different clinical factors. The area of the blue squares centred on

orresponding percentage weights. The vertical dashed line represents the HR for overall
ve for overall survival of 300 gastric cancer samples from the public microarray dataset
e of FA2H relative expression (− indicates below median expression of FA2H, + above
onfidence bands. e) Column scatter plots validating the difference of FA2H expression
atasets [GSE13911 [23], GSE29272 [24] and GSE79973 [25]]. *, P b 0·05; **, P b 0·01; ***,



261Y. Yao et al. / EBioMedicine 41 (2019) 256–267
To support the hypothesis proposed above, public data sets were in-
tegrated for verification. The prognostic value of FA2Hwas validated by
one published gene expression data set (GSE62254) with 300 gastric
cancer samples (Fig. 2d, log rank test P b 0·001). On the other hand,
the transcriptional expression levels of FA2H gene were also measured
in three public gene expression profile data sets (Fig. 2e) of clinical gas-
tric tumor specimens and noncancerous tissues. Consistent decrease
of FA2H expression in gastric cancer samples showed statistical
significance (GSE13911: P = 2·82e-10; GSE29272: P = 2·06e-29;
GSE79973: P = 4·38e-3). Together, these data strengthened the
evidence for the role of the FA2H gene as a prognostic signature in
gastric cancer.

3.3. mTOR/S6K1 activates Gli1 expression in gastric cancer cells

Given the observed counterbalance between FA2H and Gli1 expres-
sion in clinical specimens, we measured the relative protein levels of
Gli1 and FA2H in several human gastric cancer cell lines. The highest
FA2H expression was detected in MKN45 cells, while the highest Gli1
expression was observed in SGC7901 (Supplementary Fig. 3 a-b). GES-
1, a normal gastric cell line, had modest expression of FA2H and lower
expression of Gli1 than gastric cancer cell lines. No significant correla-
tion between FA2H and Gli1 levels was observed presumably due to
low sample size (Pearson Correlation Test P=0·272). Aberrant activa-
tion of Gli1 plays an important role in both gastrointestinal tract carci-
nogenesis and chemotherapy resistance [33,34]. To evaluate the
carcinogenic effect of Gli1 gene, Gli1 gene was knockdown in
SGC7901 cellswith highGli1 level (Supplementary Fig. 3c). Significantly
deceased cell proliferation (Supplementary Fig. 3d) and inhibited mi-
gration (Supplementary Fig. 3 e-h) led by Gli knockdown were ob-
served. Moreover, diminished Gli1 expression also enhanced cellular
sensitivity to cisplatin treatment (Supplementary Fig. 3i). These data
highlighted the significance of the Gli1 gene in both gastric carcinogen-
esis and chemosensitivity.

We then examined the crosstalk of the Akt/mTOR/S6K1 and Hh sig-
naling pathways implicated in tumor development in MKN45 and
SGC7901 cells. Our results showed that inhibition of Akt by A6730 (Sup-
plementary Fig. 4 a-b) or mTOR by rapamycin (Supplementary Fig. 4
c-d) significantly decreases Gli1 level with no effect on SMO level in
both cell lines, suggesting an important role of SMO-independent path-
way in Gli1 activation in gastric cancer cells. In agreement with Gli1
contribution to cellular resistance to cisplatin, we observed that both
themTOR inhibitor rapamycin and the Gli1 inhibitor GANT61 increased
cellular sensitivity to cisplatin and the combination of rapamycin and
GANT61 had additive effect (Supplementary Fig. 4e).

3.4. FA2H and (R)-2-OHFA regulate the mTOR/S6K1/Gli1 pathway and cel-
lular chemosensitivity

Given the observed counterbalance between FA2H and Gli1 expres-
sion, we hypothesized that FA2H may modulate cisplatin sensitivity
through its regulation in the mTOR/S6K1/Gli1 pathway. FA2H knock-
down in SGC7901 and MKN45 cells significantly enhanced the activa-
tion of mTOR/S6K1 and increased Gli1 level (Fig. 3 a-b) while FA2H
over-expression suppressed mTOR/S6K1 signaling and Gli1 level
(Fig. 3 c-d). Moreover, FA2H depletion decreased, while its over-
expression enhanced cellular sensitivity to cisplatin (Fig. 3 e-f). These
observations suggested that FA2H overexpression could increase
chemosensitivity potentially through its inhibition of the mTOR/S6K1/
Gli1 pathway.

