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Abstract

The firefly luciferase complementation assay is widely used as a bioluminescent reporter
technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the
interaction of a protein pair, complemented firefly luciferase emits light through the adenyla-
tion and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of
light production in the firefly luciferase complementation assay is different from that in full
length luciferase, the mechanism behind this is still not understood. To quantitatively under-
stand the different kinetics and how changes in affinity of a protein pair affect the light emis-
sion in the assay, a mathematical model of the in vitro firefly luciferase complementation
assay was constructed. Analysis of the model finds that the change in kinetics is caused by
rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity
of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair
has an exponential relationship with the light detected in the assay. This relationship causes
the change of affinity in a protein pair to be underestimated. This study underlines the impor-
tance of understanding the molecular mechanism of the firefly luciferase complementation
assay in order to analyze protein pair affinities quantitatively.

Introduction

The firefly luciferase complementation assay (FLCA) is an assay that detects protein-protein
interactions in vitro, in cellulo, and in vivo [1, 2]. The assay detects the bioluminescence that is
emitted during the oxidation of the substrate, D-luciferin (LH,). In the assay, the N-terminal
and C-terminal domain of firefly luciferase (NFLuc and CFLuc, respectively) are genetically
fused to a protein pair of interest via a linker peptide [3]. When the protein pair interacts with
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each other, NFLuc and CFLuc reconstitute the active site of the enzyme. This results in emis-
sion of luminescence when LH, is added in the reaction.

The FLCA can be used in many different organisms and systems. In the in vitro assays pre-
viously conducted [4], the substrates LH, and ATP are added to a 96-well plate containing a
buffer and a protein pair fused to NFLuc and CFLuc, respectively. Luminescence is measured
in relative units (RLU) with a photomultiplier tube. In the in cellulo assay, the cells of interest
are suspended in a culture plate. LH, is added to the culture plate so that the substrate contacts
with the enzyme via diffusion through the cell membranes. When performing FLCA in vivo,
LH, can be injected into the circulatory system [5]. The typical FLCA luminescence kinetics
include a delayed peak followed by slow decay [4, 6]. The highest RLU detected during the
assay is generally used to evaluate the interaction of the protein pair.

The molecular mechanism of full length firefly luciferase reaction has been well established.
During the reaction, the substrate LH, is adenylated to form the intermediate luciferyl-adenyl-
ate (LH,-AMP) (reaction 1). LH,-AMP is oxidized to from excited oxyluciferin (L-oxyx, reac-
tion 2) which emits light when it decays to its ground state (L-oxy, reaction 3) [7]. The dark
reaction product dehydroluciferin-AMP (L-AMP, reaction 4) is formed in an alternate chemi-
cal pathway [7]. The dark reactions account for approximately 20% of all luciferase activity [7].
Both of these products, L-oxy and L-AMP, inhibit luciferase competitively against LH,[6].
Firefly luciferase is a 62 kDa peptide encoded by 550 amino acids [8]. X-ray crystallography
has revealed that the N domain is encoded in amino acids 4-436, and the C domain in amino
acids 440-544 [8]. There is a flexible hinge region between the two domains at amino acids
436-440 [8]. The flexible hinge region allows the C domain to change conformation during the
oxidation step, allowing the catalytic residue to come in contact with the substrate. Both of the
primary amino acids involved in catalysis are found on the C domain. Amino acid K529 is
responsible for adenylation of the substrate, while K443 is responsible for oxidation of the
intermediate [9, 10]. Gene mutation studies have identified amino acids 213-348 of the N
domain as binding sites for LH, and ATP [11]. N domain residue H245 is considered the key
binding residue, as it is highly conserved throughout the acetyl-CoA synthetase, non-ribosomal
protein synthetase, and luciferase (ANL) superfamily in addition to being in the region identi-
fied as responsible for binding of substrates [11].

