
RESEARCH ARTICLE

The effects of sampling on the efficiency and

accuracy of k−mer indexes: Theoretical and

empirical comparisons using the human

genome

Meznah Almutairy*, Eric Torng*

Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan,

United States of America

* almutai4@msu.edu (MA); torng@msu.edu (ET)

Abstract

One of the most common ways to search a sequence database for sequences that are simi-

lar to a query sequence is to use a k-mer index such as BLAST. A big problem with k-mer

indexes is the space required to store the lists of all occurrences of all k-mers in the data-

base. One method for reducing the space needed, and also query time, is sampling where

only some k-mer occurrences are stored. Most previous work uses hard sampling, in which

enough k-mer occurrences are retained so that all similar sequences are guaranteed to be

found. In contrast, we study soft sampling, which further reduces the number of stored

k-mer occurrences at a cost of decreasing query accuracy. We focus on finding highly simi-

lar local alignments (HSLA) over nucleotide sequences, an operation that is fundamental to

biological applications such as cDNA sequence mapping. For our comparison, we use the

NCBI BLAST tool with the human genome and human ESTs. When identifying HSLAs, we

find that soft sampling significantly reduces both index size and query time with relatively

small losses in query accuracy. For the human genome and HSLAs of length at least

100 bp, soft sampling reduces index size 4-10 times more than hard sampling and pro-

cesses queries 2.3-6.8 times faster, while still achieving retention rates of at least 96.6%.

When we apply soft sampling to the problem of mapping ESTs against the genome, we map

more than 98% of ESTs perfectly while reducing the index size by a factor of 4 and query

time by 23.3%. These results demonstrate that soft sampling is a simple but effective strat-

egy for performing efficient searches for HSLAs. We also provide a new model for sampling

with BLAST that predicts empirical retention rates with reasonable accuracy by modeling

two key problem factors.

Introduction

We study the problem of trying to find the best sampling strategy to create simultaneously effi-

cient and accurate k-mer indexes. These k-mer indexes have been widely used to accelerate the

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Almutairy M, Torng E (2017) The effects

of sampling on the efficiency and accuracy of

k−mer indexes: Theoretical and empirical

comparisons using the human genome. PLoS ONE

12(7): e0179046. https://doi.org/10.1371/journal.

pone.0179046

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: November 18, 2016

Accepted: May 23, 2017

Published: July 7, 2017

Copyright: © 2017 Almutairy, Torng. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Program and Data in

this paper are publicly available at: https://www.

ncbi.nlm.nih.gov/blast ftp://ftp.ncbi.nlm.nih.gov/

pub/agarwala/indexed_megablast https://www.

ncbi.nlm.nih.gov/dbEST.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0179046
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179046&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179046&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179046&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179046&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179046&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179046&domain=pdf&date_stamp=2017-07-07
https://doi.org/10.1371/journal.pone.0179046
https://doi.org/10.1371/journal.pone.0179046
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/blast
https://www.ncbi.nlm.nih.gov/blast
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast
https://www.ncbi.nlm.nih.gov/dbEST
https://www.ncbi.nlm.nih.gov/dbEST

process of searching for all highly similar local alignments (HSLAs) between a query sequence

and a database of sequences. This is a fundamental operation for a wide variety of biological

applications including homologous search [1–4], detection of single nucleotide polymor-

phisms (SNP) [5–7], and mapping cDNA sequences against the corresponding genome

[8–10]. We focus on finding HSLAs over nucleotide sequences where nucleotides are repre-

sented by A, C, G, and T. The HSLAs are commonly used in applications that compare

sequences within the same species or closely related species, and we restrict our study’s data-

base to the human genome.

One of the biggest problems with using k-mer indexes is that the size of the index is signifi-

cantly larger than the underlying database. As biological databases/data sets rapidly increase in

size, the size of the resulting k-mer indexes make using a k-mer index infeasible in many appli-

cations. Furthermore, query time increases rapidly as the database’s size and/or the number of

queries increases. To ensure k-mer indexes remain viable, we must mitigate k-mer index size

and query time.

One of the most effective and widely used ways of mitigating k-mer index size and query

time is to perform sampling, in which we omit some k-mer occurrences from the index. In this

paper, we study how best to sample a k-mer index to manage index size, query time, and accu-

racy where accuracy refers to finding all desired HSLAs. We evaluate a wide range of sampling

rates that includes existing sampling practices as well as many new sampling rates. In particu-

lar, we study soft sampling, or sampling especially sparsely to further reduce index size and

query time at the risk of missing some HSLAs. We show that using soft sampling, which has

largely been ignored in previous studies, significantly reduces index size and computation

times with very little loss in accuracy.

Application 1: Highly similar local alignments

We study k-mer indexes in the context of two motivating applications. The first and primary

application is finding HLSAs between a query sequence q and a database of sequences DB. The

second application is to map ESTs to a genome, first finding HSLAs between the ESTs and the

genome. We now formally define the first application, finding HSLAs.

We start by defining a local alignment A(s, q) between two sequences s and q. For simplic-

ity, we denote A(s, q) as just A.

Definition 1 (Local alignment) A local alignment A(s, q) between any two sequences s and
q is a triple (x, y, m) where x is a contiguous subsequence of s, y is a contiguous subsequence of q,

and m is an injective and monotonically increasing mapping from positions in x to positions in y.

Within an alignment A = (x, y, m), some positions in x may map to no positions in y and

vice versa. Let map(A) denote the number of positions in x that map to positions in y, and let

match(A) denote the number of mapped positions that are identical. We then define the length

of A to be |A| = |x| + |y| −map(A), and we define the match percentage to be mp(A) = match
(A)/|A|. Finally, we define E(A) = |A| −match(A) to be the number of errors in alignment A.

To illustrate these definitions, consider the example in Fig 1 with two local alignments A1

and A2. We have map(A1) = 6, match(A1) = 6, |A1| = 7, mp(A1) = 85.7%, and E(A) = 1 whereas

map(A2) = 11, match(A2) = 10, |A2| = 11, mp(A2) = 91%, and E(A) = 1.

When searching for local alignments, our goal is to find all HSLAs that have a minimum

length and match percentage. We formally define our targeted HSLAs, which we also refer to

as true matches, as follows:

Definition 2 (True match or HSLA) For a database of sequences DB, a query sequence q,

an alignment length threshold l, and a match threshold t, we define HSLA(DB, q, l, t) = {A(s, q) j

s 2 DB,|A(s, q)|� l and mp(A(s, q))� t}.

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 2 / 23

https://doi.org/10.1371/journal.pone.0179046

We use HSLA(q, t) when DB and l are clear from context. We also define short HSLAs to

represent HSLAs that are barely in HSLA(DB, q, l, t) and are the hardest to find.

Definition 3 (Short HSLA) For a database of sequences DB, a query sequence q, an align-
ment length threshold l, and a match threshold t, we define HSLAshort(DB, q, l, t) = {A(s, q) j

s 2 DB, l� |A(s, q)|� (2 − t)l and mp(A(s, q))� t}.
For example, HSLA({s}, q, 6, 85%) = {A1, A2} whereas HSLA({s}, q, 11, 85%) = {A2}; A1

is omitted because it does not meet the length threshold of 11. Likewise, HSLA({s}, q, 6, 90%) =

{A2}; A1 is dropped because it does not meet the match percentage threshold. Focusing on

short HSLAs, HSLAshort({s}, q, 6, 85%) = {A1}. A2 is dropped because it is too long. Note that

HSLA({s}, q, 6, 90%) actually includes several alignments that overlap significantly with A1; we

follow standard practice and only include the longest alignment with highest match percentage

from any group of highly overlapping alignments in HSLA(s, q, l, t).

Finding HSLAs using indexed BLAST

We now describe how indexed BLAST [4] is typically used to find HSLAs in HSLA(DB, q, l, t).
Specifically, indexed BLAST uses a seed-and-extend search process where we have one seed
phase and two extension phases. In the seed phase, for a given k value k0, indexed BLAST uses a

k0-mer index to find shared k0-mers, where a shared k0-mer is a substring formed by k0 conse-

cutive letters that appear in both a database sequence s 2 DB and in the query q. More specifi-

cally, indexed BLAST identifies the locations or occurrences of these shared k0-mers. Once

shared k0-mer occurrences are found, BLAST performs the first extension phase. In this phase,

each occurrence is extended in both directions to find a maximal exact match (MEM), which

is an exact match that cannot be extended in either direction without introducing mismatches.

If a found MEM has length at least some threshold k� (defined below), BLAST performs the

second extension phase where it tries to extend the MEM into an HSLA. BLAST’s extension

process in this second phase is slightly more complex than the process from its first phase

since BLAST must allow some mismatches and gaps in this second phase.

