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Protein structure alignment is a fundamental problem in computational structure biology. Many programs
have been developed for automatic protein structure alignment, but most of them align two protein
structures purely based upon geometric similarity without considering evolutionary and functional
relationship. As such, these programs may generate structure alignments which are not very biologically
meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic
pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial
proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and
hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments
much more consistent with manually-curated alignments than other automatic tools especially when
proteins under consideration are remote homologs. These results imply that in addition to geometric
similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein
structures.

P
rotein structure alignment is a fundamental problem in computational structure biology and has been
widely applied to protein sequence, structure and functional study1. In the past two decades many computer
programs have been developed for automatic pairwise structure alignment2–10 and multiple structure

alignment11–17. However, the alignment accuracy of these programs is still low when judged by manually-curated
structure alignments, especially on distantly but functionally related proteins18. Further, these programs may
generate alignments which are not very biologically meaningful from the evolutionary perspective.

A protein structure alignment method consists of two major components: a scoring function measuring
protein similarity and a search algorithm optimizing the scoring function. It is very challenging to design a
scoring function to exactly capture all the (implicit and explicit) rules used by human experts, who align and
classify protein structures using not only geometric similarity, but also evolutionary and functional information.
A variety of popular structure alignment tools such as DALI2, CE4 and TMalign19 use only 3D geometric similarity
and may produce bad alignments even when proteins under consideration are close homologs20.

It is observed that despite proteins in a family share a similar overall shape, their structures exhibit very high
local flexibility due to evolutionary events (i.e., mutation, insertion and deletion) at the sequence or local
substructure level. This kind of local conformation change due to evolutionary events cannot be accurately
quantified by spatial proximity of aligned residues (after rigid-body superposition). Instead, evolutionary distance
shall be a better measure. Inspired by this observation, DeepAlign uses amino acid and local substructure
substitution matrices, which are derived from evolutionarily-related protein pairs, to align protein local
structures.

Amino acid mutation information is useful when proteins under consideration are close homologs. Very few
structure alignment programs such as Formatt21 make use of amino acid substitution matrices in aligning protein
structures. Our work differs from Formatt in that the latter uses only the BLOSUM22 mutation matrix while we
also use local substructure mutation matrices as well as hydrogen-bonding similarity to measure the similarity of
two proteins. Note that our work is very different from those protein alignment methods such as PROMAL3D23

and 3Dcoffee24, which mainly focus on protein sequence alignment leveraging structural information. By con-
trast, we focus on protein structure alignment using sequence and evolutionary information.

BLOSUM is derived from close homologs, so it is not very sensitive for remote homologs. To deal with this,
DeepAlign uses a substructure mutation matrix to measure the evolutionary distance of two proteins at the local
substructure level. That is, we parse each protein backbone conformation to a sequence of local substructure
alphabets and then measure the evolutionary distance of two proteins based upon the substructure mutation
potential. In particular, we use the local conformation letter substitution matrix CLESUM described in25,26 for
such a purpose. CLESUM is derived from a set of non-redundant alignments of evolutionarily-related proteins.
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CLESUM is better than spatial proximity in that it favors the align-
ment of conserved loop regions especially those appearing at the two
ends of a regular secondary structure segment and that it also dis-
favors the alignment of two evolutionarily-unrelated alpha helices. In
addition to evolutionary distance, we also make use of hydrogen-
bonding similarity to improve alignments for hydrogen bonds,
which greatly helps generate biologically more meaningful align-
ments especially for beta-strands.

It is challenging to optimize a scoring function to find the optimal
structure alignment. Most search algorithms can only solve scoring
functions to suboptimal and thus, generate a suboptimal alignment,
which may impact alignment accuracy1. Along with the enlargement
of the Protein Data Bank (PDB), it is now time-consuming to retrieve
all the remotely-related protein structures in the PDB for a query
protein structure. Therefore, a structure alignment tool shall also be
computationally efficient. Different from other structure alignment
methods, DeepAlign reduces its running time by carefully identifying
a set of initial alignments. In particular, DeepAlign identifies evolu-
tionarily-related structural fragment pairs using both amino acid and
local substructure mutation scores and then build initial alignments
based upon these fragment pairs. Starting from the initial alignments,
DeepAlign iteratively optimizes the scoring function and finally
produces high-quality alignments. By using the evolutionary infor-
mation, DeepAlign can accurately identify a very small set of evolu-
tionarily-related structural fragment pairs which are very likely
contained in the optimal alignment. This greatly helps reduce the
running time of DeepAlign since it avoids starting from many initial
alignments that cannot lead to the optimal alignments.