Luc + LH, + ATP Méﬂ Luc - LH, — AMP + PP, {1}
Luc - LH, — AMP + O, — Luc - L — oxy x +AMP + CO, {2}
Luc - L —oxyx — Luc - L —oxy + hv {3}

Luc - LH, — AMP + O, — Luc - L — AMP + H,0, {4}

In the FLCA, NFLuc consists of amino acids 1-437, and CFLuc contains 395-547 [4]. The
overlapping region common to both NFLuc and CFLuc, amino acids 395-437, includes the
flexible hinge region and part of the N domain. Although the FLCA is valued for its simple pro-
tocol, it is involved in a complex system of enzymatic reactions (Fig 1). While NFLuc alone has
residual enzymatic activity (binding and catalysis of the substrates), CFLuc is key in increasing
the efficiency of catalysis [9, 10, 12, 13]. Hence in the FLCA, the affinity of a protein pair fused
to NFLuc or CFLuc via a linker peptide influences the luminescence output by altering the
interaction between NFLuc and CFLuc.

Previously published FLCA data has interpreted protein pair interactions qualitatively (the
presence or absence of protein interactions) or quantitatively (affinities of protein interactions
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Fig 1. Overview of in vitro firefly Luciferase complementation assay (FLCA) system. (A) With
interaction of a protein pair (shown here, protein A and B), the N and C domains of luciferase (NFLuc and
CFLuc, respectively) reconstitute the active site of the enzyme. The amount of the reconstituted enzyme (NC
complex) is thought to correlate with the affinities of the protein pair. (B) Upon the addition of the substrates,
LH, and ATP, catalysis occurs in a two step process. The enzyme first adenylate LH, with ATP, forming the
intermediate LH,-AMP. The intermediate is then oxidized to form L-oxyluciferin (L-oxy) during the light
emission reaction. Alternatively, the intermediate is oxidized to form dehydroluciferyl-AMP (L-AMP) without
emitting light (dark reaction). Both products inhibit luciferase activity competitively. NFLuc has low luciferase-
activity on its own [12, 13].

doi:10.1371/journal.pone.0148256.g001

are compared based on the RLU) [1, 2, 14-16]. We searched for articles with the keywords
‘Tuciferase complementation assay’ using Google Scholar, and identified the first 46 peer-
reviewed articles in the result list. Among the 46 articles, we found that 50% of 46 previously
published peer-reviewed articles using the FLCA claim that the maximum RLU detected dur-
ing the assay is a quantitative measurement of the affinity of the protein interactions [5, 14, 17-
60]. In such articles, FLCA data are considered quantitative because of an assumption that the
reconstituted activity of NFLuc and CFLuc is entirely and linearly dependent upon the affinity
of the protein pair of interest and the concentration of the interacting complex.

However, the relationship between changes of the affinity of the protein pair and the lumi-
nescence detected with the FLCA has not been quantitatively understood. In fact, it has been
previously suggested that the kinetics of luminescence production in the FLCA is different
from that in full length firefly luciferase [12-14]. Without a thorough understanding of the
cause for these changes in the luminescence kinetics, or a demonstration of the relationship
between protein interaction and luminescence, the FLCA cannot reasonably be considered a
quantitative measure of either protein pair affinity or the concentration of the protein pair
complex. The purpose of this study is to quantitatively understand the relationship between
changes of the affinity of a protein pair and the luminescence detected in the FLCA using a
mathematical model. The model is constructed with ordinary differential equations (ODEs)
using known enzymatic reactions and equilibrium constants for both firefly luciferase and the
protein pair. Using the model, we analyze the degree to which luminesence observed in the
FLCA is affected by the interaction of a protein pair.
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Materials and Methods
Measurement of the kinetics of in vitro FLCA

Kinetic data of luminescence production in FLCA was obtained under the same conditions as
previously published in [4]. Briefly, purified recombinant protein of p53 and mdm?2 fused to
NFLuc and CFLuc (50 nM each) were suspended in a 2x enzyme solution containing 100 mM
MOPS, 10 mM MgSO,, pH 7.3 [4]. The mixture (50 yl) was dispensed to a well in a white
96-well plate (Corning-Costar, NY, USA) after incubation at 37°C for 120 s. The light intensity
was measured immediately after injection of 50 yl 2x substrate solution (40 mM ATP and 150
uM LH, in 100 mM MOPS, 10 mM MgSO,, pH 7.3) with a periodical integration for 0.1 s
using Phelios AB-2350 luminometer (ATTO, Tokyo, Japan).

