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Abstract
A common problem in eye-tracking research is vertical drift—the progressive displacement of fixation registrations on
the vertical axis that results from a gradual loss of eye-tracker calibration over time. This is particularly problematic in
experiments that involve the reading of multiline passages, where it is critical that fixations on one line are not erroneously
recorded on an adjacent line. Correction is often performed manually by the researcher, but this process is tedious, time-
consuming, and prone to error and inconsistency. Various methods have previously been proposed for the automated, post
hoc correction of vertical drift in reading data, but these methods vary greatly, not just in terms of the algorithmic principles
on which they are based, but also in terms of their availability, documentation, implementation languages, and so forth.
Furthermore, these methods have largely been developed in isolation with little attempt to systematically evaluate them,
meaning that drift correction techniques are moving forward blindly. We document ten major algorithms, including two that
are novel to this paper, and evaluate them using both simulated and natural eye-tracking data. Our results suggest that a
method based on dynamic time warping offers great promise, but we also find that some algorithms are better suited than
others to particular types of drift phenomena and reading behavior, allowing us to offer evidence-based advice on algorithm
selection.
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Introduction

Reading is a fundamental skill for navigating modern
society and, as such, is subject to intense study in
the cognitive and language sciences. Among the many
tools that researchers use to investigate reading in the
laboratory, eye tracking occupies a prominent position.
Using this technique, participants’ eye movements may
be recorded as they read written material, providing a
window into the relevant cognitive processes as they unfold.
Technological advancements in eye tracking, particularly
from the 1970s (Rayner, 1998), have allowed researchers
to collect increasingly accurate measures of eye movements
during reading tasks, leading to great improvements in the
investigation of the cognitive processes underlying reading
and reading acquisition.
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Many eye-tracking studies involve the reading of single
words or sentences. For example, researchers may embed
target words into different sentence contexts and manipulate
predictability (e.g., Rayner et al., 2001), display isolated
words to gain insight into how a reader’s eye moves
when processing a word (e.g., Vitu et al., 2004), or reveal
parts of words in a gaze-contingent fashion to investigate
parafoveal processing (e.g., Schotter et al., 2012). Sentence
reading experiments have also been essential in revealing
the cognitive processes behind different levels of written
language processing, from the width of the perceptual span
(e.g., Blythe et al., 2009; Rayner, 1986) to the effects that
word length and frequency have on eye movements (e.g.,
Joseph et al., 2009; Tiffin-Richards & Schroeder, 2015), as
well as the effects of syntactic (e.g., Frazier & Rayner, 1982;
Pickering & Traxler, 1998) and lexical (e.g., Sereno et al.,
2006) ambiguity.

In our everyday experience, however, we often do not
encounter sentences in isolation; a good part of our reading
experience involves connected text that is distributed over
multiple lines. Therefore, experiments based on paragraph
reading also provide insight into the reading experience,
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while allowing us to address levels of processing that are
simply not available when one reads a single sentence, such
as the role of broader context or the integration of syntactic
relations across sentence boundaries (Jarodzka & Brand-
Gruwel, 2017). Indeed, studies of multiline reading have
become more prevalent in recent years, with researchers
using passage reading tasks to investigate, for example,
the effect of text- and participant-level characteristics on
eye movements (Kuperman et al., 2018) or of contextual
facilitation on developing readers’ eye movements (Tiffin-
Richards & Schroeder, 2020). Several multiline-reading
datasets have also been released, including GECO (Cop
et al., 2017), MECO (Kuperman et al., under review), and
Provo (Luke & Christianson, 2018).

A technical issue that arises from the particular
circumstances of multiline reading is so-called “vertical
drift,” which we define as the progressive displacement of
fixation registrations on the vertical axis over time. In other
words, fixations may be recorded above or below the line of
text that the participant was actually reading, and the degree
and directionality of this error may fluctuate dynamically
with each subsequent fixation, making it nontrivial to
eliminate. Figure 1a depicts a reading trial exhibiting
vertical drift phenomena; in this case, fixations—especially
those on the left-hand side—are recorded around one line
higher than where the reader was actually fixating, but they
also tend to slope down to the right such that fixations on
the right-hand side seem to be better aligned.

Vertical drift can occur quite unpredictably, even
following good-quality calibration, and it is likely caused by
spatial phenomena such as degraded eye-tracker calibration
at the corners of the screen, or temporal phenomena such as
subtle movements in head position or pupil dilation, which
can be difficult to control for, even in a laboratory setting.
Such sources of measurement error are often exacerbated in

the context of multiline reading because, in comparison to
single words or sentences, passages of text are distributed
over a larger portion of the screen, including areas where
general calibration may be worse, and they take longer to
read, during which time calibration may begin to degrade.
There are also less frequent opportunities to recalibrate
the device during passage reading, since this can only
be performed between trials or pages and not during the
reading of a passage.

Whatever the cause, and however it manifests itself,
vertical drift will ultimately have a negative impact on
the analysis of eye-tracking data because fixations will be
mapped to words that were not actually being fixated at
a given point in time (as we can see in Fig. 1a). It is
therefore incumbent on the researcher to recognize such
issues when they occur and to take corrective measures.
Specialized software packages, such as EyeLink Data
Viewer (SR Research, Toronto, Canada) or EyeDoctor
(UMass Eyetracking Lab, Amherst, MA, USA), provide the
ability to manually move fixations, either individually or in
small batches. However, manual realignment can be very
time-consuming and is likely to be error prone. In particular,
the realignment process can be greatly complicated by other
sources of noise or idiosyncratic reading behaviors. For
example, Fig. 1b depicts a reading trial by a child reader;
in this case, not only are the fixations affected by drift
issues, but there are also various natural reading behaviors,
such as within- and between-line regressions, which add an
additional layer of complexity to the task of realignment, not
to mention the baseline level of noise and unusual features
such as the arching sequence of fixations targeting line 4.

A number of methods have previously been developed to
automate post hoc vertical drift correction. FixAlign, an R
package developed by Cohen (2013), is currently the most
well-established method in the experimental psychology

Fig. 1 Example reading trials from an adult participant (left) and a
child participant (right) taken from Pescuma et al. (in prep). Each dot
represents a fixation and the size of the dots represents duration. The
adult trial exhibits upward shift, especially in the lower left part of the

passage. The child trial is extremely noisy and exhibits not just verti-
cal drift issues but also many natural reading phenomena that will pose
challenges to the algorithms
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community, although other methods have recently been
proposed by Schroeder (2019) and Špakov et al. (2019).
In addition, there is a disparate body of work from
several subfields of computer science, such as biometrics
(Abdulin & Komogortsev, 2015), educational technology
(Hyrskykari, 2006), and user-interface design (Beymer
& Russell, 2005), in which various ad-hoc algorithms
have been reported (see also Carl, 2013; Lima Sanches
et al., 2015; Lohmeier, 2015; Martinez-Gomez et al., 2012;
Mishra et al., 2012; Nüssli, 2011; Palmer & Sharif, 2016;
Sibert et al., 2000; Yamaya et al., 2017).

These reported methods can be difficult to evaluate and
use because they vary widely in terms of their availability,
design choices, implementation languages, usability, level
of documentation, expected input data, and the extent to
which they rely on project-specific heuristics or particular
eye-tracker hardware. Furthermore, these methods have
largely been developed in isolation from each other, and
there has been little attempt to systematically evaluate
them, so drift correction software is moving forward blindly
without an evidence base to support new directions. In this
paper, we attempt to classify the reported methods into
ten major approaches, which we formalize as ten simple
algorithms that adopt a consistent design model. In other
words, we do not attempt to evaluate existing software
implementations; rather, we explore the spectrum of drift
correction algorithms by isolating and evaluating the core
principles on which previous methods have been based.
Our goal is to provide a systematic comparison of these
algorithms in order to guide researchers’ choices about the
most suitable methods and to lay a solid foundation for
future drift correction software.

To be clear, the algorithms we consider in this paper are
restricted to one specific problem. Firstly, we only consider
algorithms designed for the ordinary reading of passages
of text; other uses of eye tracking, such as visual search
and scene perception, can also undergo drift correction, but
the methods required are quite different (see, e.g., Vadillo
et al., 2015; Zhang & Hornof, 2011, 2014). Similarly, the
reading of source code has received some attention, but
the affordances and constraints in this domain are quite
different from ordinary linguistic reading (see, e.g., Nüssli
2011; Palmer & Sharif, 2016). Secondly, we only consider
the problem of post hoc correction; vertical drift can also
be corrected in real time, but this imposes a more restrictive
set of constraints that are better handled by other types of
algorithm (see, e.g., Hyrskykari, 2006; Sibert et al., 2000).
Thirdly, we only consider fully automated algorithms that
do not require human supervision.