We evaluate DeepAlign using several metrics including reference-
independent and dependent alignment accuracy, evolutionary scores
and superfamily/fold discrimination, based upon three manually-
curated benchmarks and also SABmark27. Experimental results indi-
cate that DeepAlign outperforms several popular tools on all the
datasets when judged by human-curated alignments. DeepAlign
works particularly well when proteins under consideration are not
very close. The DeepAlign alignments also have better mutation
scores and thus, are more biologically meaningful from the evolu-
tionary perspective. Even evaluated by the pure geometric measures
such as TMscore28 and uGDT (un-normalized Global Distance
Test29), DeepAlign still compares favorably to other popular tools
such as DALI2, MATT14 and TMalign19, all of which align protein
structures based upon only geometric similarity.

Results
We evaluate our program DeepAlign using three manually-curated
alignment databases and a few metrics: LALI (length of alignment),
RefAcc (reference-dependent alignment accuracy), RMSD (root
mean squared deviation), TMscore and mutation scores (i.e.,
BLOSUM and CLESUM). RefAcc is calculated as the percentage of
correctly-aligned positions as judged by the gold standard (i.e., man-
ual alignments), measuring consistency between automatic align-
ments and human-curated alignments. RMSD and TMscore, both
of which are well-established, measure geometric similarity of pro-
tein structures, but TMscore is better than RMSD because TMscore is
length-independent and not biased by few badly-aligned residue
pairs. The evolutionary scores measure if one alignment is favorable
or not from the evolutionary perspective. We calculate the evolution-
ary scores of a structure alignment using both the BLOSUM and
CLESUM substitution matrices. Ideally, a good alignment shall have
preferable performance regardless of the metrics.

The programs to be compared. We compare DeepAlign with several
popular structure alignment tools such as DALI2, TMalign19,
MATT14, Formatt21, which represents four very different methods.
DALI is a distance matrix based approach, aligning two structures by
matching their distance matrices. TMalign aligns two protein

structures by maximizing the TMscore, using a similar search
algorithm as STRUCTAL28,30. MATT aligns protein structures by
concatenating the alignments of some short structural fragments.
MATT also calculates a p-value to indicate the degree to which
two proteins are structurally similar. Formatt is an extension of
MATT by taking into consideration primary sequence similarity in
aligning two structures.

The benchmarks. We use three manually-curated benchmarks: (i) A
subset of CDD (Conserved Domain Database)31 used in20; (ii)
MALIDUP32; and (iii) MALISAM33. The CDD set contains 3591
manually-curated pairwise structure alignments. The human-
curated alignments for CDD contain only the alignments of core
residues. The CDD set has already been used to evaluate a bunch
of pairwise structure alignment algorithms34, including CE4, FAST8,
LOCK235, MATRAS36, VAST10 and SHEBA9. MALIDUP has 241
manually-curated pairwise structure alignments for homologous
domains originated from internal duplication within the same
polypeptide chain. About half of the pairs in MALIDUP are re-
mote homologs. MALISAM contains 130 protein pairs and the two
proteins in any pair are structural analogs with different SCOP37

folds. There is strong evidence indicating that proteins in a
MALIDUP pair are not homologs38. Therefore, MALIDUP are the
most challenging benchmark among these three. The alignments in
these three databases are manually-curated, taking into consider-
ation not only geometric similarity, but also evolutionary and func-
tional relationship. Therefore, the manually-curated alignments
make more biological sense and it is reasonable to use them as
reference to judge automatically-generated alignments.