Measurement of the kinetics of in vitro full length firefly luciferase

Kinetic data of luminescence production in full length firefly luciferase was obtained under the
same conditions as that in FLCA. Briefly, firefly luciferase was purchased from Promega (Wis-
consin, USA). Luciferase enzyme (150 nM or 450 nM) was suspended in 100 mM MOPS, 19
mM MgSOy, pH 7.3. One microliter of the enzyme solution and 50 4L of a 2x ATP solution (40
mM ATP in 100 mM MOPS, 10 mM MgSO,, pH 7.3) was dispensed to a well in a white
96-well plate (Corning-Costar, NY, USA). The luminescence was measured immediately after
injection of a 2x LH, solution (150 uM LH,, 100 mM MOPS, 10 mM MgSO,, pH 7.3) with
periodical integration for 0.2 s for 120 s using Synergy 2 luminometer (Biotek, Vermont, USA).

Calculation of the degradation of NFLuc and CFLuc

The degradation of NFLuc and CFLuc were previously analyzed and published [4]. To obtain a
degradation rate for these species, the data were analyzed using Eq 1 which describes exponen-
tial degradation. The maximum RLU, representative of relative enzymatic activity, was digitized
for each incubation time using PlotDigitizer and normalized [61]. The degradation rate was cal-
culated by curve fitting to Eq 1 using Matlab’s nlinfit function for nonlinear regression [62].

—DegradationRate-Time (1)

Activity = e

Estimation of parameters

Initial estimates for parameters were taken from the literature. Initial estimates for all k,, rates
were held between the physiologically relevant range of 10°~10® M~" throughout the optimiza-
tion process [63]. Parameters unavailable from the literature were estimated by curve fitting
the model to previous data. Ordinary differential equations (ODEs) were numerically solved
with MatLab’s ode23s for stiff systems [62]. The curve fitting was done using MatLab’s lsqcur-
vefit function.

Calculation of initial conditions

The initial concentrations of the non-interacting and interacting protein pair prior to the addi-
tion of substrates was calculated with the system of equations shown in S1 ODE. This uses the
kon and ko for the protein pair, the initial concentration of the proteins, and the degradation
rate of NFLuc and CFLuc. The k,, and k. of the protein pair, here p53 and mdm?2, was
obtained from the literature [64]. The incubation time was estimated for 1 s due to the delay
associated with manual portions of the procedure when no incubation time was defined by the
experimenters.
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Calculation of the IC-50

The K; of nutlin-3 was estimated using Eq 2 [65]. To calculate the IC-50 from the model simu-
lation of the p53 and mdm?2 interaction, we first plotted the simulated RLU at 0.2 s, following
the previous experimental procedure [4]. We then fit these points to Eq 3 using nonlinear
regression. This equation is a 4 parameter logistic model, where the parameters min and max
are asymptotes which the data approaches but does not touch. The IC-50 point is a calculated
number halfway between these two asymptotes. Nonlinear regression and plotting was accom-
plished using a modified form of the independently designed DoseResponse package for
Matlab [66].

K = IC750
"~ [NFLud] (2)
—+1
Ky
Activity = max + _min — max_
V= 1+ [nutlin — 3] (3)
IC —50

Simulation of full length kinetics

The mathematical model describing the FLCA was stripped down to simulate only the NC
complex (54 ODE). In order to calculate the k,gs for full length luciferase, we used the ky,s
obtained from the optimization of the NC complex and dissociation constants from the litera-
ture, using Eq 4 (S2 Table).

Ky = e (4)

Results and discussion

Kinetics of light production in the FLCA and full length luciferase are
different

Previous independent studies suggest that the kinetics of luminescence production in full
length luciferase and those of the FLCA would be different [12-14]. We therefore conducted
experiments that directly compared the kinetics of luminescence production in the FLCA and
full length luciferase (Fig 2). In this experiment, we used 50 nM each of p53-NFLuc and
mdm2-CFLuc. The proteins p53 and mdm?2 are known to interact with each other in vitro with
a dissociation constant (K3) of 212 nM [64].