To illustrate this process, consider our example from Fig 1 and suppose we use BLAST to

search for HSLA({s}, q, 11, 90%) with k0 = 4 and k� = 5. Suppose the seed phase returns the

shared 4-mers AACG, TTTT, and TGCG. When BLAST performs the first extension phase, it

would find the MEMs AACGA, TTTTT, and TGCGT. Since k� = 5, BLAST would then try to

extend the three MEMs to HSLAs. The latter two would extend to A2 whereas the MEM

AACGA cannot be extended into an HSLA.

We now describe BLAST’s first two phases in more detail starting with the seed phase.

BLAST constructs a k0-mer index as follows. The k0-mer index saves a list of database k0-mers

in a lookup table of all possible k0-mers, which is 4k
0

entries. We refer to this lookup table as a

Fig 1. Example database sequence s and query sequence q and two local alignments A1 and A2,

where (|) identifies to two mapped identical positions and (*) is an inserted gap position in one of the

two sequences.

https://doi.org/10.1371/journal.pone.0179046.g001

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 3 / 23

https://doi.org/10.1371/journal.pone.0179046.g001
https://doi.org/10.1371/journal.pone.0179046

dictionary. For each k0-mer in the dictionary, BLAST saves some of its occurrences in an

inverted list (also known as an offset list). A k0-mer occurrence is an ordered pair (s, i) where s
is the string containing this occurrence and i is the position of the last character in this

occurrence.

BLAST then finds shared k0-mers as follows. BLAST extracts all k0-mers from query

sequence q. BLAST then searches for each extracted k0-mer in the dictionary. If the extracted

k0-mer is in the dictionary, it represents a shared k0-mer for q and some s 2 DB. BLAST uses

that k0-mer’s inverted list to find occurrences of that k0-mer in DB.

A key choice is what value of k0 should be used. Typically, k0 is chosen to be at most 16 so

that the list of all possible k0-mers, which has 4k
0

entries, can be stored as an array in RAM.

Since we use BLAST to perform our experiments, we use BLAST’s default value of k0 = 12.

We next describe the first extension phase where BLAST searches for MEMk
�s, which are

MEMs of length at least k�. The extension itself is straightforward since mismatches and gaps

are not allowed. The key issue for this phase is what k� should be. We want k� to be as large as

possible to reduce the number of false positives, which are MEMk
�s that cannot be extended

into HSLAs. It is well known how to compute k� given a target alignment length L and a maxi-

mum number of errors E [11–13]. Specifically, k� = bL/(1 + E)c. The basic idea is that the

worst case is when the errors are evenly spaced. The question then is what value of L and E
should be used. The hardest HSLAs to find are the short HSLAs defined in Definition 3; basi-

cally those of length exactly l and match percentage t. Thus, we use L = l and E = b(1 − t)lc,
which leads to k� = l/(1 + b(1 − t)lc).

Hard versus Soft sampling

The fundamental issue with using k0-mer indexes to search for HSLAs is that the k0-mer index

can be very large. Most systems including BLAST control dictionary size by limiting k0 to a

small value such as 12. With this choice of k0, the problem is that there are too many k0-mer

occurrences because the total number of k0-mer occurrences is roughly the total length of all

the sequences in the database DB. The human genome is roughly 3 billion base pairs, so this

would mean roughly 3 billion k0-mer occurrences.

For this reason, k0-mer indexes are typically sampled where we only save some k0-mer

occurrences rather than all of them. We focus on fixed sampling where for a given sampling

step w� 1, a k-mer that occurs at every wth position is saved. We distinguish between two

types of fixed sampling: hard sampling [4, 9] and soft sampling [8].

In hard sampling, we choose w� k� − k0 + 1 so that we are guaranteed to find a k0-mer

within every MEMk
�. Thus, when we apply the first extension step, we will find the resulting

MEMk
�. Since we find all MEMk

�s after the first extension step, we are guaranteed to find all

HSLAs after the second extension step. Without loss of generality, for hard sampling, we

assume w = k� − k0 + 1 since this maximizes the space savings with no loss in accuracy. We

refer to this w value as w0 (w0 = k� − k0 + 1).

In soft sampling, we consider w> w0. Because we no longer are guaranteed to choose

a k0-mer from every MEMk
�, when we apply the first extension phase, we may miss some

MEMk
�s, which may lead to missing some HSLAs in the next extension phase. Thus, if we use

soft sampling, we risk missing some HSLAs.

Retention rates and false positives

Recall our goal is to find HSLA(DB, q, l, t). We denote the HSLAs and short HSLAs found

by using indexed BLAST with parameter values k0 and w to be HSLA(DB, q, l, t, k0, w)

and HSLAshort(DB, q, l, t, k0, w), respectively. With hard sampling (w = w0), we know

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 4 / 23

https://doi.org/10.1371/journal.pone.0179046

HSLA(DB, q, l, t, k0, w0) = HSLA(DB, q, l, t). With soft sampling (w> w0), HSLA(DB, q, l, t) −
HSLA(DB, q, l, t, k0, w) 6¼ ; is possible. We define the retention rate of HSLAs as a function of

w as follows.

Definition 4 (Retention Rate) For a k0-mer index with a sampling step w, the retention rate
for HSLA is RR(w, w0) = |HSLA(DB, q, l, t, k0, w)|/|HSLA(DB, q, l, t)|, and the retention rate for
HSLAshort is RRshort(w, w0) = |HSLAshort(DB, q, l, t, k0, w)|/|HSLAshort(DB, q, l, t)|.

We typically express these ratios as percentages. We will study how RR(w, w0) and

RRshort(w, w0) change as a function of w. Because short HSLAs are the hardest true matches to

find, we expect RR(w, w0)> RRshort(w, w0) in most cases.

We present a new analytical model to compute the expected retention rate of HSLAs in

HSLAshort(DB, q, l, t). The new model is an extension to Kent’s analytical model [8] where he

essentially assumed w = k0 = k�. On the other hand, we propose a new model where we assume

k0 < k� and w� 1. We refer to the new model as the BLAST model since it accounts for typical

parameters used in BLAST searches.

Searching with sampled k0-mer index produces two intermediate results: shared k0-mers

and MEMk
�s. The second extension process, extending MEMk

�s into HSLAs, is more complex

and costly than the first extension process since we are allowing some mismatches and gaps.

We thus define MEMk
�s that do not extend into HSLAs to be false positives. We will also

study how the number of false positives changes as a function of w.

Application 2: Using k-mer indexes in EST mapping

Our second motivating application, which builds upon the first, is mapping ESTs on a genome,

a fundamental procedure in genome research. These mappings are used to discover the intron-

exon structure of genes, SNPs, and cDNA insertions and deletions, to name just a few applica-

tions. Many different mapping tools are available, each with their own advantages [14]. We

focus on hash table–based, seed-and-extend mappers such as mrFAST/mrsFAST [15, 16],

SHRiMP [17], Hobbes [18], drFAST [19], and RazerS [20]. These mappers are typically fully

sensitive mappers that “can detect reads missed by other tools” [14] but may be relatively slow.

We study whether soft sampling k-mer indexes might increase the speed of these mappers

with relatively little loss in sensitivity when working with the human genome as our database.

These methods work in two stages. First, they find the set of all HSLAs between an EST and a

genome. Then they map the EST to the genome by selecting and linking these HSLAs. The

mappers usually differ in how to modify, evaluate, and use the resulting HSLAs to assess the

final mapping process. Fig 2 illustrates the mapping procedure.

In this paper, we assess the effectiveness of soft sampling in mapping human ESTs on a

human genome. Specifically, we assess whether the correct mapping is retained when we use

soft-sampled k0-mer indexes to complete the first stage of finding HSLAs. We measure the

effect of sampling on both the index size and the query time. We only simulate the mapping

process because we want our results to be general and independent from the details of the final

mapping process of a mapper. We hope our findings encourage more developers to allow the

use of a wider range of k0 and w values in their mappers.

Related work

Most previous studies of sampled k0-mer indexes have focused on hard sampling with limited

study of soft sampling and thus have not studied the effect of choosing a large value of w on

retention rate, query time, or false positive rate. For example, Morgulis et al. [4] built Indexed

BLAST, which uses w = k� − k0 + 1 and supports k0 values up to 15. Ning et al. [9] built the

index SSAHA with k0 = 1/2(k� + 1) and w = k0.