Performance on CDD. DeepAlign obtains the highest reference-
dependent alignment accuracy of 93.8% among the five automatic
structure alignment methods (in Table 1). DeepAlign also outper-
forms the methods evaluated in34 in terms of ref-dependent
alignment accuracy. That is, DeepAlign is more consistent with hu-
man experts than the other programs. In terms of TMscore and
RMSD, the TMalign alignments are slightly better than the Deep-
Align alignments, but the former are less consistent with manual
alignments than the latter. This implies that the geometric simi-
larity score used by TMalign (i.e., TMscore) does not accurately re-
flect the alignment criteria used by human experts. The DeepAlign
alignments also have much better evolutionary scores than the other
three programs no matter how the mutation scores are calculated. As
a control, we also calculate the evolutionary scores of the manual
alignments. The manual alignments have much lower mutation
score per alignment because only core residues are aligned. How-
ever, the manual alignments have the best average mutation scores
per aligned position. Note that the manual alignments are not
explicitly driven by a specific mutation score. This confirms that hu-
man experts indeed take into consideration evolutionary relation-
ship in aligning two protein structures and that TMalign may align
many more evolutionarily-unrelated residues together than Deep-
Align. Formatt has a similar mutation (i.e., BLOSUM/CLESUM)
score per alignment as DeepAlign, but Formatt has a better aver-
age mutation score per aligned position than DeepAlign because
Formatt has a smaller LALI. In terms of reference-independent or
dependent alignment accuracy, DeepAlign is much better than
Formatt partially because the latter has a much smaller LALI.

Performance on MALIDUP. DeepAlign obtains a reference-
dependent alignment accuracy of 92%, greatly exceeding the other
three tools (in Table 1). DeepAlign is 6% better than the second best
algorithm DALI. Although the TMalign alignments have a longer
alignment length and the MATT alignments have a smaller RMSD,
both TMalign and MATT have much lower reference-dependent
alignment accuracy. This again implies that the TMalign and
MATT scoring functions greatly deviates from what are implicitly
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used by human experts. In terms of TMscore, DeepAlign is only
slightly second to TMalign, but better than the others. However,
the DeepAlign alignments have much better evolutionary scores,
only second to the Formatt alignments in terms of the average
mutation score per aligned position. Since the TMalign alignments
on average are longer, this again confirms that TMalign may align
many more evolutionarily unfavorable residues than DeepAlign.
Formatt performs similarly on this dataset as on CDD.

Performance on MALISAM. DeepAlign obtains the highest ref-
dependent alignment accuracy of 77.5% among all the five compu-
ter programs (in Table 1). DeepAlign is 10% better than the second
best algorithm DALI. MALISAM is much more challenging than
CDD and MALIDUP. In MALISAM, 80 pairs (i.e., 61.5% of the
total) contain proteins with different SCOP folds33. The DALI and
TMalign alignments have similar average alignment lengths as the
DeepAlign alignments, but slightly higher RMSD. Furthermore, the
DALI, MATT and TMalign alignments deviate significantly from the
manual alignments. In terms of the BLOSUM scores, the difference
between the DeepAlign alignments and others is not very significant.
This is not unexpected because the proteins in this dataset are only
weakly similar at sequence level and BLOSUM is not sensitive enou-
gh. However, the DeepAlign alignments have much better CLESUM
score per alignment than the others, only slightly second to the
manual alignments. That is, the DeepAlign alignments are more
evolutionarily favorable than others at the local substructure level.

We also evaluate DeepAlign, TMalign, DALI, MATT and Formatt
using another geometric similarity measure uGDT (unnormalized
Global Distance Test29), an official metric used by CASP (Critical
Assessment of Structure Prediction39) to evaluate the quality of a
protein model and observe the same trend as TMscore. In addition,
DeepAlign opens much fewer gaps in an alignment than the other
three programs because DeepAlign uses evolutionary information to
generate alignments. See Supporting Information for more detailed
explanation.

In summary, our method DeepAlign performs significantly better
than other popular tools when judged by manually-curated align-
ments and from the evolutionary perspective. Even if only geometric
similarity measures such as TMscore and uGDT are considered,
DeepAlign still compares favorably to other tools, only slightly sec-
ond to TMalign, which aligns two protein structures by optimizing
only TMscore. The manual alignments tend to have better mutation
scores but much lower geometric similarity score (e.g., TMscore)
partially because human experts tend to align only those evolutio-
narily conserved residues instead of spatially close residues (after
rigid-body transformation). By contrast, DeepAlign achieves a good
balance between geometric similarity and evolutionary conservation.