In our experimental conditions, the luminescence kinetics of 150 nM full length firefly lucif-
erase was measured after adding 75 uM LH, and 100 mM ATP. Full length firefly luciferase
shows a sharp peak within the first second, followed by fast signal decay (Fig 2). These kinetics
are observed regardless of the different concentrations of full length firefly luciferase used (S1
Fig) [7]. On the other hand, the luminescence kinetics of the FLCA shows a slower peak with
slower signal decay (Fig 2). Previous data shows that the luminescence kinetics of FLCA is
independent from protein concentrations used in the assays [4]. Our results, therefore, con-
firmed the previous suggestion that the kinetics of luminescence production in the FLCA and
full length luciferase are different. This result also suggested that the different luminescence
kinetics are due to factors other than insufficient substrates in the reaction solution.
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Fig 2. Luminescence kinetics of full length luciferase (black) and of the FLCA (red) are different.
Changes in the relative luminescence of full length luciferase and of the FLCA in vitro were monitored every
0.2sand 0.1 s, respectively, for 120 s in a 96-well plates. Detected luminescence was normalized so that the
maximum luminescence in each assay is 1. Notice that the kinetics of 150 nM full length firefly luciferase has
a sharp peak within 1 s followed by quick decay. On the other hand, the kinetics of 50 nM NFLuc and 50 nM
CFLuc has a more delayed peak and slower decay.

doi:10.1371/journal.pone.0148256.g002

Functions of the N and C domains in firefly luciferase were incorporated
into a mathematical model

The kinetics of a firefly luciferase mutant with a C domain deletion have been studied previ-
ously [12, 13]. The kinetics of the deleted mutant is significantly different from full length lucif-
erase (Fig 3). In our analysis of the FLCA, it was apparent that the kinetics of the FLCA are
different from both full length luciferase and the deletion mutant (Figs 2 and 3). It has been
shown that NFLuc alone can bind and adenylate LH, and oxidize the intermediate, although
the activity is 10~ fold of the full length [12]. Hence, we incorporated the independent func-
tion of NFLuc, CFLuc, and the NC complex in modeling the FLCA (Fig 4).

Our equations were written based on the following assumptions. NFLuc and CFLuc reconsti-
tute the active site of firefly luciferase upon the association of the protein pair fused to NFLuc
and CFLug, respectively [3]. ATP and LH,, the substrates of firefly luciferase, can bind to NFLuc
independently from CFLuc [11]. With both substrates bound, NFLuc catalyzes the adenylation
and oxidation reactions, but at a much lower rate than when CFLuc is present [13, 67]. The
reconstituted active site is disrupted by dissociation of the protein pair fused to NFLuc and
CFLuc. The two products, L-oxy and L-AMP, inhibit luciferase competitively upon formation [6,
7]. L-oxy is the light emitter and the primary product, while L-AMP does not produce light [7].

System of ordinary differential equations describing the FLCA

dx,
dr

= TG X Xy H G Xy TGt Xy X Gt Xy T Gt Xy Xy Gt X

= Cpg Xy Xy T Co5 t Xyg T Cog Xyt Xyg T Cyp v Xog = Gy Xyt Xy G Xyg (5)
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Fig 3. Curve fit of the in vitro luminesence kinetics of the N domain of firefly luciferase. Data originally
published in [12] was digitized using Plot Digitizer [61]. Digitized data was curve fit to estimate parameters
unavailable from previously published papers. (A) The addition of 3.7 nM LH,-AMP to 1 uM of the N domain
shows a sharp peak. This curve fit provided an estimation of the adenylation forward and reverse rates. (B)
When a substrate solution (300 uM LH,, 10 MM ATP) is added to 1 uM of the N domain, the luminescence

kinetics have a slow rise and no peak. This curve fit provided more optimized values for the available NFLuc
alone binding and catalysis rates in the FLCA.