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 5 / 23

https://doi.org/10.1371/journal.pone.0179046

Kent [8] has performed the main previous study of soft sampling. Instead of selecting k� as

defined above, Kent developed an analytical model for estimating the likelihood of retaining

matches and creating false positives for a variety of indexed search strategies. These include

searching with one k0-mer, two nearby small k0-mers, and one large k0-mer with one allowed

error. In all cases, he built a soft sampled k0-mer index where w = k� = k0. Kent computed the

best choice of k0 such that the expected accuracy to find all HSLAs was above a given threshold

and the number of shared k0-mers that did not lead to HSLAs was as small as possible.

Kent’s work differs from ours in several key ways. First, we consider only k0 = 12 so that we

can use BLAST to perform our searches, whereas Kent considered multiple k0 values. Second,

we consider a wide range of w values, whereas Kent only considered w = k0. Thus, Kent’s work

does not allow a true study of the effect of w on index performance since, in his work, k0 is
always changing in addition to w.

We extend Kent’s analytical model to work with our choices of k0 < k� and w and we call

this new model BLAST model. We compare our empirical accuracy with both Kent’s original

model and BLAST model predicted accuracies. Our results show that BLAST model is reason-

able accurate in predicting HSLAs retention rate. On the other hand, Kent’s model signifi-

cantly underestimates the retention rate in our experiments with the human genome. This is

expected since Kent’s model is not designed to handle the case when k0 < k�.
We focus on fixed sampling where we take every wth k0-mer occurrence; this is the sam-

pling option supported by NCBI BLAST. An alternative sampling technique is minimizer sam-

pling where we choose a “minimum” k0-mer within a given window [21–26]. More

specifically, for a window of w adjacent k0-mers, the k0-mer that is alphabetically minimum is

selected. The next window then starts one position to right from the previous window.

We focus on fixed sampling for four main reasons. First, it is supported by NCBI BLAST,

whereas minimizer sampling is not. Second, constructing a sampled index using fixed sam-

pling is much simpler computationally. Third, fixed sampling reduces the k0-mer index size

more than minimizer sampling does. Finally, our results indicate that fixed soft sampling

Fig 2. Illustration of EST mapping process. The HSLAs (A, A*), (B, B*), (C, C*), and (D, D*) are used to

report the final mapping.

https://doi.org/10.1371/journal.pone.0179046.g002

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 6 / 23

https://doi.org/10.1371/journal.pone.0179046.g002
https://doi.org/10.1371/journal.pone.0179046

achieves good accuracy in finding true matches, so the added complexity of minimizer sam-

pling seems unnecessary when searching for HSLAs.

Our use of k0-mers fits within the seed-and-extend searching method. In general, seed-and-

extend searching uses two types of seeds: continuous and spaced. We focus on continuous

seeds, which are equivalent to k-mer seeds. Spaced seeds, seeds that allow mismatches in some

predefined positions, increase sensitivity, usually at the cost of greater complexity. We focus

on continuous seeds because they minimize the number of false positives without compromis-

ing retention rate when searching for HSLAs.

We use k0-mer indexes to search for MEMk
�s. We could use a suffix-tree or a suffix-array

index to search for MEMk
�s instead. But we focus on k0-mer indexes because they require less

memory than these other indexes, despite the development of many new compressed and

sparse suffix array data structures [27, 28]. In particular, a recent paper [29] shows that effi-

cient implementations of a k0-mer indexes can find MEMk
�s more efficiently than compressed

sparse suffix arrays, especially when a very large database such as the human genome is used.

Recently, a complementary approach of space-efficient referentially compressed search

indexes has been proposed to support similarity searches on genome data sets [11, 12]. In this

method, genomes are compressed against some reference genome(s). Given a query, the index

then searches two parts: the reference and all genome-specific individual differences. Both

parts are saved in compressed suffix trees. Danek et al. [13] extend reference-based compres-

sion with the use of a k0-mer index. We think employing the complementary approach of refer-

ence compression in unison with sampled k0-mer indexes may be fruitful.

Finally, with respect to mapping ESTs on the human genome, Xin et al. [30] proposed two

general techniques to accelerate k0-mer based mappers. The first technique is to use the set of

adjacent k0-mers as supporting evidence for the existence of a true match. The second is to use

shared infrequent k0-mers to select the best mapping location. Similar to other studies, they

only used w = k while evaluating these techniques. In contrast, we test a broader range of w val-

ues and demonstrate that using a larger w greatly reduces query time and index size while suf-

fering only a small loss of sensitivity.

Problem statement and overall aims

We study the effects of using BLAST with soft sampling when searching for HSLAs and map-

ping ESTs onto the human genome. Our work is unique in that there is little prior work that

has considered soft sampling, and the little work that has considered it has not systematically

studied how w affects accuracy. We specifically study the effect of sampling parameter w on

the size, accuracy, and query time of the k0-mer index. We also extend previous analytical

models to work with our chosen parameters of k0 = 12 and w, and then compare our empirical

results with predictions from both the original and the extended analytical models. We sum-

marize our major contributions.

1. We systematically assess how well BLAST can find HSLA(DB, q, l, t) when using soft sam-

pling where w> k� − k0 + 1 when working with the human genome as our database. In par-

ticular, we study the retention rates RR(w) and RRshort(w). We show that both RR(w) and

RRshort(w) are high, even for large choices of w. Furthermore, the false positive rate, in the

form of MEMk
�s that do not extend into HSLA(DB, q, l, t), is significantly reduced, leading

to a corresponding significant reduction in query time. This demonstrates that soft sam-

pling is a simple but effective method to increase index efficiency with surprisingly little

loss in accuracy.

2. We design a new analytical model that we call the BLAST model by extending previously

developed analytical models to work with our values of k0 < k� and w. We compare the

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 7 / 23

https://doi.org/10.1371/journal.pone.0179046

theoretical predictions from our new BLAST model and old models with our empirical

results. We show that the new model is reasonably accurate whereas other analytical models

are not accurate in our context. We also highlight some possible shortcomings of our new

BLAST model.

3. Finally, we study the effects of using soft sampling for the problem of mapping human

ESTs against the human genome. We conservatively simulate the process because either

existing mapping tools do not support soft sampling or do not allow us to replace the first

phase aligner. We show that we are able to map more than 98% of the query ESTs perfectly

while reducing index size by 3-5 times and query time by 23.3% when compared to hard

sampling.

Materials and methods

We evaluate the effect of soft sampling on using BLAST to (i) find HSLAs and (ii) map ESTs to

the human genome. For both applications, we describe our database and how we create sam-

pled indexes. We then describe our query sets and how we perform queries. We next describe

our evaluation metrics. Finally, we describe how we extend Kent’s analytical model to work

with our choices of k0 = 12 and w.

Experimental settings

Database. For both applications of finding HSLAs and EST mapping, we use the human

genome database provided by Morgulis et al. from their MegaBLAST paper [4] as our data-

base. Morgulis et al. note that the human genome database was the most frequently searched

database in NCBI in 2007 with 10,000 submitted queries per weekday. They partitioned the

human genome database into volumes, each volume is roughly 1 GB in size and available at

(ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/fasta/human). We summarize

key characteristics of each volume in Table 1. We did experiments with both masked and

unmasked data but report results only for the unmasked data since the results were similar. As

in [4], we treat each volume as a separate database. That is, we create an index for each volume

separately and search each volume’s index separately. To obtain results for the human data-

base, we then simply union the results found for each volume.

Sampled index construction. For finding HSLAs, we use four different minimum align-

ment lengths l: 50, 100, 200, and 400 and a match threshold t = 96% or t = 97%. For each of

our four choices of l, we use k� = l/(1 + b(1 − t)lc). For mapping ESTs, similar to Kent’s design

of BLAT [8], we use the same choices except we omit l = 400. Specifically, Kent used l = 100;

we also include l = 50 and l = 200 to study EST mapping under a wider set of possible choices.

Table 1. Human genome volume characteristics.

Name Size(Mbytes) Size(bp)

Chr. 1-5, unmasked 1039.86 1,025,201,451

Chr. 6-13, unmasked 1093.27 1,077,856,590

Chr. 14-Y, unmasked 778.75 767,769,314

Chr. 1-8, masked 1517.93 1,493,033,824

Chr. 9-Y, masked 1400.78 1,377,793,531

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/fasta/human.

https://doi.org/10.1371/journal.pone.0179046.t001

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 8 / 23

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/fasta/human
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/fasta/human
https://doi.org/10.1371/journal.pone.0179046.t001
https://doi.org/10.1371/journal.pone.0179046

We use a geometric progression with base
ffiffiffi
2
p

to choose w values for soft sampling indexes.

Specifically, we consider w ¼
ffiffiffi
2
p i

. For each l, we ignore w less than w0 = k� − k0 + 1 since w0 is

the largest hard sampling value. Likewise, we ignore w� l as these can completely skip over a

potential alignment of length l. This results in a total of eleven choices ranging from w = 8 to

w = 256. Combined with four choices of w0 for hard sampling and three volumes, we create a

total of 15 × 3 = 45 sampled indexes.