We next examined whether generation of (R)-2-OHFA mediates
FA2H regulation of Gli1 level and chemosensitivity. Pre-treatment of
SGC7901 and MKN45 cells with 50 μM (R)-2-OHPA for 24 h leads to
decreased phosphorylation of mTOR and p70S6K and suppressed the
expression of Gli1 protein (Fig. 4a-b). Treatment with palmitic acid
(PA) which is not hydroxylated at the same concentration has no
significant effect and the enantiomeric (S)-2-OHPA is much less or not
effective. (R)-2-OHPA also effectively inhibited cell growth (Fig. 4c)
and migration (Fig. 4d-e), and enhanced cellular sensitivity to cisplatin
(Fig. 4f). Interestingly, the efficiency of (R)-2-OHPA is similar to the
effect of GANT61 or rapamycin (Fig. 4g). Moreover, addition of (R)-2-
OHPA further enhanced sensitivity to cisplatin in presence of GANT61
or rapamycin (Fig. 4h). These results showed that (R)-2-OHPA may be
used as endogenous lipid surrogate for Hh signaling inhibitors to allevi-
ate cellular resistance to chemotherapy.

3.5. FA2H regulates AMPK activation in gastric cancer cell lines

We next explored potential mechanisms underlying FA2H regula-
tion of mTOR/S6K1/Gli1 pathway. AMPK and Akt are important up-
stream regulators in mTOR activation in cancer [35]. We examined
FA2H regulation of AMPK and Akt in gastric cancer cells. FA2H knock-
down reduced AMPK phosphorylation in both SGC7901 and MKN45
cells (Fig. 5a-b), while FA2H overexpression enhanced it (Fig. 5c-d),
suggesting FA2H induces AMPK activation, which leads tomTOR inhibi-
tion. Moreover, treatment of SGC7901 and MKN45 cells with (R)-2-
OHPA has similar effect with FA2H overexpression in upregulating
AMPK phosphorylation, while PA or (S)-2-OHPA had no significant ef-
fects (Fig. 5e-f). In contrast, Akt phosphorylation was not affected by ei-
ther FA2H manipulation or (R)-2-OHPA treatment (Fig. 5a-f). FA2H or
(R)-2-OHPA significantly reduces membrane fluidity [14], which sup-
presses expression of glucose transporters in Hep3B cells [5]. As antici-
pated, FA2H overexpression or treatment with (R)-2-OHPA in SGC7901
and MKN45 cells decreased GLUT1 level (Fig. 5c-e), while FA2H KD has
the opposite effect (Fig. 5a). Collectively, our results indicate that FA2H
regulates GLUT1 level andAMPK activation,mediatingmTOR/S6K1/Gli1
pathway.

3.6. FA2H and (R)-2-OHPA inhibit gastric tumorigenesis in vivo

We then evaluated the role of FA2H protein and 2-OHFA in gastric
cancer cell growth in an in vivo mice model with MKN45 and
SGC7901 gastric cancer cells implanted onto the subcutaneous sites of
nudemice. Depletion of FA2H in the implanted cancer cells greatly pro-
moted tumor growth size and weight of tumors derived from FA2H
knockdown cells were markedly increased as compared to control
cells (Fig. 6a-b and Supplementary Fig. 5a-b). Nude mice implanted
with FA2H depleted gastric cancer cells also had lower body weights
as they grew larger tumors (Fig. 6c). Efficiency of FA2H knockdown
was confirmed by IHC analysis in the tumors and Gli1 level was higher
in tumors derived from the knockdown cells (Fig. 6d and Supplemen-
tary Fig. 5c). Since FA2Hsuppressed gastric tumor growth,we examined
whether its enzymatic product, (R)-2-OHFA, can enhance the efficiency
of cisplatin in inhibiting tumor growth and found that 5mg/kg cisplatin
was sufficient in inhibiting the size (Fig. 6e and Supplementary Fig. 5d)
and theweight of the tumor (Fig. 6f and Supplementary Fig. 5e). A com-
binatory treatment using 15 μmol/kg (R)-2-OHPA substantiated the in-
hibitory effects of 5 mg/kg cisplatin. Importantly, treatment with 15
μmol/kg (R)-2-OHPA also alleviated cisplatin-induced body weight
loss (Fig. 6g). IHC results revealed decreased Gli1 level in tumors treated
with 15 μmol/kg (R)-2-OHPA (Fig. 6h and Supplementary Fig. 5f), sug-
gesting involvement of Gli1 in tumor growth regulated by FA2H and
(R)-2-OHPA.