doi:10.1371/journal.pone.0148256.g003
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Fig 4. Diagram describing the complete set of reactions used to develop a mathematical model for the
in vitro FLCA. The interaction of the protein pair (orange arrows) fused to NFLuc (grey panels) and CFLuc
(not shown) forms the NC complex (white panels), which reconstitutes enzymatic activity. The reconstituted
activity produces luminescence by the adenylation and oxidation of LH,. NFLuc contains all known substrate
binding residues and can catalyze the reactions on its own [12, 13], and some luminescence can be
produced without the interaction of the protein pair. The mathematical model takes into account enzymatic
reaction of NFLuc alone and NC complex. The equations describing the reactions of NFLuc mirror that of the
NC complex. “x” refers to variable number in the model for each species, and “c” refers to the reaction rate
parameters. N: NFLuc. NC: NC complex. A: ATP. L: LH,. NC-A: NC bound to ATP. NC-L: NC bound to LH,.
NC-LA: NC bound to LH, and ATP. NC-I: NC bound to LH»-AMP. |: Free LH,-AMP. NC-LOXY: NC bound to
L-oxy. NC-LAMP: NC bound to L-AMP. LOXY: Free L-oxy. LAMP: Free L-AMP. LIGHT: Observed
luminescence. N-A: NFLuc bound to ATP. N-L: NFLuc bound to LH5. N-LA: NFLuc to LH, and ATP. N-I:
NFLuc bound to LH-AMP. N-LOXY: NFLuc bound to L-oxy. N-LAMP: NFLuc bound to L-AMP.

doi:10.1371/journal.pone.0148256.9004
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dx
2 __
dt —Cl'xl'xm—CQ'X2—C3'.X2'X3+C4'x4—65'x2'.x6+c6'x5—C23
T Xyt Xy T oyt Xy T Gyt Xyt Xy T Cyy t Xy T Gy Xy - Xy gt X (6)
dx,
o TO Xyt Xy O Xy G Xy Xy E G X G XX
TGy Xy T G Xyt Xy F Gyt Xy (7)
dx,
E:Cs'xz'x3_c4'x4_‘:5'x4‘x6+‘:6'x7+51‘xls'le_Cz'x4 (8)
dx,
e — Gy Xy Xy Oy Xy Gy Xy Xy — G Xy € Xyt Xop — G ¢ Xy 9)
dx;
at = =Gy Xyt Xg G X — Gy Xy X H G X — Gyt Xyt X
T €t Xy T Gyt Xy X g Xyg (10)
dx,
—— =Gy Xt Xy — €y X G X X — €yt X
dt 3 X5t X3 4 X7 50Xyt Xg 6 X7
T Xyp Xy T Gy Xy = Gyt Xy Gyt X (11)
dxg
E:Cll'x7_cl2'x8+cl'x18'x21_CQ'XS_CIQ'X8+CI5'XZ'XQ_CI(}'XS (12)
dx,
dt G5 Xy Xg T Gt Xy — Gy Xyt Xg Gt Xy (13)
dx
0 _
dt = X (1= cy) 6 " Xpg - Xy — € - Xy Gy 0 Xy Xy — Gyt Xy (14)
dx,,
dt = Cpg Cog Xy T O KXot Xy Gyt Xy T Gyt Xy Xy T oy 0 Xy (15)
dxy,
dt T Cyy Xyt Xy H Gyt Xy Cog Xyt Xyp T Cyp t Xy (16)
dx,.
13 _
dt *Clg'xs'(l_cw)_x13+620'x18'(1_c29) (17)
dx,,
dt = Gyt Xy Xy F Cop Xy T Coyg Xy Xy T Cop t Xy (18)
dx,;
dt =G Xy Xy T Gy Xy — Gyt Xy X TG Xyp — €t Xy KXo T+ Gyt Xy (19)
dx,
dt = Cy Xy X T Cg Xy — Gt Xyg Xy H Gy Xyp — €t Xyg KXoy 6yt Xy (20)
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dx,;
dt = Gy Xy H Gy Xy TGy Xyt Xg — Gyt Xy T G Xyt Xy
=Gy Xyp € Xy Xy H Gt Xy (21)
dx g
dt = Cpp Xy — Gy Xy — € Xy Xy F Gy Xy — Cog t Xy T Cpp Xy Xy — G Xy (22)
dx
19 _
dt = Cy * (1 - ng) T Xy TGt Xyg c Xy TGyt Xyg T Gy Xy Xy = G5t Xy (23)
dxy
dt = Gy v Cog Xyg T Oy Xog Ko Gyt Xy T Cog Xy Xy T Cor t Xy (24)
dx,,
a T Xy Xy TG Xyt Xy € Xy Xyg T Gt Xyt Xpp T €t Xyt Xy