The paper proceeds in four main sections. First, we
outline the algorithms. Second, we test the algorithms on
simulated fixation sequences afflicted with various types of

measurement error. Third, we test the algorithms on an eye-
tracking dataset (two examples from which are presented
in Fig. 1). Finally, we discuss the major properties of the
algorithms, provide guidance to researchers about their use,
and suggest ways in which they can be improved further. All
code and data required to reproduce the analyses reported
in this paper, as well as Matlab/Octave, Python, and R
implementations of the algorithms, are available from the
public data archive associated with this paper: https://doi.
org/10.17605/OSF.IO/7SRKG

Algorithms

In this section, we describe ten algorithms for the
automated, post hoc correction of vertical drift. The reader
may also wish to refer to Supplementary Item 1 where
we present the algorithms in pseudocode alongside other
technical details.

Attach

The attach algorithm is the simplest of the algorithms
considered in this paper. The algorithm simply attaches
each fixation to its closest line. While this has the benefit
of being extremely simple, it is generally not resilient to
the kinds of drift phenomena described above. However,
attach serves as a useful baseline algorithm, since it
essentially corresponds to an eye-tracking analysis in which
no correction was performed—a standard analysis of eye-
tracking data would simply map fixations to the closest
words or other areas of interest. We return to this point later
in the paper.

Chain

The chain algorithm is based closely on one of the methods
implemented in the R package popEye (Schroeder, 2019)
and can be seen as an extension of attach. Fixations
are first linked together into “chains”—sequences of conse-
cutive fixations that are within a specified x and y distance
of each other. Fixations within a chain are then attached to
whichever line is closest to the mean of their y values. This
procedure is similar to the slightly more complex methods
reported by Hyrskykari (2006) and Mishra et al. (2012), so
we consider these to be special cases of chain.

The chain algorithm generally provides better perfor-
mance over attach by exploiting the sequence’s order
information. A disadvantage of the method, however, is that
it is necessary to specify appropriate thresholds that deter-
mine when a new chain begins. If these thresholds are set
too low, chain becomes equivalent to attach; if they
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are set too high, chain will group large numbers of fix-
ations together and force them onto a single inappropriate
line. By default, popEye sets the x threshold to 20 × the
font height and the y threshold to 2 × the font height. It is
not exactly clear how these defaults were chosen, but we
would tentatively suggest that the x threshold should be set
to approximately one long saccade length (we use 192 px),
and the y threshold to around half a line height (we use
32 px).

Cluster

The cluster algorithm is also based on one of
the methods implemented in popEye (Schroeder, 2019).
cluster applies k-means clustering1 to the y values of
all fixations in order to group the fixations into m clusters,
where m is the number of lines in the passage. Once each
fixation has been assigned to a cluster, clusters are mapped
to lines based on the mean y values of their constituent
fixations: The cluster with the smallest mean y value is
assigned to line one and so forth.

Unlike attach and chain, cluster does not assign
fixations to the closest line in absolute terms; instead,
it operates on the principle that fixations with similar
y values must belong to the same line regardless of how far
away that line might be. As such, the algorithm generally
handles drift issues quite well. However, cluster will
often not perform well if there is even quite mild overlap
between fixations from different lines. In addition, since
k-means clustering is not guaranteed to converge on the
same set of clusters on every run, the cluster algorithm
is nondeterministic and can be somewhat unpredictable
across multiple runs on the same reading trial, which
is an important consideration from the point of view of
reproducible research output.

Compare

The compare algorithm is directly based on the method
reported by Lima Sanches et al. (2015) and is very similar
to the more complex methods described by Yamaya et al.
(2017). The fixation sequence is first segmented into “gaze
lines” by identifying the return sweeps—long saccades that
move the eye from the end of one line to the start of the
next. The algorithm considers any saccade that moves from
right to left by more than some threshold value (we use
512 px) to be a return sweep. Gaze lines are then matched
to text lines based on a measure of similarity between them.

1In both the cluster and split algorithms, we used the KMeans
function from the Python library Scikit-learn (Pedregosa et al., 2011).
There are many variations of k-means clustering, which we have not
systematically compared.

Lima Sanches et al. (2015) considered three measures of
similarity and found dynamic time warping (DTW; Sakoe
& Chiba, 1978; Vintsyuk, 1968) to be the best method (we
discuss DTW in more detail later in this section). Similarly,
Yamaya et al. (2017) use the closely related Needleman–
Wunsch algorithm (Needleman & Wunsch, 1970).

The gaze lines and text lines are compared in terms of
their x values under the assumption that the fixations in a
gaze line should have a good horizontal alignment with the
centers of the words in the corresponding text line. Relying
only on the x values helps the algorithm overcome vertical
drift issues, but it is also problematic because in many
standard reading scenarios the lines of text in a passage
tend to be horizontally similar to each other; each line tends
to contain a similar number of words that are of a similar
length, resulting in potential ambiguity about how gaze lines
and text lines should be matched up. To alleviate this issue,
both Lima Sanches et al. (2015) and Yamaya et al. (2017)
only compare the gaze line to a certain number of nearby
text lines (we set this parameter to 3, which is effectively
the closest line plus one line above and one line below).

Merge

The merge algorithm is closely based on the post hoc
correction method described by Špakov et al. (2019). The
algorithm begins by creating “progressive sequences”—
consecutive fixations that are sufficiently close together.
This is similar to chain, except that the sequences
are strictly progressive (they only move forward), so a
regression will initiate a new progressive sequence. The
original method uses several parameters to define what
constitutes “sufficiently close together,” but here we boil
this down to a single parameter, the y thresh, which
determines how close the y values of two consecutive
fixations must be to be considered part of the same
progressive sequence (we use 32 px).

Once these sequences have been created, they are
repeatedly merged into larger and larger sequences until the
number of sequences is reduced to m, one for each line of
text. On each iteration of the merge process, the algorithm
fits a regression line to every possible pair of sequences
(with the proviso that the two sequences must contain some
minimum number of fixations). If the absolute gradient of
the regression line or its error (root-mean-square deviation)
is above a threshold (we use 0.1 and 20 respectively), the
candidate merger is abandoned. The intuition here is that, if
two sequences belong to the same text line, the regression
line fit to their combined fixations will have a gradient close
to 0 and low regression error. Of the candidate mergers
that remain, the pair of sequences with the lowest error
are merged and added to the pool of sequences, replacing
the original two sequences and reducing their number by
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one. This process is repeated until no further mergers are
possible.

The algorithm then enters the next “phase” of the process,
in which the criteria are slightly relaxed, allowing more
mergers to occur. These phases could in principle be defined
by the user, but we follow the four-phase model reported
by Špakov et al. (2019), which effectively builds a set of
heuristics into the algorithm. In Phase 1, the first and second
sequences must each contain a minimum of three fixations
to be considered for merging; in Phase 2, only the second
sequence must contain a minimum of three fixations; in
Phase 3, there is no minimum number of fixations; and
in Phase 4, the gradient and regression error criteria are
also entirely removed. Of course, as soon as the number
of sequences is reduced to m the algorithm exits the merge
process, so not all four phases will necessarily be required.
Finally, the set of m sequences is matched to the set of text
lines in positional order: The sequence with the smallest
mean y value is mapped to line one and so forth.

A similar sounding method is reported by Beymer and
Russell (2005) whose technique is based on “growing” a
gaze line by incrementally adding fixations until this results
in a poor fit to a regression line, at which point a new gaze
line is begun. However, the description of the method lacked
sufficient detail for us to consider it further.

Regress

The regress algorithm, which is closely based on
Cohen’s (2013) R package FixAlign, treats the fixations
as a cloud of unordered points and fits m regression lines
to this cloud. These regression lines are parameterized by
a slope, vertical offset, and standard deviation, and the
best parameters are obtained by minimizing2 an objective
function that determines the overall fit of the lines through
the fixations. The algorithm has six free parameters which
are used to specify the lower and upper bounds of the slope,
offset, and standard deviation. Here, we directly adopt
FixAlign’s defaults: [−0.1, 0.1], [−50, 50], and [1, 20],
respectively. Once the m best-fitting regression lines are
obtained, regress assigns each fixation to the highest-
likelihood regression line, which itself is associated with a
text line.

regress tracks FixAlign very closely, except that we
did not implement the “run rule,” an option that is switched
on by default in FixAlign. This option maps ambiguous
fixations to the same line as the surrounding fixations, if
the surrounding fixations were classified unambiguously
(Cohen, 2013, p. 680). Cohen’s run rule is a more general

2In both the regress and stretch algorithms, we used the
minimize function from the Python library SciPy (Virtanen et al.,
2020). We have not systematically compared the choice of optimizer
settings.

method that could in principle be applied to the output of
any algorithm, so in the interest of isolating the core concept
of FixAlign and comparing all algorithms on a level playing
field, we did not to implement the option here.

regress has some conceptual similarities with merge
but differs in several important respects. Notably, regress
takes a top-down approach, where merge is more bottom-
up, and the regression lines that regress fits to the
fixations cannot take independent values—it is assumed that
all fixations are sloping in the same direction, with the
same vertical offset, and with the same amount of within-
line variance. In addition, unlike merge, regress does
not utilize the order information; instead, like cluster, it
views the fixations as a collection of unordered points.