We use SI(w) to denote a sampled index created with sampling parameter w; note SI(w0)

denotes a hard sampling index. These choices are summarized in Table 2. Note some sampled

indexes are used with multiple l values. For example, the sampled indexes SI(22) and SI(32) are

used for each choice of l.
We build our sampled indexes using the BLAST program makembindex for the three vol-

umes of the unmasked human genome database using BLAST’s default value of k0 = 12.

Query sets and mappable queries. For HSLA, we use the same query sets that Morgulis

et al. used to evaluate Indexed BLAST [4]. Morgulis et al. organized the queries into three sets

based on the average query length: qsmall (average length 500), qmedium (average length

10,000), and qlarge (average length 100,000). Each set has 100 queries for 300 total queries. We

group all the queries into a single set of 300 queries and report all results using this single

query set. The query sets are available at the following url: ftp://ftp.ncbi.nlm.nih.gov/pub/

agarwala/indexed_megablast/queries/human. For EST mapping, we form our query set Q by

randomly selecting 1000 human ESTs (average length 490) from Expressed Sequence Tags

database from NCBI https://www.ncbi.nlm.nih.gov/dbEST. For each length l, we define Q(l) to

be the subset of Q that has a non-empty HSLA(DB, q, l, t) and refer to these as the mappable
queries for length l.

Query processing. For every query q in the query set, we run BLAST using the blastn
program with the -task megablast option using its default settings except we select

MEMk
� value using -word-size k�, we use multiple values of w, and we set the matching

threshold, also known as identity percentage, using -perc-identity 96% for l = 50 and
-perc-identity97% for all other l. This will return HSLA(DB, q, k�, t, k0, w) where

every alignment must have an MEMk
�. That is, the match percentage t will be satisfied, but the

lengths are only guaranteed to be at least k�, not l. We filter out any HSLAs that are too short

to produce HSLA(DB, q, l, t, k0, w).

False positives. For any query q and any w, we report the number of false positives FP(q,

w) as the number of alignments in HSLA(DB, q, k�, t, k0, w) −HSLA(DB, q, l, t). This should be

very close to the number of MEMk
�s that do not extend to alignments in HSLA(DB, q, l, t); the

two numbers might differ if multiple MEMk
�s are part of the same alignment in HSLA(DB, q,

k�, t) −HSLA(DB, q, l, t).

Table 2. A summary of the parameters used in our experiments for (1) finding HSLAs and (2) EST map-

pings. For HSLA, we consider all four choices of l. For EST, we only consider the first three choices of l.

Sampling parameters

l t k* k0 w0 w > w0

50 96% 16 12 5 8, 11, 16, 22, 32

100 97% 25 12 14 16, 22, 32, 45, 64

200 97% 28 12 17 22, 32, 45, 64, 90, 128

400 97% 30 12 19 22, 32, 45, 64, 90, 128, 181, 256

The k0-mer indexes are built using BLAST with sampling steps w0 and w. True matches HSLAs are of length

� l and a match percentage� t. Only HSLAs that have shared k*-mers are reported by BLAST.

https://doi.org/10.1371/journal.pone.0179046.t002

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 9 / 23

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/queries/human
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/queries/human
https://www.ncbi.nlm.nih.gov/dbEST
https://doi.org/10.1371/journal.pone.0179046.t002
https://doi.org/10.1371/journal.pone.0179046

Experimental system. We run the experiments on a cluster that runs the Community

Enterprise Operating System (CentOS) 6.6. The cluster has 24 nodes where each node has two

2.5Ghz 10-core Intel Xeon E5-2670v2 processors and 256 GB memory.

HSLA evaluation metrics. We evaluate the effectiveness of a given k0-mer index SI(w) as

a function of w and w0 using three metrics: (1) index size reduction, (2) retention rate of

HSLAs, and (3) query time reduction. For retention rate, we consider retention of all HSLAs

as denoted by HSLA(DB, q, l, t) and short HSLAs as denoted by HSLAshort(DB, q, l, t). To help

explain query time reduction, we also measure false positive reduction. We describe each met-

ric in more detail.

For each SI(w) and each choice of w> w0, we define the sampled index size reduction as

SIRðw;w0Þ ¼
jSIðwÞj
jSIðw0Þj

ð1Þ

where |I| is the size of index I. Index size is the sum of dictionary size, measured by counting

the number of k0-mers, and inverted lists’ size, measured by counting the number of k0-mer

occurrences in all the inverted lists. Since the human genome is split into three volumes and

we create a sampled index for each volume, we compute the total index size for all indexes

over all volumes. For the total dictionary size, we take the union of all three dictionaries, and

then we measure the total dictionary size by counting the number of k0-mers in the union set.

For the total inverted lists’ size, we take the sum over all three inverted lists’ sizes.

For each SI(w) and each choice of w> w0, we report the full retention rate RR(w, w0) and

the short retention rate RRshort(w, w0), which we define as follows. For w, w0 and q, we define

RRðq;w;w0Þ ¼
jHSLAðDB;q; l; t; k0;wÞj
jHSLAðDB;q; l; t; k0;w0Þj

ð2Þ

and

RRshortðq;w;w0Þ ¼
jHSLAshortðDB; q; l; t; k0;wÞj
jHSLAshortðDB; q; l; t; k0;w0Þj

ð3Þ

We say that RR(q, w, w0) or RRshort(q, w, w0) is undefined if the denominator is 0. We typically

report both ratios as percentages. We use all three volumes to get these percentages. We then

set RR(w, w0) and RRshort(w, w0) to be the average of RR(q, w, w0) and RRshort(q, w, w0), respec-

tively, where we only include query q in the average if RR(q, w, w0) or RRshort(q, w, w0), respec-

tively, is defined. We report RR(w, w0) since this is a typical user query. We specifically define

RRshort(w, w0) to fairly compare empirical retention rate with expected retention rate. Intui-

tively, RRshort(w, w0) focuses on the hardest to retain HSLAs.

For each SI(w) and each choice of w> w0, we report the average query time reduction per-

centage QTR(w, w0), which we define as follows. We start by defining the query time QT(q, w)

for a given query q and sampled index SI(w) (including SI(w0)) as follows. We process each

query q on SI(w) five times using BLAST and we set QT(q, w) to be the median of the five val-

ues. Since SI(w) is partitioned into three volumes, the query time for a given q is the sum of the

query times over the three volumes. The query time reduction QTR(q, w, w0) is then

QTRðq;w;w0Þ ¼
QTðq;wÞ
QTðq;w0Þ

: ð4Þ

Finally, the average query time reduction QTR(w, w0) is the average of QTR(q, w, w0) over

all q.

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 10 / 23

https://doi.org/10.1371/journal.pone.0179046

Finally, to help explain the query time reduction results, for each SI(w) and each choice of w
> w0, we report the average false positive reduction rate FPR(w, w0), which we define as fol-

lows. For a given query q and sampled index SI(w) (including SI(w0)), we define FP(q, w) to be

the number of false positive; that is, HSLAs that do not lead to elements of HSLA(DB, q, l, t)
when we apply the second, more expensive, extension phase. We believe that FP(q, w)

decreases as w increases, and this may help explain any reduction in query time. To test this,

we define the false positive reduction rate FPR(q, w, w0) to be

FPRðq;w;w0Þ ¼
FPðq;wÞ
FPðq;w0Þ

ð5Þ

Finally, the average false positive reduction rate FPR(w, w0) is the average of FPR(q, w) over

all q.

EST mapping evaluation metrics. For each soft sampled index SI(w) and a given length

l, we report its retention rate, RRmap(w, l), as the percentage of Q(l) such that all of HSLA(DB,

q, l, t) is found using SI(w). We use this requirement because this implies that the mapping

result for SI(w) for the given query q will be identical to the mapping result for SI(w0) and q
regardless of the mapping procedure used. Otherwise, at least one highly similar local align-

ment is lost and we pessimistically assume that the mapping result would be lost as well.

More formally, for a given mappable queries set Q(l) and k0-mer index SI(w), we define the

set Q0(l)� Q(l) as follows

Q0ðlÞ ¼ fq 2 QðlÞ j HSLAðDB;q; l; t; k0;wÞ ¼ HSLAðDB; q; l; t; k0;w0Þg ð6Þ

Then, we define the index retention rate RRmap as follows:

RRmapðw;w0Þ ¼
jQ0ðlÞj
jQðlÞj

ð7Þ

We also report the effect of w on query time using the same process as with HSLA, namely,

running each query five times, taking the median time, and then reporting the average reduc-

tion in query time over all 1000 queries. Note that we use all queries rather than just the map-

pable queries when reporting query time.