Discrimination of distant homologs and structural analogs. We
use SABmark to test the performance of DeepAlign in identifying
distant homologs and structural analogs27. SABmark-sup is the
superfamily set in SABmark (version 1.65), containing 425 protein
groups with low to intermediate sequence identity. SABmark-twi is
the twilight set in SABmark, containing 209 groups with low
sequence identity. Each SABmark-sup (-twi) group contains at
most 25 structures sharing a SCOP superfamily (fold). It is
believed that if two proteins are in the same SCOP superfamily, it
is likely these two proteins are remote homologs. If two proteins
share only the same SCOP fold, it is very likely that they are
structural analogs instead of remote homologs. Given a protein
structure, we align it to all the proteins in the benchmarks and
then rank all the alignments by certain criteria. We examine if the
top-ranked protein structures are in the same group as the query
protein or not. DeepAlign uses its scoring function to rank the
proteins. Similarly, TMalign, MATT and DALI use TMscore, P-
value and Z-score to rank the alignments, respectively. The
ranking results are evaluated by ROC (receiver operator curve) and
AUC (area under curve). Formatt has a very similar result as MATT.

As shown in Figure 1(A), tested on SABmark-sup, DeepAlign has
the best ROC curve, especially at the high specificity area. For

Table 1 | Performance of five pairwise structure alignment tools on three benchmarks CDD, MALIDUP and MALISAM. See text for the
explanation of LALI, RMSD, TMscore and RefAcc. "Blosum1 (Clesum1)" is the average mutation score per aligned position while "Blosum2
(Clesum2)" is the average mutation score per alignment. As a control, the performance of manually-curated alignments is also shown in the
table

Method LALI RMSD TMscore RefAcc Blosum1 Clesum1 Blosum2 Clesum2

CCD (3591)

DeepAlign 134.8 2.86 0.667 93.8 0.261 1.782 43.45 243.71
DALI 130.8 2.75 0.663 92.8 0.165 1.684 28.78 225.15
MATT 128.6 2.53 0.655 91.4 0.152 1.728 30.19 229.59
Formatt 112.3 2.32 0.566 86.4 0.343 1.983 44.11 235.64
TMalign 138.4 2.84 0.686 85.6 0.047 1.531 15.25 211.88
Manual 62.6 1.66 0.345 100.0 0.677 2.499 43.89 157.67

MALIDUP (241)

DeepAlign 85.5 2.61 0.622 92.0 0.314 1.872 29.31 158.28
DALI 83.5 2.65 0.600 86.4 0.172 1.700 18.63 147.53
MATT 82.3 2.47 0.608 79.8 0.178 1.824 18.84 150.00
Formatt 70.6 2.19 0.542 86.2 0.344 2.196 28.62 154.66
TMalign 87.0 2.62 0.631 81.0 0.110 1.600 12.50 137.64
Manual 77.9 2.49 0.587 100.0 0.294 1.853 27.67 154.81

MALISAM (130)

DeepAlign 61.3 2.96 0.521 77.5 20.601 1.108 236.48 67.66
DALI 61.0 3.11 0.515 67.7 20.595 0.925 235.52 56.28
MATT 56.2 2.74 0.486 51.7 20.625 1.013 234.05 56.98
Formatt 44.9 2.42 0.411 56.3 20.486 1.489 221.1 65.69
TMalign 61.1 3.06 0.517 53.7 20.684 0.739 240.04 45.65
Manual 56.7 2.92 0.488 100.0 20.556 1.240 231.58 70.75
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example, at the specificity level 0.99, DeepAlign has sensitivity
around 0.4 while the other three have sensitivity only around 0.2.
As shown in Table 2, DeepAlign, DALI, MATT and TMalign have
AUCs 0.970, 0.956, 0.933 and 0.960, respectively. We also observe the
same trend on the SABmark-twi set. SABmark-twi is more challen-
ging because each group in this set consists of proteins similar at only
SCOP fold level. However, DeepAlign outperforms others by an even
larger margin. As shown in Figure 1(B), DeepAlign has sensitivity 0.6
at specificity 0.96 while the second best algorithm DALI has sens-
itivity only 0.4 at the same specificity level. MATT and TMalign have
only sensitivity around 0.2 at this specificity level. As shown in
Table 2, DeepAlign, DALI, MATT and TMalign have AUCs 0.933,
0.908, 0.873 and 0.903 on SABmark-twi, respectively. These results
imply that DeepAlign scoring function is better than DALI’s Z-score,
MATT’s P-value and TMscore in detecting the superfamily relation-
ship of proteins.