Segment

The segment algorithm is a slight simplification of the
method described by Abdulin and Komogortsev (2015).
The fixation sequence is first segmented into m disjoint
subsequences based on the m − 1 most extreme backward
saccades along the x-axis (i.e., the saccades that are most
likely to be return sweeps). These subsequences are then
mapped to the lines of text chronologically, under the
assumption that the lines of text will be read in order.
Abdulin and Komogortsev (2015) do not state precisely how
they identify the return sweeps, but it seems they potentially
allow for more than m subsequences to be identified, in
which case, rereadings of a previous line, based on a
threshold level of similarity, are discarded. The version of
the algorithm considered here does not discard any fixations
and instead always identifies exactly m subsequences.

The advantage of this general approach, as emphasized
by Abdulin and Komogortsev (2015), is that the y values
of the fixations are completely ignored, rendering any
vertical drift entirely invisible to the algorithm. However,
the approach does not allow for the possibility that the
lines of text might be read out of order or that a line
of text might be read more than once, which is not
uncommon in normal reading behavior. Therefore, the great
strength of segment—its identification of m consecutive
subsequences, permitting a chronological, as opposed to
positional, mapping—is also its great weakness: If a large
regression is mistakenly identified as a return sweep, this
will lead to a catastrophic off-by-one error in subsequent
line assignments.

Split

As far as we know, the split algorithm takes an approach
that is distinct from anything previously reported, although
it is conceptually similar to segment. Like segment, the
split algorithm works on the principle of splitting the
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fixation sequence into subsequences by first identifying the
return sweeps. However, split is not restricted to finding
exactly m − 1 return sweeps; instead, it identifies the most
likely set of return sweeps, however many that turns out to
be. There are various ways of approaching this classification
problem, but here we use k-means clustering to partition
the set of saccades into exactly two clusters. Since return
sweeps are usually highly divergent from normal saccades
(i.e., a return sweep is usually represented by a large
negative change on the x-axis), one of the two clusters
will invariably contain the return sweeps, which can then
be used to split the fixation sequence into subsequences.
However, since this is not guaranteed to produce m − 1
return sweeps (and therefore m subsequences), an order-
based mapping is not possible, so split must use absolute
position: Subsequences are mapped to the closest text lines
in absolute terms. split has the advantage of generally
finding all true return sweeps, and even if it identifies
some false positives, the resulting subsequences can still
be mapped to the appropriate lines by absolute position.
However, this also means the algorithm is less resilient to
vertical drift issues.

Stretch

The stretch algorithm is loosely based on the method
proposed by Lohmeier (2015) and shares some similarities
with Martinez-Gomez et al. (2012) and Nüssli (2011).
Lohmeier’s (2015) original method was designed for the
reading of source code and therefore takes advantage of the
fact that code has very irregular line lengths and indentation
levels. The method works by finding an x-offset, y-offset,
and scaling factor that, once applied to the fixations,
minimizes alignment error between the fixations and lines
of text.

The framework we adopt herein never adjusts the
x values, and we also assume that an ordinary passage of text
is being read, so line length is substantially more constant
than during code reading and therefore less informative.
Therefore, we simplified the original method by dispensing
with all dependencies on the x values. Instead, stretch
finds a y-offset, o∗, and a vertical scaling factor, s∗,
that minimizes the sum absolute difference between the
corrected fixation positions (fys + o) and the corrected
fixation positions once attached to their closest lines.
The equations presented in Lohmeier (2015, pp. 37–38)
therefore simplify to:

o∗, s∗ = arg min
o,s

∑

f ∈F

|(fys + o) − attach(fys + o)|, (1)

where attach(·) returns the y-axis position of the nearest line
of text. In other words, the algorithm seeks a transformation

of the fixations that results in minimal change following the
application of attach.

To constrain the minimization problem, the user must
specify appropriate lower and upper bounds for the offset
and scaling factor, resulting in four free parameters.
Here, we adopt offset bounds of [−50, 50], following
the regress algorithm, and scaling factor bounds of
[0.9, 1.1]. Effectively, this means the algorithm can move
the set of fixations up or down by up to 50 pixels and
stretch their positions on the vertical axis by between 90%
and 110%. While approaching the problem from a different
angle, stretch is computationally similar to regress,
except that it emphasizes systematic offset issues rather than
systematic slope issues.

Warp

The final algorithm we consider, warp, is novel to this
paper, although it is mostly a wrapper around a preexisting
algorithm—dynamic time warping (DTW; Sakoe & Chiba,
1978; Vintsyuk, 1968). DTW was used by the compare
algorithm to provide a measure of dissimilarity between
a gaze line and a text line. To our knowledge, however,
there have been no previous reports of DTW being used
directly to align fixations to text lines. This is somewhat
surprising because DTW is the natural computational choice
for tackling drift and alignment problems. The closest
previously described method is Carl (2013), who uses
a basket of reading-related measures to place a cost on
different paths through a lattice of fixation-to-character
mappings and selects the path with minimal cost. This is
quite complex, however, and we consider it to be a special
case of warp, which is a direct application of the standard
DTW algorithm to eye-tracking data.

DTW is typically useful when you have two sequences,
not necessarily of the same length, and you want to (a)
calculate how similar they are (as is the case in the
compare algorithm) or (b) align the two sequences by
mapping each element in one sequence to a corresponding
element in the other. For example, DTW may be used
to calculate the similarity between a signature, which can
be expressed as a sequence of xy-coordinates over time,
and a reference signature (e.g., Lei & Govindaraju, 2005;
Riesen et al., 2018). Importantly, the two sequences do not
need to be perfectly matched in terms of overall magnitude
or patterns of acceleration and deceleration for a good
alignment to be found. In the case of signature verification,
for example, it does not matter if the candidate signature has
the same size as the reference or that it was drawn at the
same speed, what matters is that there is a good match in the
overall shape and that the strokes were drawn in the same
order. DTW finds many other applications in, for example,
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Fig. 2 Illustration of the warp algorithm. The veridical fixation
sequence is represented in blue, and the expected fixation sequence
(the sequence of word centers) is represented in red. The dashed black
lines show the DTW warping path—the optimal way to align the
two sequences, such that the sum of the Euclidean distances between
matched points (i.e., the sum of the dashed lines) is minimized

genomics (Aach & Church, 2001), medicine (Caiani et al.,
1998), and robotics (Vakanski et al., 2014).

In order to use DTW to realign the fixation sequence
to the text, we first need to specify an expected fixation
sequence. Since we expect the reader to traverse the
passage from left to right and from top to bottom, we can
use the series of word centers as the expected sequence,
under the assumption that readers will target the centers
of words (O’Regan et al., 1984). Given the expected and
veridical sequences as inputs, the DTW algorithm finds the
optimal way to nonlinearly warp the sequences on the time
dimension such that the overall Euclidean distance between
matched points across the two sequences is minimized,
while maintaining a monotonically increasing mapping.3

In the “warping path” that results from this process, every
fixation is mapped to one or more words and every word
is mapped to one or more fixations (see Fig. 2 for an
example). It is then simply a case of assigning each fixation
to whichever line its mapped word(s) belong(s) to. In the
unlikely event that the mapped words belong to different
lines, the majority line wins or an arbitrary choice is made
in the case of ties.

If the final fixation on line i were mapped to the first
word on line i + 1, this would result in a large increase
in the overall cost of the mapping, so line changes act as
major clues about the best alignment. The upshot of this is
that warp effectively segments the fixation sequence into
exactly m subsequences, which are mapped to the lines of
text in chronological order. In this sense, warp behaves
very much like segment. However, the additional benefit
of warp is that it can simultaneously consider different

3Specifically, the first fixation must be mapped to (at least) the first
word; the last fixation must be mapped to (at least) the last word; every
other fixation must be mapped to at least one word; and, if fixation i is
mapped to word j , then fixation i +1 must be mapped to word(s) ≥ j .
And vice versa for the mapping from words to fixations.

possibilities about which saccades are the return sweeps,
selecting only those that result in the best fit to the passage
at a global level. Nevertheless, warp is ultimately limited
by the veracity of the expected fixation sequence, which
encodes one particular way of reading the passage—line
by line from start to end. If the reader deviates from this
assumption (e.g., by rereading or skipping lines), warp can
fail to correctly assign fixations to lines.

Summary

In this section we have described ten algorithms for aligning
a fixation sequence to a multiline text, each of which
takes a fundamentally different approach. A summary of
the information utilized by the algorithms is provided
in Table 1; each algorithm uses at least one piece of
information about the fixations and at least one piece of
information about the passage, and some also rely on
additional parameters set by the user or built-in heuristics.

Broadly speaking, the algorithms proceed in three stages,
analysis, assignment, and update, the one exception being
attach which has no analysis stage. In the analysis stage,
the fixations are analyzed, transformed, or classified in
some sense. The rationale behind this process varies by
algorithm, but in general the algorithms can be categorized
into those that classify the fixations into m groups (i.e.,
one group per text line; cluster, merge, regress,
segment, and warp) and those that do not (attach,
chain, compare, split, and stretch).