Analytical modeling

We now describe how we analytically model two of the evaluation metrics, index size reduc-

tion and retention rate.

Predicting index size. We first show how we compute the expected size of a sampled

index SI(w). For the dictionary, we assume the k0-mer dictionary is full and thus the size of a

k0-mer dictionary is 4k
0

entries, which in our case, is 412. This may not be accurate, but since

the dictionary size is typically much smaller than the inverted lists size given k0 = 12, this is

accurate enough. The number of k0-mer occurrences stored in the inverted lists is simply

(D − S(k0 + 1))/w where D = |DB|, the number of positions in DB, and S is the number of dis-

tinct sequences in DB. Thus, the predicted size of SI(w) is simply

sizeðSIðwÞÞ ¼ 4k0 þ
D � Sðk0 þ 1Þ

w
ð8Þ

Predicting retention rate. We present a new analytical model to compute the expected

retention rate of HSLAs in HSLAshort(DB, q, l, t). We start by presenting Kent’s analytical

model [8] where he essentially assumed w = k0 = k� in his model. We then propose a new

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 11 / 23

https://doi.org/10.1371/journal.pone.0179046

model that we refer to as the BLAST model to account for typical parameters used in BLAST

searches. We refer to the expected retention rates as E[RRK] and E[RRB] for Kent’s model and

our model, respectively. For both retention rates, we make a few simplifying assumptions and

refer to the two models generically as E[RR] when describing these common assumptions.

First, we restrict our attention to HSLAs that have length exactly l. Second, we assume each

HSLA in HSLAshort(DB, q, l, t, k0, w) is retained with the same probability, and this probability

is independent of other HSLAs. This implies

E½RR� ¼ E
jHSLAshortðDB; q; l; t; k0;wÞj
jHSLAshortðDB; q; l; tÞj

� �

ð9Þ

which simplifies to just p(A)

E½RR� ¼ pðAÞ ð10Þ

The p(A) represents the probability that a short HSLA A is retained. This allows us to focus on

a single short HSLA A in the rest of this analysis. Finally, we assume each position in A is inde-

pendent of other positions and the probability that any position in A is a match is exactly t.
Kent’s original retention rate model (E[RRK]). We start with Kent’s original model [8].

where he assumes w = k� = k0. The number of k�-mers that are guaranteed to be chosen from

x within A is

T ¼ bðjxj � k� þ 1Þ=wc ð11Þ

Furthermore, these k�-mers will be adjacent to each other with no gaps. For A to be retained,

at least one of these chosen k�-mers from x must exactly match the corresponding k�-mer in y
from q. The probability of such an exact match assuming each position is independent and

that the overall match percentage within A is t is then

p ¼ tk� ð12Þ

Since the sampled k�-mers do not overlap, the probability that all fail to match is then (1 − p)T.

Thus, the probability that at least one will match and alignment A will be found is p(A) = 1 −
(1 − p)T. Since E[RRK] = p(A), we have

E½RRK � ¼ 1 � ð1 � pÞT ð13Þ

BLAST retention rate model (E[RRB]). To extend this analysis to the typical BLAST set-

ting with distinct w, k� and k0, we must modify the formula in two ways. The first key issue is

that we sample k0-mers but then extend them to search for k�-mers. The sampled k0-mer must

be an exact match, which again happens with probability p = tk
0

The key issue after this is

whether this can be extended to an MEMk
�. Suppose this can extend exactly 0� l� k� − k0 − 1

characters to the left before we get a mismatch. We then need it to extend at least k� − l − k0

characters to the right. The probability we can extend exactly l characters to the left is tl(1 − t).
The probability we can extend at least k� − l − k0 characters to the right is tk

�−k0−l. Thus, the

probability that we have a k0-mer, it extends exactly 0� l� k� − k0 − 1 characters to the left,

and it extends at least k� − l − k0 characters to the right is then tk
0

tl(1 − t)tk
�−k0−l = tk

�

(1 − t)
There are k� − k0 − 1 choices for l leading to a final probability of (k� − k0 + 1)tk

�

(1 − t). The

other possibility is that it extends at least k� − k0 characters to the left, which occurs with

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 12 / 23

https://doi.org/10.1371/journal.pone.0179046

probability tk
�

giving us a total probability of

p0 ¼ ðk� � k0 � 1Þtk� ð1 � tÞ þ tk� ð14Þ

The second key issue is that in Eq 11, we used the floor function as this is the number of k�-
mers from x within A that are guaranteed to be chosen. Using the floor function ignores the

possibility that we may have an additional k�-mer chosen from x. That is, the number of k�-
mers from k that will be sampled might be either

Tf ¼ bðjxj � k� þ 1Þ=wc ð15Þ

Tc ¼ dðjxj � k� þ 1Þ=we ð16Þ

where Tf = T from Eq 11. If we assume that each possible window for w is equally likely, then

pðTf Þ ¼
w� Tc � ðjxj � k� þ 1Þ

w
ð17Þ

pðTcÞ ¼ 1 � pðTf Þ ð18Þ

For the case where b(|x| − k� + 1)/wc = (|x| − k� + 1)/w, p(Tf) = 0, which means p(Tc) = 1 so the

result is still correct.

In our new BLAST model, we update Eq 13 replacing p with p0 and replacing T with Tc and

Tf as follows.

E½RRB� ¼ 1 � pðTf Þð1 � p0ÞTf � pðTcÞð1 � p0ÞTc ð19Þ

We will compare both Kent’s model and our new BLAST model in our results.

Results and discussion

We report the impact of sampling on the efficiency of a k0-mer index on the index size and

query performance. We report both the expected and the actual impact of sampling.

Index size

As expected, the index size is inversely proportional to the sampling step w. This means that soft

sampling does lead to a significant reduction in space when compared to hard sampling. For

example, when w/w0 is roughly 1.7 and 4.4, the index size reduces by 38% and 74% for all val-

ues of l we considered. The percentage of reduction increases as l increases. For example when

l = 400 and w/w0 is almost 10, the index size reduces by 90%.

With hard sampling w0 = k� − k0 + 1, the space reduction is limited by k�. With soft sam-

pling w> k� − k0 + 1, w is limited primarily by l, where typically l� k� (see Table 2). We plot

results for the percentage reduction in index size in Fig 3. Since the expected index size (see

Eq 8) and the actual index size are almost identical, the expected size is omitted.

Sampling reduces index size because it reduces the number of sampled k0-mers leading to a

factor of w reduction in inverted lists size, the dominant component of index size. On the

other hand, although sampling does reduce dictionary size, the reduction is relatively small

and does not greatly affect the final index size. For example when w/w0 is roughly 1.7 and 4.4,

the dictionary is about 9% and 17% of the the index size and the average reduction in the dic-

tionary size is 9% and 27% respectively.

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 13 / 23

https://doi.org/10.1371/journal.pone.0179046

Retention rate of HSLAs

We first examine RR(w, w0) to study how the overall HSLA retention rate changes as a func-

tion of w, w0, and l. We first observe that RR(w, w0) improves as l increases. In particular, as

can be seen from our RR(w, w0) results from Fig 4, if we look at choices for w and w0 that have

a similar ratio w/w0, the RR(w, w0) retention result is higher for larger l. In particular, whereas

RR(32, 5) for l = 50 falls below 80%, RR(w, w0)� 96.6% for l� 100 for all tested values of w,

and RR(256, 30) = 97.5% for l = 400. Thus, for large values of l, we can use soft sampling where

w/w0 approaches even 10 and still achieve retention rates of close to 100%.

We now focus on the retention rate of short HSLAs. First we compare RR(w, w0) with

RRshort(w, w0) as a function of w, w0, and l. Fig 4 also contains our RRshort(w, w0) results. We
observe that if w/w0< 4, then the difference between RR(w, w0) and RRshort(w, w0) is small
(less than 4%) for almost all choices of l; the one outlier is l = 100 where we see a difference of

11% for w/w0 = 45/14� 3.2. For example, for all values of l except 100, the difference between

RR(w, w0) and RRshort(w, w0) is at most 1.8%. We do see a significant difference between

RR(w, w0) and RRshort(w, w0) for our largest choices of w, which means that RRshort(w, w0) does

fall off by w/w0 = 10 or so. Thus, in contrast to RR(w, w0), there is an upper limit to how much

we can soft sample before RRshort(w, w0) suffers.