4. Discussion

Cancer cells are characterized with reprogrammed metabolism to
support tumor growth and metabolic manipulation represents a prom-
ising therapeutic approach in cancer treatment [4]. In the current study,
we identified the FA2H enzyme which is abundantly expressed in the
stomach and its chiral specific enzymatic product (R)-2-OHPA as
novel regulators of gastric tumor growth. FA2H levels are significantly



d

f

a

c

●●

●

Vec

FA2H OE

0 1 5 10 50 0 1 5 10 50

V
ia

bi
lit

y 
(%

)

0

25

50

75

100

125
MKN45 SGC7901

Cisplatin (μM)

e

●

●

NC

FA2H KD

MKN45 SGC7901

V
ia

bi
lit

y 
(%

)

0

25

50

75

100

125

0 1 5 10 50 0 1 5 10 50

Cisplatin (μM)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

**

***

**

***

*

** **

*
*

MKN45 SGC7901

CTL
NC

FA
2H

 K
D

CTL
NC

FA
2H

 K
D

FA2H

p-mTOR

p-p70S6K

Gli1

Tubulin

SMO

-- 40 kDa

-- 289 kDa

-- 70 kDa

-- 120 kDa

-- 55 kDa

-- 41 kDa

MKN45 SGC7901

CTL
Vec FA

2H
 O

E

CTL
Vec FA

2H
 O

E

FA2H

p-mTOR

p-p70S6K

Gli1

Tubulin

SMO

-- 40 kDa

-- 289 kDa

-- 70 kDa

-- 120 kDa

-- 55 kDa

-- 41 kDa

b

CTL
NC
FA2H KD

MKN45 SGC7901

0

1

2

3

4

R
el

at
iv

e 
le

ve
l

FA
2H

p−
mTO

R

p−
p7

0S
6K Gli1

FA
2H

p−
mTO

R

p−
p7

0S
6K Gli1

SMO
SMO

**

****
**

**
ns

ns
ns

ns

**
******

****

******

FA
2H

p−
mTO

R

p−
p7

0S
6K Gli1

FA
2H

p−
mTO

R

p−
p7

0S
6K Gli1

SMO
SMO

R
el

at
iv

e 
le

ve
l

0

1

2

3

CTL
Vec
FA2H OE

MKN45 SGC7901

**

** ****
ns

ns **

****

**** ******
ns

ns **

Fig. 3. FA 2-hydroxylation regulates Gli1 level and sensitivity to cisplatin. a, b) MKN45 and SGC7901 cells were untreated (CTL) or transfected with negative control (NC) siRNA or siRNA
against FA2H (FA2H KD). Thewhole cell lysateswere prepared and subjected toWestern blot analysiswith antibodies directed against each specific protein as indicated (a). (b)The bands
were quantified and presented as themean±SEM(n=3). c, d)MKN45 and SGC7901 cellswere untreated or transfectedwith empty vector (Vec) or plasmid encodinghFA2H (FA2HOE).
The whole cell lysates were prepared and subjected to Western blot analysis with antibodies directed against each specific protein as indicated (c). (d) The bands were quantified and
presented as the mean ± SEM (n = 3). e, f) MTT assay of SGC7901 and MKN45 cells in response to cisplatin. (e) Cells were transfected with negative control (NC) siRNA or
siRNA against FA2H (FA2H KD). (f) Cells were transfected with empty vector (Vec) or plasmid encoding hFA2H (FA2H OE). Results presented as mean ± SEM (n = 3). *, P b 0·05; **,
P b 0·01; ***, P b 0·001.

262 Y. Yao et al. / EBioMedicine 41 (2019) 256–267
lower in primary gastric cancer tumors as compared to surrounding
normal tissues, which are confirmed in three public genechip data
sets. Moreover, patients with high FA2H expression have better OS
and theprognostic value of FA2Hwas validated by onepublishedmicro-
array data set (GSE62254) with 300 gastric cancer samples.