In the assignment stage, the fixations are assigned to
text lines. If the analysis stage does not produce m groups,
then assignment must be based on absolute position (or
similarity in the case of compare, although it still uses
absolute position to select neighboring lines to compare
to). If the analysis stage does produce m groups, then they
can be assigned to text lines based on order; this generally
allows for better handling of vertical drift because absolute
position is ignored. In the case of cluster, merge,
and regress, which produce unordered groups at the
analysis stage, groups are matched to text lines based on
the order in which they are positioned vertically (i.e., mean
y value). In the case of segment and warp, the groups
are assigned to text lines in chronological order, which
is only possible because these two algorithms produce
subsequences that inherit the order of the original fixation
sequence. An overview of the analysis and assignment
methods is provided in Table 2 for quick reference.

Finally, in the update stage, the original fixation sequence
is modified to reflect the line assignments identified in the
previous stage. In the versions of the algorithms reported in
this paper, we always use the same update approach: The
y values of the fixations are adjusted to the y values of
the assigned lines, while the x values and the order of the
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Table 1 Information utilized by the algorithms

Fixation Information Passage Information Other Information

Algorithm X Y Order No. Lines Line Y Word X Parameters Heuristics

attach � �
chain � � � � 2

cluster � �
compare � � � � � 2

merge � � � � 3 �
regress � � � � 6

segment � � �
split � � � �
stretch � � 4

warp � � � � �

fixations are always left untouched. In principle, however,
there are other ways of performing the update stage
(e.g., retaining the original y-axis variance or discarding
ambiguous fixations).

Performance on simulated data

We now test the ability of each algorithm to cor-
rectly recover the intended lines from simulated fixation
sequences. These fixation sequences are simulated with par-
ticular characteristics, allowing us to understand how the
algorithms respond to specific, isolated phenomena.

Method

In each simulation, we generate a passage of “Lorem ipsum”
dummy text consisting of between 8 and 12 lines with up
to 80 characters per line and 64 px of line spacing. We then
generate a fixation sequence consisting of one fixation for
every word in the passage: The x value of a fixation (fx) is
set randomly within the word; the y value of a fixation (fy)
is calculated according to:

fy = N (ly, dnoise) + fxdslope + lydshift, (2)

where ly is the vertical center point of the intended line—
the y value that the reader is targeting. This models three

Table 2 Summary of the analysis and assignment stages of each algorithm

Algorithm Analysis stage Assignment stage

attach N/A Assign fixations to closest text lines

chain Chain consecutive fixations that are sufficiently close to
each other

Assign chains to closest text lines

cluster Classify fixations into m clusters based on their y values Assign clusters to text lines in positional order

compare Split fixation sequence into subsequences based on
saccades that are longer than a threshold

Assign subsequences to text lines by measuring horizontal
similarity with the words in neighboring text lines

merge Form a set of progressive sequences and then reduce the
set to m by repeatedly merging those that appear to be on
the same line

Assign merged sequences to text lines in positional order

regress Find m regression lines that best fit the fixations and group
fixations according to best fit regression lines

Assign groups to text lines in positional order

segment Segment fixation sequence into m subsequences based on
m − 1 most-likely return sweeps

Assign subsequences to text lines in chronological order

split Split fixation sequence into subsequences based on best
candidate return sweeps

Assign subsequences to closest text lines

stretch Find an offset and scaling factor that results in a good
alignment between the fixations and lines of text

Assign transformed fixations to closest text lines

warp Map fixations to word centers by finding a monotoni-
cally increasing mapping with minimal cost, effectively
resulting in m subsequences

Assign fixations to the lines that their mapped words
belong to, effectively assigning subsequences to text lines
in chronological order
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types of distortion: noise, slope, and shift. Additionally, we
simulate two types of regression that are characteristic of
normal reading behavior but which can nevertheless disrupt
algorithmic correction. Together, these five phenomena are
illustrated in Fig. 3 and described below.

Noise distortion The noise distortion parameter, dnoise,
controls the standard deviation of the normally distributed
noise around the intended line and represents imperfect

Fig. 3 Example simulated fixation sequences under five phenomena
considered in this paper. The algorithms must overcome these
phenomena in order to correctly infer the intended line of each fixation

targeting by the reader and/or measurement error. In our
exploration of this parameter, we use values of dnoise = 0,
representing no noise, through dnoise = 40, representing
extreme noise. The noise parameter is also a proxy for line
spacing (raising the noise level effectively corresponds to
tightening the line spacing), so this parameter also provides
an indication of how the algorithms will perform under
different degrees of line spacing.

Slope distortion The slope distortion parameter, dslope,
controls the extent to which fixations progressively move
downward as the reader moves from left to right across the
passage; fixations on the left edge of the passage will be
correctly located, but for every one pixel the reader moves to
the right, the fixations will drift downward by dslope pixels.
Unlike noise, this is solely attributable to measurement
error. In our exploration of this parameter, we use values of
dslope = −0.1, representing extreme upward slope, through
dslope = 0.1, representing extreme downward slope.

Shift distortion The shift distortion parameter, dshift, con-
trols the extent to which fixations progressively move down-
ward as the reader moves from one line to the next; fixations
on the first line will be correctly located, but for every one
pixel of intentional downward movement, the fixations will
drift downward by a further dshift pixels. Like slope, this
represents systematic measurement error. Our exploration
of this parameter uses values of dshift = −0.2, represent-
ing extreme upward shift, through dshift = 0.2, representing
extreme downward shift.

Within-line regression As mentioned above, we also con-
sider the effects of two types of regression. The first of
these is within-line regressions, which is where the reader
momentarily jumps back to a previous point in the current
line. The extent to which the reader performs within-line
regressions is formalized by a probability. If this probabil-
ity is set to 1, the reader will perform a regressed fixation
after every normal fixation, doubling the number of fixa-
tions on the line; if the parameter is set to 0, the reader will
never perform a regression within the line. The x position
of the regressed fixation is located randomly between the
start of the line and the current fixation with longer regres-
sions being linearly less probable than shorter regressions.
The y value of the regressed fixation follows Eq. 2.

Between-line regression The second type of regression,
between-line regressions, is where the reader rereads
text from a previous line. Between-line regressions are
expressed in terms of the probability that the reader will go
back to a previous line at some point during reading of the
current line. Once the regression is completed, the reader
returns to the point in the passage before the regression
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occurred. If the parameter is set to 1, the reader will reread
part of a previous line for every line they read; if it is set to 0,
the reader will never perform a regression to a previous line.
When a between-line regression occurs, the previous line is
determined randomly, with more recent lines linearly more
probable than less recent lines; the section of the previous
line is determined randomly by two uniformly distributed
x values. The y values of the regressed fixations follow
Eq. 2.

Results

For each phenomenon, we ran 100 simulations for each of
50 gradations in the parameter space, and each of these
5000 simulated reading scenarios was corrected by all ten
algorithms. Accuracy is measured as the percentage of
fixations that were correctly mapped back to the target
line. Before describing the results, there are three important
things to note. Firstly, the extreme values we have chosen
for each phenomenon are arbitrary, so the algorithms should
only be compared within, and not across, phenomena.4

Secondly, we have not modeled the interactions between
phenomena because it is inherently difficult to explore the
effects of five dimensions on accuracy and it is not clear how
the dimensions should be weighted a priori. Thirdly, for the
algorithms that have free parameters (chain, compare,
merge, regress, and stretch), we use the default
parameter settings defined in the previous section. We
have not systematically manipulated the parameter settings
because (a) this would result in an explosion in the number
of algorithm/parameter combinations that we must consider,
(b) manipulating a parameter to deal with one phenomenon
can have unexpected consequences for other phenomena,5

and (c), in a sense, these algorithms ought to incur a penalty
for not being parameter-free.

Performance on noise Results for the noise distortion
parameter are shown in Fig. 4a. Under zero noise,
all algorithms perform at 100% accuracy, but six of
the algorithms are adversely affected by noise when it
reaches a sufficiently high level of around 10: Of these,
chain performs best, closely followed by attach, then
cluster, regress, and stretch, and finally merge.
Of the remaining algorithms, compare and split are
highly resilient to noise, while segment and warp are
entirely invariant.

4For example, regress appears to have worse performance on shift
compared to slope; however, if we had simulated a narrower range of
shift values, the results might have led us to the opposite conclusion.
5For example, if the standard deviation bounds of regress are
widened, it may be possible to improve performance on noise, but the
algorithm will be less capable of dealing with slope.