Relative importance of the four score items. Our scoring function
consists of four items: BLOSUM, CLESUM, the hydrogen-bonding
score and TMscore. In order to estimate the impact of each item on
structure alignment, we exclude each of them from the DeepAlign
scoring function and regenerate the alignments for the protein
groups in the three manually-curated benchmarks using the new
scoring functions. Table 3 illustrates the ref-dependent alignment
accuracy (RefAcc) that can be obtained by the four new scoring
functions.

As shown in Table 3, when BLOSUM is excluded, the RefAcc on
relatively easy benchmarks (i.e., CDD and MALIDUP) is decreased
while that on the more challenging benchmark MALISAM is
improved. This implies that evolutionary information at the amino
acid level is useful for the alignment of homologous proteins, but may
slightly hurt that of structurally analogous proteins. When CLESUM

is excluded, the performance on CDD is slightly improved while on
the two more challenging benchmarks MALIDUP and MALISAM
dramatically decreased. That is, CLESUM is particularly useful for
the alignment of structurally analogous proteins and remote homo-
logs. Table 3 also shows that the TMscore and the hydrogen bonding
score are useful across all similarity levels.

The hydrogen-bonding score has large impact on beta-containing
proteins. For example, tested on the 94 beta-containing protein pairs
in MAILSAM each of which contains a large portion of beta-strands,
the overall accuracy is only 73.7% when the hydrogen-bonding score
is not used. This is significantly worse than what can be obtained
(79.3%) when the hydrogen-bonding score is used. Further, among
the 334 CDD beta-containing protein pairs, using the hydrogen-
bonding score can improve the alignment for 212 protein pairs by
at least 5%.

In summary, the 3D geometric similarity (e.g., TMscore) is the
major factor determining if two proteins are similar or not. However,
in order to generate biologically meaningful structure alignments,
other factors are also indispensable. The local substructure similarity
is especially important for distantly-related proteins while the
hydrogen-bonding score is important for beta-containing proteins.

Specific examples. Case study 1: d1h99a1 and d1h99a2. Both do-
mains are in the same SCOP family (a.142.1.1) and they are mutants.
Table S2 shows the evaluation of the structural alignments of these
two domains generated by DeepAlign, DALI, MATT, Formatt and
TMalign. DeepAlign, MATT and Formatt generate almost the same
alignment as the human-curated and the alignments also have very
good mutation scores. Although the DALI and TMalign alignments
have slightly higher TMscore, but they have much worse mutation
scores, which indicate that these alignments contain some

Figure 1 | The ROC curves by DeepAlign, DALI, MATT and TMalign on (A) SABmark-sup; and (B) SABmark-twi. The ROC curves for Formatt are

not in the figure since they are very similar to those for MATT.

Table 2 | The AUCs obtained by DeepAlign, DALI, MATT/Formatt
and TMalign on SABmark-sup and SABmark-twi

Method SABmark-sup SABmark-twi

DeepAlign 0.970 0.933
DALI 0.956 0.908
Formatt 0.934 0.874
MATT 0.933 0.873
TMalign 0.960 0.903

Table 3 | Impact of the four score items on alignment. The numbers
in the table are the reference-dependent alignment accuracy
(RefAcc). ‘‘All’’ indicates all score items are used. ‘‘-’’ indicates
one score item is excluded

Dataset All -BLOSUM -CLESUM -Hydrogen -TMscore

CDD 93.8 92.1 94.2 92.2 75.7
MALIDUP 92.0 90.7 87.3 89.5 78.3
MALISAM 77.5 78.5 65.4 74.4 48.1
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evolutionarily unfavorable residue pairs. DALI misaligns one helix,
as shown in Figure S1. TMalign misaligns one helix either. Figure S1
displays the DeepAlign and DALI alignments, but not the TMalign
alignment due to space limit.