We demonstrated FA2H functions in cell culture as well as in vivo
models by genetic manipulation and by pharmaceutical supplementa-
tion of (R)-2-OHPA. Our results suggest a crosstalk of Hh and a FA
hydroxylation pathway in regulating sensitivity of gastric cancer cells
to the chemotherapy agent cisplatin. Inhibition of Gli1 by FA 2-
hydroxylation was evidenced by several observations. Overexpression
of FA2H or treatmentwith (R)-2-OHPA diminished Gli1 in cultured gas-
tric cancer cells and in tumors developed in nude mice. Moreover, a re-
verse association between the levels of Gli1 and FA2H was observed in
human gastric tumors. The suppression of Gli1 by FA 2-hydroxylation
is unlikely due to canonical Hh signaling since SMO level was not af-
fected by FA2H or (R)-2-OHPA (Fig. 3). In contrast, SMO-independent
Gli1 activation by mTOR/S6K1 pathway was inhibited. AMPK can phos-
phorylate TSC2 on S1387 or Raptor on S722 and S792, thereby promot-
ing its inhibition of mTORC1 [36]. Activation of AMPK, presumably by
increasing ADP level as previously described [37], was observed with
FA2H overexpression or treatment of its product which might explain
at least some of the observed inhibition of mTOR. Moreover, phosphor-
ylation of Akt was not affected by FA2H or 2-OHPA, supporting that
AMPK activation may be the major contributor to the observed mTOR
inhibition. Fructose-1,6-bisphosphate and aldolase mediate glucose
sensing by AMPK [38] and FA2H may regulate AMPK activation by
diminishing GLUT1-mediated glucose utilization in cancer cells. We
previously established that FA2H or (R)-2-OHPA significantly decreased
membrane fluidity [14], which has been shown to limit glucose uptake
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and utilization in Hep3B cells [5]. In our current study, we showed that
GLUT1 levels were decreased by FA2H overexpression or treatment of
(R)-2-OHPA in gastric cancer cells, most likely due to decreased mem-
brane fluidity [5]. Although the exact mechanism underlying FA2H acti-
vation of AMPK in gastric cancer cells as we observed is not clear and
warrants future investigation, our results demonstrated that FA 2-
hydroxylation regulates non-canonical Gli1 activation andmay provide
a rationale for its inclusion in combination therapy for gastric cancer.

The efficiency of (R)-2-OHPA treatment in enhancing cellular
chemosensitivity to cisplatin is similar to that of Gli1 inhibitor
GANT61 (Fig. 4g), suggesting that FA2H increased chemosensitivity par-
tially through its inhibition of the mTOR/S6K1/Gli1 pathway. However,



Fig. 5. FA 2-hydroxylation regulates AMPK phosphorylation. a, b) SGC7901 andMKN45 cells were untreated (CTL) or transfectedwith negative control (NC) siRNA or siRNA against FA2H
(FA2H KD). (a) The whole cell lysates were prepared and subjected to Western blot analysis with antibodies directed against each specific protein as indicated. (b) The bands were
quantified and presented as the mean ± SEM (n = 3). c, d) SGC7901 and MKN45 cells were untreated (CTL) or transfected with empty vector (Vec) or plasmid encoding hFA2H
(FA2H OE). (c) The whole cell lysates were prepared and subjected to Western blot analysis with antibodies directed against each specific protein as indicated. (d) The bands were
quantified and presented as the mean ± SEM (n = 3). e, f) SGC7901 and MKN45 cells were untreated (CTL) or pre-treated with BSA, 50 μM PA, (R)-2-OHPA (2R), or (S)-2-OHPA (2S).
(e) The whole cell lysates were prepared and subjected to Western blot analysis with antibodies directed against each specific protein as indicated. (f) The bands were quantified and
presented as the mean ± SEM (n= 3). *, P b 0·05; **, P b 0·01, ns, not significant.
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since (R)-2-OHPA and GANT61 have addictive effect, we cannot
exclude the possibility that FA2H/(R)-2-OHPA may also regulate
chemosensitivity via Gli1-independent pathway. A recent study dem-
onstrated crucial roles of malic enzyme 1-mediated production of
NADPH to promote gastric cancer growth and metastasis via suppres-
sion of ROS-induced cell apoptosis [39]. FA2H-regulated suppression
of GLUT1 in gastric cancer cells may induce oxidative stress [40],
which contributes to the observed inhibition of tumor growth. Alterna-
tively, incorporation of 2-OHFAs into ceramidesmay alter ceramide reg-
ulation of electron transport chain and ROS generation [41,42].
However, whether this potential regulation of free radicals and the
resulting lipid peroxides is involved in the (R)-2-OHFA-induced apopto-
sis requires extensive investigation in the future.

Our in vitro experiments showed similar effects of (R)-2-OHPA treat-
ment and FA2H overexpression in regulating cell growth andmigration
(Figs. 3 and 4). However, the effect of (R)-2-OHPA administration alone
in tumor suppression or tumor regression in vivo was minimal, while
depletion of FA2H significantly promoted tumor growth (Fig. 6 and
S5). Although the mechanism for the observed difference is still
not clear, these results suggested that the endogenous and exogenous
(R)-2-OHPAmay have distinct biological effects. (R)-2-OHPA generated
by FA2H on the ER may have easier access to metabolic pathway which
generates downstream lipid effectors with higher potency in inhibiting
tumor growth. The metabolic fate of (R)-2-OHPA is still not completely
understood, especially under in vivo conditions. Future studies on
2-OHFA metabolism would help identify more potent intermediate
(s) in limiting tumor growth. Nevertheless, our in vivo study with two
separate cell lines demonstrated that the (R)-2-OHPA was able to im-
prove inhibitory effects of cisplatin on tumor growth.