Performance on slope In terms of slope distortion (Fig. 4b),
when the parameter is set to zero, all algorithms perform
perfectly, but as the slope becomes more extreme (in
either the upward or the downward direction), five of the
algorithms experience a sustained loss in accuracy. Of
these, cluster and stretch generally perform best
and, initially at least, attach performs worst; chain
and split initially perform better than attach, but are
eventually outperformed. Interestingly, although regress
is mostly resilient to slope, it has two weak spots around
the values of −0.03 and 0.03. When the slope takes one of
these values, regress struggles to disambiguate between
(a) zero offset combined with the appropriate slope and (b)
a large offset combined with slope in the opposite direction;
if it selects the wrong option, fixations on one half of the
passage will be misaligned, causing a substantial drop in
accuracy. This reveals a hidden weakness of the regress
algorithm, and we will see an example of it later. Of the
remaining algorithms, compare and merge are highly
resilient to slope, while segment and warp are invariant.

Performance on shift In terms of shift (Fig. 4c), when
the parameter is zero, all algorithms perform perfectly,
but as it becomes more extreme, five of the algorithms—
attach, chain, regress, split, and stretch—
drop in accuracy. In fact, attach, chain, and split
produce identical results in the case of shift because they are
all fundamentally reliant on absolute position. Somewhat
surprisingly, stretch does not perform especially well
on shift. This is because stretch can only handle
up to one full line of shift; any more than this and
the bounds have to be relaxed, but this results in an
objective function with multiple maxima which is difficult
to optimize. The compare algorithm is mostly resilient
to shift, while the remaining four algorithms—cluster,
merge, segment, and warp—are invariant.

Performance on within-line regression Results for within-
line regressions are shown in Fig. 4d. When there are no
within-line regressions, all algorithms perform at 100%,
but three of the algorithms drop off as the probability of
within-line regression is increased. Of these, compare
and segment track each other quite closely because they
rely on identifying the return sweeps; merge is generally
quite resilient, except when the parameter is around 0.7–0.9
because these values cause a large number of progressive
sequences to be generated which cannot then be merged
very freely, so the merge process tends to get trapped in
local minima (i.e., bad mergers that happen early on cannot
later be reverted). Of the remaining algorithms, split6

6Unlike compare and segment, even if split misidentifies a
regression as a return sweep, it will still be able to map the resulting
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Fig. 4 Mean accuracy of the ten algorithms in response to the five
eye-tracking phenomena. For example, some algorithms (attach,
chain, cluster, merge, regress, and stretch) are adversely
affected as the noise level is increased, while the other algorithms are

either resilient to noise (compare and split) or entirely invariant
to noise (segment and warp). The plotted lines have been vertically
staggered to aid visualization

and warp are highly resilient, while attach, chain,
cluster, regress, and stretch are invariant.

Performance on between-line regression In terms of
between-line regressions (Fig. 4e), four algorithms are neg-
atively impacted by increases in this parameter. Of these,
compare and split can in principle find more than
m gaze lines, but they have difficulties identifying when
a between-line regression occurs, while segment and

gaze line to the appropriate text line because it assigns based on
position rather than order.

warp are limited to identifying exactly m gaze lines in
strictly sequential order, so they fundamentally cannot han-
dle between-line regressions. Of the remaining algorithms,
merge is resilient to between-line regressions, while
attach, chain, cluster, regress, and stretch
are entirely invariant.

Summary

In this section, we have simulated five eye-tracking
phenomena that are particularly relevant to understanding
the performance characteristics of the algorithms. Fig. 5
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Fig. 5 Mean accuracy of the algorithms for each of the eye-tracking
phenomena. Darker cells indicate phenomena that an algorithm
performs well on. A check mark indicates that the algorithm is entirely
invariant to the phenomenon in question, scoring 100% in all 5000
simulations

summarizes how accurately the algorithms perform on
each phenomenon. No single algorithm is invariant—or
even resilient—to all phenomena, although merge and
warp come quite close: merge is only weak on noise,
while warp is only weak on between-line regressions. In
general, there tends to be a tradeoff between how well an
algorithm can handle distortion and how well it can handle
regressions; the ability to deal with one tends to come at
the cost of the other. Nevertheless, in real world scenarios,
performance will very much depend on the degree and
relative prevalence of the phenomena. Furthermore, there
are likely to be other important forms of measurement error
and reading behavior that we have neglected to consider
here, and those that we have considered are likely to interact
in complex, unpredictable ways. It is therefore important to
test the algorithms against natural eye-tracking data to get a
more holistic understanding of their performance.

Performance on natural data

In this section, we test the algorithms against an eye-
tracking dataset that has been manually corrected by human
experts. Unlike the simulations, there is no ground truth,
and we cannot isolate particular phenomena; however, the
benefit of this approach is that the phenomena are combined
in a realistic way, allowing us to estimate how well the
algorithms are likely to perform in real-world scenarios.

Method

We tested the algorithms on an eye-tracking dataset
collected by Pescuma et al. (in prep), which includes
reading data for both adults and children, allowing us to
test the algorithms on two distinct populations. Our general

Fig. 6 Pipeline for testing the algorithms on a natural dataset. The
original dataset was first reduced to a smaller sample, which then
underwent some initial cleaning steps. This cleaned dataset was then
corrected by the ten algorithms and two human correctors, whose
corrections were merged to form the gold standard. Performance is
measured by how closely the algorithmic corrections match the gold
standard correction

approach is illustrated in Fig. 6 and discussed over the
following sections.

The dataset Pescuma et al. (in prep) collected eye-tracking
data for 12 passages from Italian children’s stories (e.g., a
passage from Goldilocks). The passages were around 130
words in length, spanning 10–13 lines and were presented
in 20-point Courier New (each character occupying around
0.45 degrees of visual angle). Either of two sets, each
comprised of six passages, was administered for silent read-
ing to a large sample of children aged 8–11 (N = 140)
and a smaller sample of adult controls (N = 33) for a
total of 877 reading trials. Eye movements were recorded
using a tower mounted EyeLink 1000 Plus eye tracker
(SR Research, Toronto, Canada) for which a typical accu-
racy of 0.25–0.50 degrees is reported by the manufac-
turer. Recording was monocular (right eye) with a 1000-Hz
sampling rate.

Selection of the sample for manual correction Since it was
impractical to manually correct all 877 trials (to do so would
require months of work), we selected a sample for manual
correction. For each of the 12 passages, we selected two
reading trials by adult participants and two reading trials by
child participants, for a total of 48 trials (5.5% of the full
dataset). The reading trials were selected pseudorandomly
such that no single participant was represented more than
once. Additionally, we manually checked and adjusted the
sample to ensure it contained an equal balance of easy and
challenging cases, as well as examples of all the various
eye-tracking phenomena discussed previously.

Initial data cleaning We performed two initial cleaning
steps in order to isolate the core problem of line assignment
from two extraneous issues. Firstly, any fixation that was
located more than 100 px from any character in the passage
was removed (i.e., out-of-bounds fixations that occur in
the margins or off-screen). This is because the algorithms
are not designed to detect and discard these fixations, and
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Fig. 7 Accuracy of the algorithms on adult reading trials (circles) and
child reading trials (triangles). The y-axis measures the percentage
of fixations assigned to the correct line, as defined by the gold stan-
dard manual correction. The filled points, linked together by dashed

lines, correspond to the two example trials illustrated in Figs. 8 and 9.
The black bars show median accuracy for the adults (solid bars) and
children (broken bars)

such cases can hinder their ability to match fixations to the
appropriate lines. Secondly, prior to reading a passage and
on its completion, a reader’s fixations will typically jump
around the text unpredictably; again, since the algorithms
are not designed to automatically discard such fixations,
we manually removed any such cases from the starts and
ends of the fixation sequences, allowing the algorithms to
concentrate on the core problem of assigning fixations to
lines.

Manual correction procedure The cleaned sample dataset
was corrected independently by two human correctors (JWC
and VNP). To perform the correction, each corrector studied
plots of the participants’ fixation sequences and recorded,
fixation by fixation, which line each one belonged to,
guided by fixation position, saccade trajectories, textual
cues, and fixation duration, as well as general knowledge of
eye tracking and reading behavior. Unlike the algorithms,
the human correctors also had the option to discard fixations
as they saw fit. This is because there were cases where it was
clear a fixation should be discarded—for instance, due to
spatial misplacement or ultra-short duration—and it would
have therefore felt disingenuous to assign these cases to a
line anyway.

Across the 48 reading trials, the correctors initially
disagreed on 299 of 10,245 fixations (2.9%). Of these 299
disagreements, only 15 related to which line a fixation
was assigned to; on inspection, all 15 cases turned out to
be human error on the part of one corrector or the other.
The other 284 disagreements related to whether or not a
fixation should be discarded; following discussion of these
cases, the correctors reached consensus about how these
fixations should be treated. This resulted in a single manual

correction, which we consider to be the gold standard
against which the algorithms can be evaluated. In this gold
standard correction, a total of 255 fixations were discarded
across all 48 trials (2.5%; 5.3 fixations per trial).

It is interesting to note that although the two correc-
tors had slightly different intuitions about when it was
appropriate to discard a fixation, they essentially had perfect
agreement about which line a fixation ought to be assigned
to if it was retained. This suggests that the correction of
vertical drift is actually quite objective—there is usually an
unequivocally correct solution to any given trial, even if that
solution may be difficult and time-consuming to obtain.