Case study 2: d1nekc_ and d1nekd_. These two domains are taken
from the CDD database (ID: cd03493). Table S3 shows the evaluation
of the structural alignments generated by different alignment tools
for these two domains. The DeepAlign and DALI alignments are
highly consistent with the human-curated alignment. MATT (as well
as Formatt) mistakenly aligns the 1st and 2nd helices and the linker
loop region, as shown in Figure S2. The DeepAlign and DALI align-
ments have very good TMscore, only slightly second the TMalign
alignment which is generated by optimizing only TMscore. The
DeepAlign alignment also has much better mutation scores than
the MATT alignment, which even has a negative BLOSUM score.
Overall, the MATT alignment has bad values in three performance
metrics including TMscore, RefAcc and mutation scores.

Case study 3: d1ef5a_ and d1ndda_ in the CDD database (ID:
cd00196). DALI, MATT, Formatt and TMalign misalign the loop
region between the 1st alpha helix and the 3rd beta strand. MATT
and TMalign also mistakenly align the 3rd beta strand (see Figure S3).
Table S4 shows the evaluation of the structural alignments for these
two domains. The DeepAlign alignment has the best ref-dependent
alignment accuracy (RefAcc), better than DALI and much better
than MATT and TMalign. In terms of TMscore, DeepAlign is slightly
worse than DALI and TMalign, but much better than MATT. In
terms of the CLESUM scores, DeepAlign significantly outperforms
the other three programs. According to the BLOSUM scores,
DeepAlign is not very different from the others. This is because that
the two domains are not close homologs and BLOSUM is not suitable
to measure their evolutionary relationship. Since BLOSUM does not
work for this case, we calculate the sequence profile score at each
position for the sub-alignments between the 38-th and the 53rd resi-
dues of d1ef5a_, which corresponds to the region between the 1st

alpha helix and the 3rd beta strand (inclusive), as shown in Table
S5. The protein sequence profile and the corresponding profile score
is generated using the HHpred40 package. The profile score usually
ranges between -1.0 and 1.0. The higher the profile score, the better.
Note that profile score is not used in the DeepAlign scoring function,
but the DeepAlign alignment has positive profile scores at almost all
the aligned positions. By contrast, the other three alignments have
negative profile scores at some positions. This further confirms that
DeepAlign aligns evolutionarily-related residues together even if the
proteins are not close homologs.

Running time analysis. We measure the running time on an Ubuntu
Linux PC with 2 GB RAM and IntelHCoreTM2 Quad CPU T5600 @
1.83 GHz. The performance and running time of DeepAlign depend
on three parameters TopK, TopJ and M. DeepAlign is run using
default parameters (i.e., TopK 5 100, TopJ 5 20, M 5 10), which
are also used to generate the alignments discussed in section
RESULTS. Tested on the 23074 protein pairs in SABmark-twi,
DeepAlign, TMalign, MATT, Formatt and DALI have running
times of 1878, 1073, 29192, 35138 and 54297 seconds, respectively.
That is, DeepAlign is much faster than MATT, Formatt and DALI,
but (not much) slower than TMalign. DeepAlign is slower than
TMalign partially because that DeepAlign uses a scoring function
of four items while TMalign uses only one of them (i.e., TMscore).
That is, it takes a much longer time for DeepAlign to calculate its
scoring function than TMalign.

Discussion
This paper has presented a novel method DeepAlign for automatic
protein structure alignment, which can generate alignments highly
consistent with manually-curated alignments. Manually-curated

alignments usually make much more biological sense since they
are built by human experts taking into consideration evolutionary
and functional relationship, in addition to geometric similarity. The
novelty of DeepAlign lies in its scoring function, which considering
not only 3D geometric similarity, but also evolutionary information
at the sequence and local substructure levels as well as hydrogen-
bonding similarity. Note that the DeepAlign scoring function is the
natural combination of four different items and there are no para-
meters to be fine-tuned. Therefore, we do not bias DeepAlign
towards a specific performance metric.