Next we examine how RRshort(w, w0) changes as a function of w, w0, and l. Similar to

RR(w, w0), we observe RRshort(w, w0) generally improves as l increases given roughly the same

ratio of w/w0. For example, when w/w0 is roughly 6, RRshort(w, w0) is 65%, and 85%, and 95%

for l equal to 50, 200, and 400, respectively. In general, we can retain 90% more short HSLAs

for either small w/w0 ratios (less than 2 or 3) or large l values (200 or 400).

We now want to compare empirical retention rate with predicted retention rate as a func-

tion of w, w0 and l. Comparing RR(w, w0) to E[RRB(w, w0)] is not fair as RR(w, w0) includes

Fig 3. The sampled index SI(w) size (percentage) as a function of sampling step size w of SI(w) versus

sampled index SI(w0). The k0-mer indexes are built with k0 = 12 and w� w0 where w0 = l − k + 1.

https://doi.org/10.1371/journal.pone.0179046.g003

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0179046.g003
https://doi.org/10.1371/journal.pone.0179046

many alignments significantly longer than l whereas E[RRB(w, w0)] focuses only on alignments

with length exactly l. To more fairly compare empirical retention rate to expected retention

rate, we compare RRshort(w, w0), where the length of the alignment is in the range [l, (2 − t)l],
with E[RRB(w, w0)], where an alignment is assumed to have a length l. We consider HSLAs

with length up to (2 − t)l to ensure there are a reasonable number of HSLAs. We also note that

if we assume that the (1 − t)l errors were all insertions rather than substitutions, this would

increase the length of the HSLA to (2 − t)l. Fig 4 also contains our E[RRB(w, w0)] results.

Fig 4. The actual HSLA retention rate RR(w, w0), the actual short HSLA retention rate RRshort(w, w0), and the expected short HSLA

retention rate using both Kent’s model E[RRK(w, w0)] and BLAST model E[RRB(w, w0)] for (a) l = 50, w0 = 5, (b) l = 100, w0 = 14, (c)

l = 200, w0 = 17, and (d) l = 400, w0 = 30. For other parameters values see Table 2.

https://doi.org/10.1371/journal.pone.0179046.g004

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 15 / 23

https://doi.org/10.1371/journal.pone.0179046.g004
https://doi.org/10.1371/journal.pone.0179046

We observe that the BLAST model predicts actual retention rate of short HSLAs with reason-
able accuracy, particularly for small w/w0 and for larger l. For example, the typical difference

between RRshort(w, w0) and E[RRB(w, w0)] when w/w0� 2 is less than 5% for all choices of

l and is less than 1% for large l = 200 and l = 400. The typical difference stays below 10%

for almost all choices of w/w0 and l with only a few exceptions. The difference between

RRshort(w, w0) and E[RRB(w, w0)] does grow as w/w0 increases, but at a relatively slow rate, typi-

cally maximized at the largest choice of w/w0, though this does not hold for l = 400. We do

note that we have relatively few empirical HSLAs for the large w values for l = 400, so perhaps

with more samples, the difference between RRshort(w, w0) and E[RRB(w, w0)] might increase

for these l and w choices.

Finally, we compare the predictions from Kent’s model E[RRK(w, w0)] and our new BLAST

model E[RRB(w, w0)]. Our new BLAST model is significantly more accurate than Kent’s model,
especially as w/w0 increases. For example, for w/w0 equal to 1.7, 3.4 and 4.7, E[RRK] is on aver-

age less than E[RRB] by 5%, 18%, and 23%, respectively, for all l values we consider. Kent’s

model has several issues. First, because of the floor function used in Eq 11, it underestimates

the number of sampled k�-mers from a given HSLA resulting in common retention rate pre-

dictions for multiple values of w. For example when l = 100, E[RRK] = 46.70% for both w = 45

and w = 64. The second flaw is that Kent’s model was not designed to handle different values

for k0, k�, and w, which is what is typically used in BLAST. Because our BLAST model is

designed to overcome both issues, it achieves better results, particularly for larger w/w0 and for

larger l.

Possible improvements for the BLAST model

While our new BLAST model is much more accurate than Kent’s original model, it still under-

estimates actual retention rates for large w/w0. We now explore possible explanations for this

underestimate. We believe the fundamental problem with our new BLAST model (as well as

Kent’s model) is that for any HSLAshort(DB, q, l, t), it only assumes that each position is a

match with probability t.
We demonstrate the shortcomings of this assumption in two different ways. We first show

that using this assumption, we greatly underestimate the length of the maximum MEM within

any HSLA; we refer to this maximum MEM length as MAX-MEM. Long MEMs are relevant

because long MEMs significantly increase the likelihood of recovering an HSLA. For example,

if an HSLA includes an MEM of length w + k − 1, then it is guaranteed the HSLA will be found

since one k-mer is guaranteed to be chosen from within the MEM.

We perform this comparison as follows. We first obtain an empirical distribution of

MAX-MEM by recording the length of the longest MEM in every HSLA in RRshort(w, w0). We

then use the BLAST model’s fundamental assumption that each position in an HSLA is

identical with probability t to create a corresponding predicted distribution of MAX-MEM.

For this predicted distribution of MAX-MEM, we assume that the length of the HSLA is l, the

number of mismatches is exactly (1 − t)l, and each position is equally likely to be a mismatch.

All told, there are l choose (1 − t)l different combinations of errors that are equally likely. We

can then compute the predicted distribution by enumerating all possibilities for l = 50 and

l = 100.

For l> 100, it takes too much time to enumerate all possibilities. Thus, we use Monte Carlo

simulation to compute a second predicted distribution for MAX-MEM. We create short

HSLAs as follows. We start with an alignment of length l, a set S of mismatch positions, which

is initialized to empty, and a count C of the number of mismatch positions, which is initially 0.

Then, we repeatedly choose a position in the range [0, L − 1] uniformly at random. If the

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0179046

position is not in S, we add the position to S and increment C by one. Otherwise, we do noth-

ing with the chosen position and choose another one. When C reaches (1 − t)l, we stop with a

complete HSLA. We then record its longest MEM. We do this until we have recorded one mil-

lion such longest MEMs.

For l = 50 and l = 100, Monte Carlo simulation and complete enumeration produce essen-

tially identical distributions for MAX-MEM. Thus, we only show results from our Monte

Carlo simulations since these cover all choices of l. We show the results for our experimental

and Monte Carlo distribution of MAX-MEM for all four choices of l in Fig 5. We observe that

Fig 5. Distribution of predicted and empirical MAX-MEM lengths in HSLAs. The predicted MAX-MEM lengths are computed from a

Monte Carlo simulation. (a) l = 50, t = 96%, (b) l = 100, t = 97%, (c) l = 200, t = 97%, and (d) l = 400, t = 97%.

https://doi.org/10.1371/journal.pone.0179046.g005

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 17 / 23

https://doi.org/10.1371/journal.pone.0179046.g005
https://doi.org/10.1371/journal.pone.0179046

the empirical MAX-MEM distribution is weighted more heavily towards longer MEMs than

the predicted distribution. This demonstrates that the assumptions used in the BLAST model

do not correctly predict the distribution for MAX-MEM length; in general, they underestimate

the probability for finding longer MEMs. While the distribution of MAX-MEM is not identical

to retention rate of HSLAs, this finding provides evidence that we need stronger assumptions

to better predict retention rate of HSLAs.

We now show another fundamental flaw with the base assumption of the BLAST model.

Consider an HSLA of length l, and suppose we assume that each query position is independent

and matches its corresponding database position with probability t (similar to the BLAST mod-

el’s assumptions). Then, there is a (1 − t) probability that each position does not match. In this

scenario, the total number of mismatches has the binomial distribution Bin(l, (1 − t)), which

has an expected number of mismatches of exactly (1 − t)l. If the number of mismatches exceeds

this expected value, we would no longer have an HSLA, but this is clearly contradicts with the

first assumption that we start with an HSLA. The probability that the number of mismatches

exceeds (1 − t)l is given in Table 3. Given this weak assumption, the BLAST model essentially

starts with a probability ranging from 32% to 43% that the given HSLA is not an HSLA.

We have shown that the weak assumption used in the BLAST model (1)underestimates the

probability of longer MAX-MEMs and (2) gives a significant probability for HSLAs to not be

HSLAs. Taken together, we believe a new model with stronger assumptions is needed to pro-

duce more accurate predictions about retention rate of short HSLAs.