Results

We analyze the performance characteristics of the algo-
rithms in four ways. Firstly, we look at how the algorithms
fare against the gold standard manual correction; secondly,
we look at what proportion of trials are likely to be usable
following drift correction; thirdly, we look at how the algo-
rithms perform in comparison to using no drift correction at
all; and finally, we look at how the algorithms relate to each
other, regardless of their accuracy.

Accuracy against the gold standard As with the simula-
tions, accuracy is measured as the percentage of fixations
that the algorithm mapped to the correct line; the ground
truth is defined by the gold standard manual correction. In
cases where the correctors chose to discard a fixation, the
algorithm is automatically wrong, which amounts to a con-
stant baseline level of error that all algorithms suffer from
equally. Figure 7 plots accuracy on the 48 sample trials
by algorithm. The most striking result is compare with
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Fig. 8 Original data and corrections of an adult trial. Fixations in red have been assigned to the wrong line. The algorithmic corrections correspond
to the filled circles in Figs. 7 and 11

overall median accuracy of 61.2%, substantially worse than
all other algorithms.7 This contrasts with our simulations,
which indicated that compare should at least be relatively
strong on distortion. The reason for this discrepancy is that
the simulated fixation sequences were generated directly
from the lines of text with one fixation per word, so the arti-
ficial gaze lines that compare identified tended to be very
horizontally similar to the artificial text lines. In the natural

7This concurs with the 60% accuracy reported by Lima Sanches et al.,
(2015, p. 1231). Yamaya et al. (2017, p. 104), who describe a slightly
more complex method with better sweep detection, report accuracy of
87%, which is still quite low compared to the other results obtained in
this paper.

dataset, however, this is not the case; when the data con-
tains a lot of natural noise and regressions, gaze lines cannot
be reliably matched to text lines based on similarity, even if
the set of candidate text lines is narrowed down to the three
closest neighbors. Given that compare exhibited such poor
performance, we consider it to be an algorithmic dead end
and do not discuss it any further.

Of the remaining algorithms, median accuracy is
typically around 95%, the worst performer being attach
at 92% and the best performer being warp at 97.3%.
Accuracy on child trials tends to be lower and more variable
than accuracy on adult trials; however, the difference in
medians was usually quite small. The major exception to
this was segment for which median accuracy on adult
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trials was 97.3%, while median accuracy on child trials was
81.3%, making segment one of the best algorithms in
terms of adult data but one of the worst in terms of child
data. This may be because children tend to perform more
regressions (e.g., Blythe & Joseph, 2011) and have more
disfluent return sweeps (e.g., Parker et al., 2019), both of
which create obstacles for the segment algorithm.

Median performance alone conceals the fact that
accuracy is often highly variable and long tailed. In the best-
case scenario, an algorithm will produce a perfect correction
that is identical to the gold standard—all algorithms (even
compare) scored 100% in at least one trial. In the worst-
case scenario, an algorithm will perform as low as 10–30%
accuracy. In addition, the algorithms often differ markedly
on particular trials. We have highlighted this in Fig. 7 by

singling out two trials, one by an adult and one by a child,
which are represented by the filled data points that are
linked together with dashed lines. Algorithmic corrections
of the adult trial (filled circles) are depicted in Fig. 8. In
this particular case, compare, segment, and warp were
able to correctly recover the intended line of every fixation.
However, the trial presented problems for some of the
other algorithms; in particular, attach failed to handle the
upward shift in the lower left quadrant of the passage, and
regress misinterpreted the situation as a case of upward
slope, resulting in fixations on the right-hand side of the
passage being forced down by one line, a potential weakness
highlighted by our simulations.

Fig. 9 depicts the algorithmic corrections of the child
reading trial, which are represented by the filled triangles

Fig. 9 Original data and corrections of a child trial. Fixations in red have been assigned to the wrong line. Fixations that were discarded in the
gold standard manual correction are shown in gray. The algorithmic corrections correspond to the filled triangles in Figs. 7 and 11
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in Fig. 7. Performance on this trial is much worse due
to the large amount of noise. cluster, for example,
has struggled to correctly classify the fixations due to the
large amount of overlap between fixations intended for
adjacent lines, and segment has identified one particularly
long within-line regression as a return sweep, resulting in
some misalignment in the middle of the passage. Only
warp was able to recover the intended lines for the
majority of fixations, and the few errors it did make appear
to be cases where the correctors chose to discard some
fixations. Overall, these two example trials highlight that,
although the algorithms have a similar level of performance
on average, performance on a particular trial can be
quite divergent depending on its particular characteristics.
Illustrated corrections of all 48 trials by each algorithm can
be found in Supplementary Item 2.

Proportion of corrections likely to be usable Fig. 10 reports
the proportion of corrections that surpassed an accuracy
level of 90%, 95%, and 99% by algorithm. If you are willing
to accept relatively low accuracy at the trial level (e.g.,
90%, Fig. 10a), then cluster, merge, and stretch
will provide the best performance—a large proportion of
corrections will meet this criterion. In comparison, if you
have more stringent accuracy requirements at the trial level
(e.g., 99%, Fig. 10c), then segment, split, and warp
are likely to provide better performance. Of course, the
cost of a more stringent accuracy criterion is that fewer
corrections will be usable overall, and it is not possible
to know which trials have low accuracy in the absence of
manual correction data. This highlights the fact that it is
currently not possible to confidently achieve a high level of
accuracy in a high proportion of trials, so researchers may
still need to invest a significant amount of time if a high
level of accuracy is demanded.

To estimate how usable the corrections are likely to be
to a typical researcher, we performed a more subjective
analysis of their quality. All 480 algorithmic corrections
were presented blind and in random order to two raters
(JWC and VNP), who independently classified every
correction as either “acceptable” or “needs more work.”
The raters did not discuss in advance what criteria they
would use to make these judgments, but agreement was
nevertheless very high at 94%. In addition to the overall
number of errors, the raters weighed up other factors,
such as how the errors were distributed over the passage,
how challenging the input data seemed to be, and what
effect the errors might have for downstream analyses.
The results, which are shown in Fig. 10d, suggest that
cluster, merge, and stretch are likely to produce
very satisfactory results on adult data.

Improvement over no drift correction Another way to
measure performance is in terms of how much of an
improvement an algorithm provides in comparison to
applying no drift collection at all. To estimate this, we first
need to define a baseline level of accuracy. As mentioned
previously, the attach algorithm essentially corresponds
to a standard eye-tracking analysis; it is equivalent to
drawing maximal, nonoverlapping bounding boxes around
the words in a passage and then mapping fixations to
whichever bounding box they fall into (as would be the
case in a standard analysis of eye-tracking data using
the widely adopted area-of-interest paradigm). Therefore,
we can estimate the potential improvement that a given
algorithm offers by comparing its accuracy to the accuracy
of the attach algorithm.

The results of this analysis are plotted in Fig. 11.
The y-axis shows the percentage point increase (or
decrease) in accuracy that results from applying vertical
drift correction. The zero line represents the baseline of

a b c d

Fig. 10 Proportion of trials that surpassed a 90%, b 95%, and c 99% accuracy, and d the proportion of corrections deemed acceptable by two
human raters. The dark and light bars represent the adult and child datasets, respectively
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Fig. 11 Improvement in accuracy in comparison to performing a
standard eye-tracking analysis with no drift correction. The y-axis
measures the percentage point increase (or decrease) in accuracy
beyond the baseline accuracy of the attach algorithm. The filled

points, linked together by dashed lines, correspond to the two exam-
ple trials illustrated in Figs. 8 and 9. The black bars show median
improvement for the adults (solid bars) and children (broken bars)

no drift correction (equivalent to attach). As before,
the datapoints themselves tell us a lot more than the
medians. The chain and split algorithms tend to be
quite conservative, while the others tend to have more
extreme effects. In the best case, cluster resulted in a
77 percentage point increase in accuracy in comparison
to leaving the data uncorrected (i.e., attach = 19%,
cluster = 96%); while in the worst case, regress
resulted in an 81 percentage point drop in accuracy, badly
corrupting the original input data (i.e., attach = 88%,
regress = 7%).

These results highlight that, although in most cases the
application of vertical drift correction can improve data
quality, the process is not without risk. Furthermore, there
is potentially more to gain from applying drift correction to
child data, since the baseline level of accuracy tends to be
lower to begin with; for example, warp offered a modest
2.1 percentage point increase in accuracy on adult data but
an 8.2 percentage point increase on child data.

Relationships between algorithms As noted above, some
algorithms tend to produce very similar output where others
produce quite different output. This raises the issue of how
the algorithms relate to each other regardless of their perfor-
mance characteristics on real or simulated data. To investi-
gate this, for each pair of algorithms, we measured the DTW
distance between the corresponding algorithmic corrections
of each of the 48 sample trials and took the median distance
as an estimate of how dissimilar those two algorithms are.8

We then analyzed the pairwise distances in two ways.