We have tested DeepAlign with four widely-used structure align-
ment tools TMalign, MATT, Formatt and DALI on three manually-
curated benchmarks. These benchmarks contain many distantly-
related protein structures (which are remote homologs or structural
analogs) and are very challenging for any automatic alignment tools.
Many proteins in the most challenging benchmark MALISAM are
not even in the same SCOP fold although they share structurally
analogous motifs. Nevertheless, DeepAlign can still align two protein
structures consistently with human experts. DeepAlign also tends to
align many more evolutionarily-related residues together than the
other tools and open much fewer gaps in an alignment. In addition,
DeepAlign compares favorably to other tools when evaluated by
purely geometric similarity measures such as TMscore and uGDT.
DeepAlign is also better than the other tools in discriminating two
proteins similar at the superfamily or fold level.

Currently DeepAlign uses only the local conformation and the
amino acid substitution matrices to measure equivalence of two
residues. We can also use other information such as sequence profile,
represented by a position-specific scoring matrix41 or Hidden
Markov Model42, to measure evolutionary distance, which shall be
more sensitive than BLOSUM62. DeepAlign uses dynamic program-
ming to generate a complete alignment and thus, cannot generate
sequence order-independent alignments43. We will extend our algo-
rithm to deal with non-sequential alignments. We will also extend
DeepAlign to some other applications such as binding-site recog-
nition44 and protein-interface alignment45.

Methods
The scoring function. The scoring function is used to determine how likely two
residues, of the two proteins under consideration, shall be aligned. Our scoring
function is composed of amino acid mutation score, local substructure substitution
potential, hydrogen-bonding similarity and geometric similarity46. In particular, the
equivalence of two residues i and j is estimated by the following scoring function.

Score i,jð Þ~ max 0,BLOSUM i,jð Þð ÞzCLESUM i,jð Þð Þ|v i,jð Þ|d i,jð Þ ð1Þ

Meanwhile, BLOSUM and CLESUM measure the evolutionary distance of two
proteins at the sequence and local substructure levels, respectively. BLOSUM is the
widely-used amino acid substitution matrix BLOSUM6222, CLESUM is the local
structure substitution matrix25,26, v(i,j) measures the hydrogen-bonding similarity

Figure 2 | This picture shows the three vectors of two proteins used in the
hydrogen-bonding score. One protein is represented by solid lines and the

other by dashed lines.
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and d(i,j) measures the spatial proximity of two aligned residues (after rigid-body
superposition).

In addition to the BLOSUM62 substitution matrix, other matrices (e.g., PAM25047)
can also be used to measure the evolutionary distance of two proteins at the sequence
level41. The max() function in Eq. (1) is used to handle the situation where two
proteins to be aligned are distantly-related. In this case, we will only rely on CLESUM
to measure the evolutionary distance. In the future we may use sequence profile
similarity to measure evolutionary distance, which usually is more sensitive than
BLOSUM matrices. One issue of using sequence profiles lies in that it is
time-consuming to generate sequence profiles.

CLESUM is the substitution matrix for the 17 local conformation letter defined
in25,26. Each letter represents one typical Ca conformation of a 4-mer protein segment.
The 17 representative local conformations are generated by clustering all the 4-mer
structural fragments in a subset of non-redundant protein structures. CLESUM is
derived from a representative set of pairwise structure alignments in the FSSP
database48. CLESUM disfavors the match of two unrelated helices but favors the
alignment of two evolutionarily related loop regions. Loop regions are usually harder
to align than alpha helices and beta strands if only spatial proximity is used in the
scoring function.