Query time

We now examine how soft sampling affects query time. The query time is approximately
inversely proportional to the sampling step w for all l values without significantly reducing reten-
tion rate RR(w, w0). For example, for l = 200, the median query time for hard sampling is 26

hours. When w/w0 is 3.8 and 5.3, the median query time reduction percentages are 64.51%

(median query time 10 hours) and 73.38% (median query time 7.4 hours), respectively, while

maintaining RR> 99%. Similarly, for l = 400, the median query time for hard sampling is 18.6

hours. When w/w0 is 6.7 and 9.3, the query time reduction percentages are 78.36% (median

query time 4.3 hours) and 83.99% (median query time 3.3 hours), respectively, while maintain-

ing RR> 99%. Fig 6 shows our full query time results represented as query time reduction

(QTR) percentages.

The reduction in false positive rate mostly explains the reduction in query time. Recall that

false positives are alignments in HSLA(DB, q, k�, t) −HSLA(DB, q, l, t), which is roughly the

number of MEMk
�s that do not extend into alignments in HSLA(DB, q, l, t). This implies

much of the query time is spent ruling out false positives and that using soft sampling not only

has little affect on retention rate but also significantly reduces false positives. Our full false

Table 3. The probability that the number of mismatches exceeds (1 − t)l for various choices of l and t.

l t Probablity mismatches exceeds (1 − t)l

50 0.96 32.3%

100 0.97 35.3%

200 0.97 39.4%

400 0.97 42.4%

Under the assumption that the number of mismatches in a HSLA follow Bin(l, (1 − t)), Kents’s model

underestimates the the existence of the HSLA by 30%–40%.

https://doi.org/10.1371/journal.pone.0179046.t003

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 18 / 23

https://doi.org/10.1371/journal.pone.0179046.t003
https://doi.org/10.1371/journal.pone.0179046

positive reduction rate results are shown in Fig 6. As can be seen from this figure, the plots for

false positive reduction rate (FPR) and query time reduction (QTR) percentage are very

similar.

Mapping results

We report our retention rate and query time results for EST mapping in Tables 4, 5 and 6. Our
results show that the number of mappable queries that retain all HSLAs is very high even when

Fig 6. The average median query time reduction (QTR) percentages and the actual false positive reduction (FPR)

percentages as a function of sampling step w. (a) l = 50, w0 = 5, (b) l = 100, w0 = 14, (c) l = 200, w0 = 17, and (d) l = 400, w0 = 30.

For other parameters values see Table 2.

https://doi.org/10.1371/journal.pone.0179046.g006

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 19 / 23

https://doi.org/10.1371/journal.pone.0179046.g006
https://doi.org/10.1371/journal.pone.0179046

we use soft sampling. Furthermore, we achieve significant reductions in query processing time.

Recall that a query q is mappable is there is at least one HSLA between q and the reference (the

human genome in our case). When an index SI(w) is used where w> w0, a query is lost if even

a single HSLA is not found by SI(w).

Using soft sampling, we are able to greatly reduce the index size, significantly reduce query

time, and correctly map more than 95% of the mappable queries for l� 100. In fact, for

l� 100, we correctly map almost 99% of the mappable queries for w/w0 approaching 5. For

l = 200, we correctly map at least 95% of the mappable queries for w/w0 = 7.5. For l = 50, we

still see good retention rates but the drop off is a bit faster. Specifically, for l = 50, for w/w0

approaching 3, we correctly map 96% of the mappable queries. For w/w0 between 4 and 5, we

correctly map 92% of the mappable queries, and for w/w0 between 6 and 7, we correctly map

77% of the mappable queries. Finally, the actual retention rates may be even better than the

ones reported as we required that all HSLAs be retained whereas mapping may proceed prop-

erly even if some HSLAs are lost.

Table 4. The retention rate (RRmap) and query time reduction (QTR) results for all 1000 queries when

l = 50 and w0 = 5, where 879 were mappable queries.

w # retained queries RRmap QTR

5 879 100.00% 100.00%

8 876 99.66% 100.00%

11 864 98.29% 89.72%

16 849 96.59% 75.67%

22 811 92.26% 64.19%

32 677 77.02% 51.40%

https://doi.org/10.1371/journal.pone.0179046.t004

Table 5. The retention rate (RRmap)and query time reduction (QTR) results for all 1000 queries when

l = 100 and w0 = 14, where 794 were mappable queries.

w # retained queries RRmap QTR

14 794 100.00% 100.00%

16 794 100.00% 95.60%

22 794 100.00% 85.67%

32 793 99.87% 83.07%

45 789 99.37% 80.26%

64 784 98.74% 76.68%

https://doi.org/10.1371/journal.pone.0179046.t005

Table 6. The retention rate (RRmap)and query time reduction (QTR) results for all 1000 queries when

l = 200 and and w0 = 17, where 528 were mappable queries.

w # retained queries RRmap QTR

17 528 100.00% 100.00%

22 528 100.00% 93.76%

32 528 100.00% 91.91%

45 525 99.43% 87.07%

64 528 100.00% 84.08%

90 523 99.05% 80.36%

128 506 95.83% 78.76%

https://doi.org/10.1371/journal.pone.0179046.t006

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 20 / 23

https://doi.org/10.1371/journal.pone.0179046.t004
https://doi.org/10.1371/journal.pone.0179046.t005
https://doi.org/10.1371/journal.pone.0179046.t006
https://doi.org/10.1371/journal.pone.0179046

In human EST mapping, it is common to use HSLAs of length l = 100 to search for the best

mapping [8–10]. To study a broader range of possibilities, we also consider l = 50 (more

HSLAs and thus more mappable queries) and l = 200 (fewer HSLAs and thus fewer mappable

queries). Our results imply that soft sampling can be used with relatively small loss in sensitiv-

ity for the commonly used case of l = 100. Given that the index sizes are significantly reduced

and query times are also reduced, soft sampling may allow for EST mapping using k-mer

based methods for larger genomes with only a small loss in sensitivity.

Conclusion

We now summarize our main conclusions. Based on our experiments with the human genome

and NCBI BLAST, soft sampling achieves significant space and time savings while also retain-

ing highly similar local alignments with much higher probabilities than predicted by analytical

modeling. Even better, when applied to EST mapping, soft sampling achieves significant space

and time savings while retaining 98% of all mapping results (for l = 100), and the retention

results may be even better as we pessimistically assume that losing even a single highly similar

local alignment will lead to an incorrect mapping result. Further, because we performed all of

our local alignments using BLAST, these results can be easily tested and adopted by other

researchers.

This is but a first step in studying soft sampling. We can extend this work in many direc-

tions. We would like to test the effectiveness of soft sampling using other real biological data

sets and in other applications such as clustering or SNP detection. Also, we would like to com-

bine soft sampling with reference-based compressed k-mer indexes, which are useful when

there is high redundancy in the data sets [11–13]. We focused on soft fixed sampling. An alter-

native method is soft minimizer sampling, which uses lexicographic information during the

sampling process and allows sampling of query k-mers. In future research we plan to compare

the two methods.

Acknowledgments

We thank the anonymous reviewers for their very helpful comments that greatly improved the

paper. This work was supported in part by Michigan State University through computational

resources provided by the Institute for Cyber-Enabled Research.

Author Contributions

Conceptualization: MA ET.

Data curation: MA.

Formal analysis: MA ET.

Investigation: MA.

Methodology: MA ET.

Project administration: MA ET.

Resources: MA ET.

Software: MA.

Supervision: ET.

Validation: MA ET.

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 21 / 23

https://doi.org/10.1371/journal.pone.0179046

Visualization: MA ET.

Writing – original draft: MA ET.

Writing – review & editing: MA ET.

References
1. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proceedings of the

National Academy of Sciences. 1988; 85(8):2444–2448. https://doi.org/10.1073/pnas.85.8.2444 PMID:

3162770

2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-

BLAST: A new generation of protein database search programs. Nucleic Acids Research. 1997; 25(17):

3389–3402. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694

3. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of

Computational Biology. 2000; 7(1–2):203–214. https://doi.org/10.1089/10665270050081478 PMID:

10890397

4. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing for pro-

duction MegaBLAST searches. Bioinformatics. 2008; 24(16):1757–1764. https://doi.org/10.1093/

bioinformatics/btn322 PMID: 18567917

5. Irizarry K, Kustanovich V, Li C, Brown N, Nelson S, Wong W, et al. Genome-wide analysis of single-

nucleotide polymorphisms in human expressed sequences. Nature Genetics. 2000; 26(2):233–236.

https://doi.org/10.1038/79981 PMID: 11017085

6. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. A map of human

genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;

409(6822):928–933. https://doi.org/10.1038/35057149 PMID: 11237013

7. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Research. 2001; 11(5):

863–874. https://doi.org/10.1101/gr.176601 PMID: 11337480

8. Kent WJ. BLAT-the BLAST-like alignment tool. Genome Research. 2002; 12(4):656–664. https://doi.

org/10.1101/gr.229202 PMID: 11932250

9. Ning Z, Cox AJ, Mullikin JC. SSAHA: A fast search method for large DNA databases. Genome

Research. 2001; 11(10):1725–1729. https://doi.org/10.1101/gr.194201 PMID: 11591649

10. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST

sequences. Bioinformatics. 2005; 21(9):1859–1875. https://doi.org/10.1093/bioinformatics/bti310

PMID: 15728110

11. Wandelt S, Leser U. Mrcsi: Compressing and searching string collections with multiple references. Pro-

ceedings of the VLDB Endowment. 2015; 8(5):461–472. https://doi.org/10.14778/2735479.2735480

12. Wandelt S, Starlinger J, Bux M, Leser U. RCSI: Scalable Similarity Search in Thousand(s) of Genomes.

Proceedings of the VLDB Endowment. 2013; 6(13):1534–1545. https://doi.org/10.14778/2536258.