8Since compare was highly divergent from all other algorithms due
to its poor performance, it is not included in this analysis.

Firstly, we used agglomerative hierarchical clustering
to produce a dendrogram (see Fig. 12a), which yields
an approximate taxonomy of the algorithms based on
their similarity. The root node represents all algorithms,
which initially fork into two major groups. The “sequential
algorithms,” segment and warp, both operate on the
principle of identifying the return sweeps and mapping the
resulting subsequences to the lines of text in sequential
order; in other words, their analysis stages can only
produce groups consisting of fixations that were arranged
consecutively in the original fixation sequence. This means
they tend to produce similar outcomes—they both, for
example, force fixations onto inappropriate lines in order
to preserve sequentiality. Of the “positional algorithms,”
split is the first to branch off, perhaps because—like
the sequential algorithms—it leans heavily on the return
sweeps, and among the remaining algorithms, there is a
clear dichotomy between those that assign based on relative
position (cluster, merge, regress, and stretch)
and those that assign based on absolute position (attach
and chain).

Secondly, we used multidimensional scaling to locate the
algorithms in some latent “algorithm space.” Fig. 12b shows
the output of this analysis projected into two hypothetical
dimensions: Algorithms that are close together in this
space tend to produce similar results, while algorithms that
are far apart tend to produce dissimilar results. The two
dimensions of the space appear to roughly correspond to
the algorithms’ analysis strategy (x-axis) and assignment
strategy (y-axis). split, for example, shares its analysis
strategy with segment (it groups fixations based on
return sweeps), but it has an assignment strategy that
is more similar to chain (it assigns based on absolute
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b

Fig. 12 a Hierarchical clustering analysis of the algorithmic outputs,
providing an approximate taxonomy of the algorithms. b Multidimen-
sional scaling analysis of the algorithmic outputs; the distance between
two algorithms corresponds to how dissimilar their corrections tend to
be, so the space as a whole approximates how the algorithms relate to
each other on two hypothetical dimensions

position). We also see that regress and stretch
tend to produce very similar output and are therefore
likely to be somewhat interchangeable. Interestingly, the
human correctors—represented by the gold standard manual
correction—are located in a relatively unexplored part of
algorithm space: Their analysis strategy appears to be more
similar to chain or merge (finding local linear clusters),
while their assignment strategy seems to be more global
and sequential, like warp. Anecdotally, this aligns with our
experience of performing the manual corrections, and this
observation is suggestive of fertile ground for the future
development of correction algorithms.

Summary

In this section, we tested the ten algorithms on a real eye-
tracking dataset. Although warp was marginally the most

performant algorithm across the majority of measures, our
results indicate that the best algorithm will largely depend
on the particular characteristics of a given trial, as well as
the general characteristics of the dataset being corrected. All
48 reading trials could be improved by at least one of the
algorithms; the difficulty for the researcher, of course, is in
knowing which algorithm to apply to a given trial in the
absence of a gold standard.

Discussion

We have identified ten core approaches to the methodologi-
cal problem of correcting vertical drift in eye-tracking data.
We instantiated each of these approaches as a simple algo-
rithm that can be evaluated in a consistent and transparent
way. Our first analysis using simulated data allowed us to
identify which phenomena the algorithms are invariant to
and to quantify how the algorithms respond to increasing
levels of those phenomena. Our second analysis validated
the algorithms on a real eye-tracking dataset and allowed
us to strengthen our qualitative intuitions about their simi-
larities and differences. In the remainder of the paper, we
sum up what we learned about the algorithms, provide some
practical guidance for researchers in the field, and conclude
with some thoughts about how vertical drift correction can
be improved going forward.

Major properties of the algorithms

The algorithms can be placed into three major categories.
The sequential algorithms, segment and warp, hinge
on their ability to correctly identify the return sweeps. If
successful, these algorithms have excellent performance
because any vertical drift in the data essentially becomes
invisible. However, if the text is read nonlinearly, the
premise on which the sequential algorithms are based breaks
down. Therefore, one should apply these algorithms with
great caution when the data are rich in regressions, either
within-line (which warp tends to handle well) or between-
line. The risk is particularly high with segment, which
has good median performance on adult data, but can also
lead to catastrophic errors if large regressions are mistakenly
interpreted as return sweeps.

The relative-positional algorithms, cluster, merge,
regress, and stretch, are mostly dependent on their
ability to correctly classify the fixations into m groups, each
using a slightly different technique to do so. So long as the
identified groups are sound, then the use of relative position
to assign the fixations to lines is generally very resistant to
vertical drift.

The absolute-positional algorithms, attach, chain,
and split, generally tend to be the worst at dealing
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with vertical drift because they assign based on absolute
position; this feature makes them generally weaker than
other algorithms at dealing with noise, slope, and shift.
However, a benefit of these three algorithms is that they
tend to be quite conservative and do not make dramatic
changes to the data, which makes them a reasonable choice
for researchers who would prefer a more minimalist data
transformation or whose data are not overly affected by
distortion issues.

General guidance for researchers

The analyses presented in this paper clearly indicate that
each algorithm performs best on a different set of factors,
some of which we have not considered here in detail.
For example, if the line spacing is quite tight, the eye-
tracking data is more likely to be negatively impacted by
distortion, making a sequential algorithm a better choice;
conversely, if lines are spread far apart, a relative-positional
algorithm may be more appropriate. Overall, different sets
of data will require different correction algorithms, and
a qualitative inspection of the data will be required to
detect the relative severity of general noise, drift issues, and
regression phenomena. To help in this process, one option
might be to hand-correct a sample of the trials in order
to assess which algorithm performs best on those specific
cases and then apply this algorithm to the entire dataset.
However, there might very well be too much trial-by-trial
(or participant-by-participant) variability to use a single
algorithm across an entire dataset. In this case, it may be
preferable to create subsets of data exhibiting comparable
patterns of eye-tracking phenomena and deal with those
subsets with different algorithms. Another idea would be to
run several algorithms over the dataset and manually inspect
cases where there is disagreement.

Recording children’s eye movements poses extra chal-
lenges relative to adults’, particularly due to the difficulty
that younger participants often experience sitting still for
relatively long periods of time (Blythe & Joseph, 2011),
which can lead to a loss of calibration. Therefore, espe-
cially in the case of multiline reading, developing readers’
eye movements are generally characterized by more noise,
as well as by greater slope and shift, than adults’. This
would suggest resorting to algorithms like segment and
warp, which are entirely invariant to noise, slope, and
shift (Fig. 5). However, children tend to generally make
more regressions than adults (e.g., Blythe & Joseph, 2011;
Reichle et al., 2003), which is exactly the phenomenon that
affects segment and warp the most. The general trade-
off between the ability to handle distortion and the ability
to handle regressions is at play here, and only an attentive,
qualitative check of the data will tell the researcher which

way to go. If there does not appear to be too much of an
issue with between-line regressions, then warp is probably
the best choice; otherwise, cluster or merge might be a
better option.

Regarding the practicalities of the algorithm application
pipeline, we suggest performing a few cleaning steps
before drift correction, in order to isolate the line
assignment problem from other issues that the algorithms
considered here were not designed to deal with, and which
would otherwise impair their performance. For example,
researchers may first want to discard any fixations that lie
beyond the text area and merge or eliminate extremely short
fixations. Only after these basic cleaning steps have been
performed, can algorithmic correction be safely applied.

Another important aspect to consider is the presence
of free parameters. The chain, merge, regress, and
stretch algorithms take additional input parameters that
must be set appropriately by the user. In practice, Špakov’s
(2019) and Cohen’s (2013) suggested defaults for the
merge and regress algorithms seemed to work well on
our test dataset, but in the case of chain, it was somewhat
unclear how to set the x and y thresholds appropriately,
so experimentation might be required to produce the best
results. We also found that stretch was very sensitive
to its parameter settings and that the upper and lower
bounds must be tightly constrained around likely values for
it to produce sensible results. An advantage of all other
algorithms is that they are parameter free, making drift
correction easier to perform, document, and justify.

It is also worth considering the complexity of the
algorithms. Some, such as chain and segment, are very
simple and intuitive, while others, such as merge and
warp, are quite complex. Although complexity is not an
important consideration from a performance perspective (in
general, we should prefer whichever algorithm works best),
it is worth considering how complexity might impinge on
real-world use. For example, users may be less inclined to
use an algorithm if they cannot intuitively understand how
it will manipulate their data, so algorithms should, where
possible, be designed in a way that researchers find easy to
understand and easy to convey to their readership. In that
regard, we hope that this paper will give researchers more
confidence in the algorithms, which we have validated and
benchmarked.