Activation of Hh signaling pathway and the Gli1 expression contrib-
ute to cellular resistance to cisplatin through inhibition of platinum-
DNA adduct repair and altered cellular accumulation of the drug
[33,34]. Our present study also confirmed that Gli1 depletion improved
cellular sensitivity to cisplatin in gastric cancer cells. FA2H overexpres-
sion or (R)-2-OHPA treatment inhibitedGli1 expression, resulting in en-
hanced cellular sensitivity to cisplatin, while FA2H knockdown has the
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Fig. 6. FA2H knockdown promotes while (R)-2-OHPA inhibited in vivo tumorigenesis of MKN45 cells. a-d) MKN45 cells stably expressing FA2H shRNA (KD) or control shRNA (NC) were
transplanted into nude mice (n = 8). (a) The volumes of the tumors were measured twice a week during the indicated period. (b)The average tumor mass of each group was also
presented. (c) The body weights were measured twice a week during the indicated period. (d) IHC staining of Gli1 and FA2H in representative tumors (Scale bar, 100 μm). e-h)
MKN45 cells were transplanted into nude mice (n = 5) which untreated (CTL), or received 15 μmol/kg (R)-2-OHPA, 5 mg/kg cisplatin (CIS), cisplatin combination with (R)-2-OHPA
(CIS + 2R). (e) The volumes of the tumors were measured twice a week during the indicated period. (f) The average tumor mass of each group. (g) The body weights were measured
twice a week during the indicated period. (h) IHC staining of Gli1 in representative tumors (Scale bar, 100 μm). *P b 0·05, **P b 0·01, ***P b 0·001.
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opposite effects. Interestingly, inhibition of Gli1 by GANT61, mTOR by
rapamycin and treatment with (R)-2-OHPA has similar efficiency in
improving chemosensitivity with no effect on SMO level, suggesting
that FA 2-hydroxylation may play an important role in cellular
chemosensitivity viamTOR-regulated Hh signaling and Gli1 expression.
Current ongoing clinical trials evaluating various Hh inhibitors for dif-
ferent cancers report many common adverse events including muscle
spasms, alopecia, fatigue and weight loss [43], and rapamycin use
causes significant metabolic impairments [44]. In contrast, treatment
with (R)-2-OHPA improved cisplatin effectiveness at the same time
that it alleviated cisplatin-induced body weight loss (Fig. 6f). Previous
studies demonstrated that FA 2-hydroxylation in sebaceous glands is
important for keratinocyte differentiation and fur development [45],
suggesting that addition of (R)-2-OHFAs could alleviate notable
chemotherapy associated side effects that were not tested here such
as hair loss. Collectively, our results suggested that (R)-2-OHFA could
be used as non toxic endogenous lipid surrogates for inhibiting mTOR
and Hh signaling in combination therapy of gastric cancer.

2-OHFAs are constituents of sphingolipids and membrane lipids in
plants [46,47] and animals and are abundant in microorganisms [48],
animal wool waxes, skin lipids and some specialized tissues (e.g.
brain) [13]. 2-OHFAs were also identified in food (e.g. dairy products
and vegetable oils) with the (R) enantiomers being the predominant
form in most samples [8]. All these biological sources for 2-OHFAs
could be used to improve therapies treating gastric cancers. It is possible
that consumption of foodwith high concentration of (R)-2-OHFAs could
exert protection against gastric cancer risk. Interestingly, a meta-
analysis of epidemiological studies showed significant inverse
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associations between total diary food consumption and gastric cancer
risk in European and US cohorts, although not in the Asian population
[49]. Prospective studies are required to confirm the association be-
tween the consumption of food enriched in (R)-2-OHFAs and the risk
of cancers including gastric cancer. Recent study showed alteration of
microbiota in gastric cancer with increased quantity of bacteria, diversi-
fied microbial communities, and enrichment of bacteria with potential
cancer-promoting activities [50,51]. It would be interesting to investi-
gate whether microorganism-originated 2-OHFAs in patients of gastric
cancer may contribute to tumor growth and metastasis.

In summary, our results not only demonstrate the effect of FA
2-hydroxylation on the Hh signaling and growth of gastric cancer, but
also emphasize the potential of (R)-2-OHFAs as a wide-spectrum anti-
cancer drug. Moreover, foods enriched in 2-OHFAs may be protective
against gastric cancer risk. Future clinical studies are needed to validate
effectiveness of hydroxylated FA in treatment of gastric cancer and
other cancer types, especially those where FA 2-hydroxylation activity
is high.
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