2536265

13. Danek A, Deorowicz S, Grabowski S. Indexes of large genome collections on a PC. PLOS ONE. 2014;

9(10):e109384. https://doi.org/10.1371/journal.pone.0109384 PMID: 25289699

14. Hatem A, BozdağD, Toland AE, Çatalyürek ÜV. Benchmarking short sequence mapping tools. BMC

Bioinformatics. 2013; 14(1):1. https://doi.org/10.1186/1471-2105-14-184 PMID: 23758764

15. Hach F, Hormozdiari F, Alkan C, Hormozdiari F, Birol I, Eichler EE, et al. mrsFAST: A cache-oblivious

algorithm for short-read mapping. Nature Methods. 2010; 7(8):576–577. https://doi.org/10.1038/

nmeth0810-576 PMID: 20676076

16. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, et al. Personalized copy

number and segmental duplication maps using next-generation sequencing. Nature Genetics. 2009;

41(10):1061–1067. https://doi.org/10.1038/ng.437 PMID: 19718026

17. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M. SHRiMP: Accurate mapping of short

color-space reads. PLOS ONE Computational Biology. 2009; 5(5):e1000386. https://doi.org/10.1371/

journal.pcbi.1000386 PMID: 19461883

18. Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X. Hobbes: Optimized gram-based methods for effi-

cient read alignment. Nucleic Acids Research. 2012; 40(6):e41–e41. https://doi.org/10.1093/nar/

gkr1246 PMID: 22199254

19. Hormozdiari F, Hach F, Sahinalp SC, Eichler EE, Alkan C. Sensitive and fast mapping of di-base

encoded reads. Bioinformatics. 2011; 27(14):1915–1921. https://doi.org/10.1093/bioinformatics/btr303

PMID: 21586516

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 22 / 23

https://doi.org/10.1073/pnas.85.8.2444
http://www.ncbi.nlm.nih.gov/pubmed/3162770
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1089/10665270050081478
http://www.ncbi.nlm.nih.gov/pubmed/10890397
https://doi.org/10.1093/bioinformatics/btn322
https://doi.org/10.1093/bioinformatics/btn322
http://www.ncbi.nlm.nih.gov/pubmed/18567917
https://doi.org/10.1038/79981
http://www.ncbi.nlm.nih.gov/pubmed/11017085
https://doi.org/10.1038/35057149
http://www.ncbi.nlm.nih.gov/pubmed/11237013
https://doi.org/10.1101/gr.176601
http://www.ncbi.nlm.nih.gov/pubmed/11337480
https://doi.org/10.1101/gr.229202
https://doi.org/10.1101/gr.229202
http://www.ncbi.nlm.nih.gov/pubmed/11932250
https://doi.org/10.1101/gr.194201
http://www.ncbi.nlm.nih.gov/pubmed/11591649
https://doi.org/10.1093/bioinformatics/bti310
http://www.ncbi.nlm.nih.gov/pubmed/15728110
https://doi.org/10.14778/2735479.2735480
https://doi.org/10.14778/2536258.2536265
https://doi.org/10.14778/2536258.2536265
https://doi.org/10.1371/journal.pone.0109384
http://www.ncbi.nlm.nih.gov/pubmed/25289699
https://doi.org/10.1186/1471-2105-14-184
http://www.ncbi.nlm.nih.gov/pubmed/23758764
https://doi.org/10.1038/nmeth0810-576
https://doi.org/10.1038/nmeth0810-576
http://www.ncbi.nlm.nih.gov/pubmed/20676076
https://doi.org/10.1038/ng.437
http://www.ncbi.nlm.nih.gov/pubmed/19718026
https://doi.org/10.1371/journal.pcbi.1000386
https://doi.org/10.1371/journal.pcbi.1000386
http://www.ncbi.nlm.nih.gov/pubmed/19461883
https://doi.org/10.1093/nar/gkr1246
https://doi.org/10.1093/nar/gkr1246
http://www.ncbi.nlm.nih.gov/pubmed/22199254
https://doi.org/10.1093/bioinformatics/btr303
http://www.ncbi.nlm.nih.gov/pubmed/21586516
https://doi.org/10.1371/journal.pone.0179046

20. Weese D, Emde AK, Rausch T, Döring A, Reinert K. RazerS: Fast read mapping with sensitivity control.

Genome Research. 2009; 19(9):1646–1654. https://doi.org/10.1101/gr.088823.108 PMID: 19592482

21. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological

sequence comparison. Bioinformatics. 2004; 20(18):3363–3369. https://doi.org/10.1093/bioinformatics/

bth408 PMID: 15256412

22. Roberts M, Hunt BR, Yorke JA, Bolanos RA, Delcher AL. A preprocessor for shotgun assembly of large

genomes. Journal of Computational Biology. 2004; 11(4):734–752. https://doi.org/10.1089/cmb.2004.

11.734 PMID: 15579242

23. Ye C, Ma ZS, Cannon CH, Pop M, Douglas WY. Exploiting sparseness in de novo genome assembly.

BMC Bioinformatics. 2012; 13(6):1. https://doi.org/10.1186/1471-2105-13-S6-S1 PMID: 22537038

24. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the representation of de Bruijn graphs.

In: Research in Computational Molecular Biology. Springer; 2014. p. 35–55.

25. Movahedi NS, Forouzmand E, Chitsaz H. De novo co-assembly of bacterial genomes from multiple sin-

gle cells. In: Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference on. IEEE;

2012. p. 1–5.

26. Li H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinfor-

matics. 2016; p. btw152. https://doi.org/10.1093/bioinformatics/btw152 PMID: 27153593

27. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with enhanced suffix arrays. Journal of

Discrete Algorithms. 2004; 2(1):53–86. https://doi.org/10.1016/S1570-8667(03)00065-0

28. Vyverman M, De Baets B, Fack V, Dawyndt P. essaMEM: Finding maximal exact matches using

enhanced sparse suffix arrays. Bioinformatics. 2013; 29(6):802–804. https://doi.org/10.1093/

bioinformatics/btt042 PMID: 23349213

29. Khiste N, Ilie L. E-MEM: Efficient computation of maximal exact matches for very large genomes. Bioin-

formatics. 2015; 31(4):509–514. https://doi.org/10.1093/bioinformatics/btu687 PMID: 25399029

30. Xin H, Lee D, Hormozdiari F, Yedkar S, Mutlu O, Alkan C. Accelerating read mapping with FastHASH.

BMC Genomics. 2013; 14(Suppl 1):S13. https://doi.org/10.1186/1471-2164-14-S1-S13 PMID:

23369189

The Effects of sampling on the efficiency and accuracy of k−mer indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0179046 July 7, 2017 23 / 23

https://doi.org/10.1101/gr.088823.108
http://www.ncbi.nlm.nih.gov/pubmed/19592482
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1093/bioinformatics/bth408
http://www.ncbi.nlm.nih.gov/pubmed/15256412
https://doi.org/10.1089/cmb.2004.11.734
https://doi.org/10.1089/cmb.2004.11.734
http://www.ncbi.nlm.nih.gov/pubmed/15579242
https://doi.org/10.1186/1471-2105-13-S6-S1
http://www.ncbi.nlm.nih.gov/pubmed/22537038
https://doi.org/10.1093/bioinformatics/btw152
http://www.ncbi.nlm.nih.gov/pubmed/27153593
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1093/bioinformatics/btt042
https://doi.org/10.1093/bioinformatics/btt042
http://www.ncbi.nlm.nih.gov/pubmed/23349213
https://doi.org/10.1093/bioinformatics/btu687
http://www.ncbi.nlm.nih.gov/pubmed/25399029
https://doi.org/10.1186/1471-2164-14-S1-S13
http://www.ncbi.nlm.nih.gov/pubmed/23369189
https://doi.org/10.1371/journal.pone.0179046