Finally, it is worth noting that most of the algorithms
have linear time complexity and can process a reading trial
in fractions of a second, so runtime does not warrant any
special consideration. The one exception to this is merge
which scales quadratically with the number of fixations; in
our testing, for example, it took 100 ms for a trial consisting
of around 100 fixations but up to 31 s for a trial of around
500 fixations.
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Improvements on the algorithms

We would not wish to claim that the algorithms, as presented
here, are the only approaches one may take nor that they are
the ultimate form of each core method; all can be improved
in one way or another. Furthermore, there are likely to
be ways of combining the outputs of multiple algorithms
to increase confidence in particular solutions. The goal of
this paper, however, was to evaluate the algorithms in their
more abstract, idealized forms in order to make general
recommendations and to provide a solid foundation for the
future development of vertical drift correction software.
Nevertheless, here we briefly note some of the most obvious
ways in which the algorithms could be improved.

Chain The main weakness of the chain algorithm is its
reliance on threshold parameters that must be set by the
user, but this situation could be improved if the parameters
defaulted to sensible values based on reliable heuristics.
For example, it may be the case that the parameters can be
reliably estimated from the line and character spacing (as
appears to be the case in Schroeder’s (2019) implementation
in popEye) or other known properties of the passage,
language, or reader. Secondly, our simulations showed
that chain does not respond well to slope distortion,
performing worse than attach under extreme values. This
can be alleviated by a y threshold that grows as the reader
progresses over the line, as is the case in Hyrskykari’s
(2006) sticky lines algorithm.

Cluster The biggest weakness of cluster was its ability
to deal with general noise (or, equivalently, tight line
spacing). One potential way to improve this would be to
utilize the x values of the fixations. Unfortunately, it is
not simply a case of performing a two-dimensional k-
means clustering on the xy values because this leads to
situations where clusters are identified that span multiple
lines because they have similar x values. However, it might
still be possible to utilize the x-axis information, perhaps
by weighting the two axes differently in some way. Cluster
analysis is a very broad topic in data science, and there are
likely to be many other candidate algorithms, beyond simple
k-means clustering, which will be worth investigating.

Merge The core principle of merge is to start with small
groups of fixations and gradually build them up into
gaze lines, guided by their fit to regression lines. The
most extreme version of this algorithm would start with
every fixation in an individual group, and the algorithm
would consider every sequence in which mergers could
be performed (i.e., the entire binary search tree). This
would allow the algorithm to explore cases where it is
first necessary to make a bad merger in order to make a

great merger later on (i.e., it would avoid becoming stuck
in local maxima). Such an algorithm would be intractable,
however, due to a combinatorial explosion in the number
of possible merge sequences. To avoid this, merge uses
an initial chain-like strategy to seed the merge process
with a reduced set of groups, and it then explores just one
possible path through the search tree, selecting only the
most promising merger at each step. One way to improve
the algorithm, then, would be to use more advanced tree
traversal techniques, such as beam search in which several
of the most promising mergers are fully explored on each
iteration. This would come at the cost of making an already
slow algorithm even slower, but it would probably result in
better solutions and might also allow for the removal of the
thresholds and heuristics.

Regress The main weakness of the regress algorithm
is that the m regression lines it fits to the data cannot
take independent slope or offset values, limiting its ability
to handle complex cases, especially those involving shift.
Thus, one obvious way to advance the algorithm would be
to allow for such independent values. However, even the
simplest case of having a single slope parameter, a single
standard deviation parameter, and one offset parameter per
line of text would result in an objective function with m +
2 parameters, which may become difficult or impossible
to minimize, especially as the number of lines increases.
Another avenue for improving regress would be to try
some form of nonlinear regression. In Fig. 9a, for example,
we see a case where a gaze line forms a nonlinear arc, which
a linear regression line cannot fully capture (cf. Fig. 9h).

Segment The performance of the segment algorithm
hinges on its ability to identify the true return sweeps;
when it works, it tends to work very well, but when
it fails, it does so catastrophically. One way to improve
the segment algorithm would therefore be to encode
additional heuristics about how to distinguish true return
sweeps from normal regressions. For example, a return
sweep is not just an extreme movement to the left but
also a movement downward by a relatively predictable
amount (one line space), ultimately landing near the left
edge of the passage. Introducing such heuristics would not
be without caveats, however; in the case of downward slope,
for example, return sweeps can appear quite flat (see, e.g.,
the final sweep in Fig. 8a) and would therefore go unnoticed
under this change.

Split Like segment, split could also benefit from better
sweep detection, as well as better detection of between-
line regressions. There are likely to be many ways of
approaching this classification problem, but one simple
option would be to use both dimensions in the saccade
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clustering—the return sweeps would then be the cluster
of saccades that have large negative change on the x-axis,
as well as a small positive change on the y-axis. More
generally, it might be possible to combine the split and
segment algorithms, since they are quite closely related
computationally. For example, the set of saccades that most
resemble return sweeps could first be identified, and then
the m − 1 most extreme of these could be treated as major
segmentation points, allowing for a sequential assignment,
while the remainder could be treated as minor segmentation
points, allowing for the identification of between-line
regressions.

Stretch Our analyses showed that stretch behaves very
similarly to regress. This is because they are essentially
two variants on the same basic idea: Detect the magnitude
of the underlying slope (regress) or shift (stretch)
and then reverse it. However, this does not work so well
if the underlying calibration error is fluctuating in time or
space. One way to improve the method, then, would be to
search a more complex transformation space by including
rotations and shears, for example, or by applying separate
transformations to each quadrant of the text. Additionally,
as Eq. 1 makes clear, stretch essentially has the attach
algorithm embedded within it, but in principle it should
be possible to substitute this with any of the positional
algorithms. For example, a stretch-chain algorithm
would find a transformation of the fixations that results in
minimal change when you apply the chain algorithm.

Warp The primary weakness of warp is that the expected
fixation sequence cannot encode unpredictable reading
behavior that might be present in the veridical sequence,
and there is no feasible way such unpredictability could
be encoded. Instead, improving the warp algorithm is
likely to involve relaxing DTW’s requirement that matches
between sequences increase monotonically, allowing the
algorithm to find a mix of global and local sequence
alignments. In this respect, the so-called “glocal” alignment
algorithms could prove useful (Brudno et al., 2003), as well
as many other sequence alignment algorithms that ought to
be systematically investigated for the present purposes (e.g.,
Keogh & Pazzani, 2001; Tomasi et al., 2004; Tormene et al.,
2009; Uchida, 2005). One simpler option—which could
also be applied to segment—would be to use attach
as a fallback method in cases where a fixation’s revised y-
axis coordinate is substantially different from its original
y-axis coordinate. This would deal with cases where the
strict sequentiality requirement forces fixations on to lines
that are very far from their original positions.

Improvements on the benchmarking

Aside from improving the algorithms themselves, it would
also be useful to produce a much larger, heterogeneous
benchmarking dataset, with data contributed from many
different laboratories. This would offer more generalizable
results and would help us understand how the algorithms
respond to specific factors. For example, one useful feature
of the dataset we used in this paper is that it includes data
from both adults and children on the same passages of
text, allowing us to compare how the algorithms respond
to these two distinct populations. However, there are
many other factors that will ultimately determine how the
algorithms behave, such as the layout of the text, the
complexity of the reading material, and the peculiarities of
the eye-tracker hardware. In addition, there are likely to
be important linguistic factors at play: For example, our
current set of results may not generalize well to logographic
writing systems, such as Chinese, right-to-left scripts,
such as Hebrew, orthographically opaque languages, such
as English, or agglutinating languages, such as Turkish,
where fixation patterns might differ in ways that the
algorithms are sensitive to. However, the main difficulty
we foresee in creating such a heterogeneous dataset—aside
from producing the required manual corrections—would be
ensuring it is representative of the kinds of experiments that
researchers most typically run, while also diverse enough to
capture all relevant factors.

Conclusions

Our intentions with this paper were twofold. Firstly, we
wanted to systematically evaluate the various vertical
drift correction algorithms that have been reported in the
literature in order to provide guidance to researchers about
how they work, when they should be used, and what
their limitations are. In this respect, our most important
observation was that there is no one killer app; different
datasets—and even different trials within a dataset—will
require different solutions, so researchers should select their
correction method carefully. We hope that the guidance we
have provided herein will be helpful in this regard.

Secondly, we wanted to lay a solid foundation for future
work on post hoc vertical drift correction by delimiting the
core algorithms, providing constraints that future work can
operate inside, and offering new perspectives on how drift
correction techniques can be improved going forward. In
this respect, we have provided basic implementations of the
ten algorithms in multiple languages, which can be used
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as a starting point for building new versions or, indeed, as
a comparison group against which entirely new algorithms
can be compared. Several of the algorithms are already
implemented in the Python package Eyekit (https://jwcarr.
github.io/eyekit/) and the R package popEye (https://github.
com/sascha2schroeder/popEye), which provide higher level
tools for processing and analyzing reading data more
generally. In time, we hope that the algorithms might also
be implemented in other software packages.

Finally, we have introduced two novel methods in this
paper that are distinct from those that have previously been
presented. The warp algorithm, in particular, showed great
promise and is likely to be especially useful to researchers
working on reading development in children. We also hope
that connecting the literature on vertical drift to sequence
alignment techniques might also open new avenues for
future algorithm development.
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