In Eq. (1), d(i,j) is the spatial proximity of two aligned (or equivalent) residues after
the rigid-body superimposition. Here we use TMscore28 to calculate d(i,j), which is
defined as follows.

d i,jð Þ~ 1

1z Ai{Bj

�� ���d0
� �2 ð2Þ

Where Ai and Bj are the (transformed) 3D coordinates of the two Ca atoms and
d0~1:24|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ls{153
p

{1:8 is a length-dependent normalization factor, which is used
to offset the impact of protein length. TMscore is a widely-used measure in the field of
protein structure prediction that has demonstrated excellent performance in iden-
tifying structurally similar proteins49. Generally speaking, when two protein struc-
tures have a TMscore larger than 0.6, it is highly likely they have similar folds.
Otherwise, if the TMscore is less than 0.4, it is very likely they have different folds.

In Eq. (1), v(i,j) is used to quantify hydrogen-bonding similarity through mea-
suring the difference of the three vectors formed by the Ca and Cb atoms (see
Figure 2). This term is defined as follows.
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where Ai_cb denotes the corresponding Cb atom of Ai. This score helps align hydrogen
bonds more accurately. As shown in Figure 3(A), the method that

optimizes only spatial proximity (e.g., TMscore) leads to a wrong alignment, which
can be corrected by incorporating v(i,j) to the scoring function, as shown in
Figure 3(B).

The search algorithm. Overview. The DeepAlign algorithm flowchart is illustrated in
Figure 4. It consists of the following steps: (a) identifying similar fragment pairs
(SFPs) using amino acid and local substructure mutation matrices; (b) generating an
initial alignment from one SFP; and (c) refining alignments by dynamic
programming and gap elimination.

Similar fragment pairs (SFPs). DeepAlign measures the equivalence of two residues i
and j using amino acid and local substructure substitution matrices as follows.

Similarity i,jð Þ~ max 0,BLOSUM i,jð Þð ÞzCLESUM i,jð Þ

Where CLESUM is the local conformation substitution matrix and BLOSUM is the
amino acid substitution matrix as described before. Using this score, we can identify
two evolutionary-related instead of only geometric similar fragments and thus,
generate better initial alignments. We use two types of SFPs: short SFP with 6-8
residues and long SFP with 9-18 residues. A short SFP, denoted as SFP_s, shall have a
similarity score at least 0 while a long SFP, denoted as SFP_l, shall have a similarity
score at least 10. It is obvious that each SFP_l must contain at least one SFP_s. We use
SFP_l and SFP_s to build coarse-grained and fine-grained initial alignments,
respectively. SFP_l is slightly longer than the average length of a helix while SFP_s has
a similar length as a typical beta strand. By combining long and short SFPs, we can
speed up our algorithm without losing accuracy. The higher score one SFP has, the
more likely it is contained in the best alignment. Therefore, we sort all SFPs and only
keep those top-ranked SFPs.

Generating initial alignments using SFPs. We select TopK long SFPs (i.e., SFP_l) and
from each of them generate one coarse-grained initial alignment. In particular, we
first calculate the rotation matrix using the Kabsch method50 to minimize the RMSD
of the two fragments in a SFP. Then we use this rotation matrix to transform one
protein and generate an initial alignment using dynamic programming (DP) to
maximize the scoring function, subject to the restriction that the distance deviation of
two aligned residues shall be less than 3 3 d0. All these TopK coarse-grained initial
alignments are sorted by the alignment score and only top TopJ (#TopK) are kept for
further refinement. Starting from a coarse-grained initial alignment, we recalculate
the rotation matrix using the SFP_s contained in the SFP_l and then realign the two
proteins using dynamic programming to maximize the scoring function, which
results in a better initial alignment.

Iterative refinement of alignment. Starting from an initial alignment, an iterative
dynamic programming refinement procedure is applied to improving the align-
ment, with the goal to maximizing the scoring function. This procedure is very similar
to that in many structure alignment methods such as CE4, ProSup51 and TMalign19.

Gap elimination. As shown in2, an aligned fragment pair (AFP) shall not be too short
(say less than 4 residues). However, since our scoring function does not explicitly
penalize gap openings, the resultant alignment may have more gap openings than
desirable. To deal with this, we use some heuristics to merge one very short AFP
(less than 4 residues) to its neighboring AFPs to reduce the number of gap openings.

Availability. DeepAlign is available at http://ttic.uchicago.edu/,jinbo/software.htm.
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