O Xy Xy TGy Xy Gy Xy TGy Xy Gy Xy TGy Xy TGt Xy

O Xyt Xy TGy Xy (25)

Parameters were optimized by curve fitting to experimental data

We first obtained initial estimates for the parameters from the literature (Table 1). Then we
attempted to estimate the adenylation rate of LH,, which is unknown for NFLuc. To this end,
we selected ODE:s that represent the binding and catalysis events of NFLuc without CFLuc in
the FLCA, NFLuc alone (S2 ODE). We then applied known parameters, which were experi-
mentally obtained in two independent studies (Table 1). The first study was conducted in vitro
with a double mutant in the C domain of firefly luciferase [10]. The second study was con-
ducted in vitro with firefly luciferase that has a nonsense mutation in the end of the N domain,
resulting the loss of the C domain [12]. To estimate the adenylation rate of LH,, we curve fit
the numerical solutions of the selected ODEs with known parameters to luminescence data
that were obtained in vitro with the nonsense mutation of firefly luciferase (Fig 3) [13].

The parameters were optimized using the system of ODEs representing all the enzymatic
reactions occurring in the FLCA. We curve fit the numerical solutions of the ODEs to in vitro
FLCA luminescence data (Fig 5). These data were obtained by conducting FLCA with NFLuc
fused to the C terminal end of p53, and CFLuc fused to the C terminal end of mdm2 [4]. We
used the dissociation constant of 212 nM for the p53-NFLuc and mdm2-CFLuc interaction that
was previously obtained for the p53 and mdm? interaction [64]. The optimized parameters of
the model obtained through the curve fits are summarized in Table 2 and detailed in SI Table.

Reliability of the model was validated by simulating in vitro FLCA

To validate the model and optimized parameters (S1 Table), we simulated an IC-50 curve by
modifying the mathematical model to reflect the three way interaction. The IC-50 can be
defined as the point at which the observed binding of two proteins is decreased by 50% by an
inhibitor [70]. The K; is an objective measurement of the affinity of a protein and the inhibitor
[65]. The IC-50 and the K; are not perfectly correlated due to several factors, including compe-
tition from the protein’s partner [65]. Using Eq 2, a correction factor which takes into account
the strength of binding between the target protein and its binding partner and the concentra-
tion of the proteins is therefore applied to the observed IC-50 [65].

Ohmuro et al. previously examined the IC-50 of nutlin-3, a specific binding inhibitor of
mdm?2, using the in vitro FLCA [4]. In the experiment, they measured the RLU immediately

PLOS ONE | DOI:10.1371/journal.pone.0148256 February 17,2016 9/21
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Table 1. Parameters Derived from the Literature.

Parameters for full length luciferase

LH, Affinity 7.2-15 UM [9, 12]

ATP Affinity 160-230 uM [9, 12]
LH,-AMP Affinity 4.7 UM [10]
Adenylation Rate 1103 s7! Estimatedt [10]
Catalytic Activity 0.23s7! [10]
Parameters for NFLuc alone*

LH, Affinity 26-67 uM [9, 12]

ATP Affinity 560-6900 uM [9,12]
LHo-AMP Affinity 0.55 uM [10]
Adenylation Rate 1.107°s™" Estimateds [10]
Catalytic Activity 3.11.107°s™ [10]
Parameters shared between the NC complex and NFLuc alone

L-AMP Affinity 3.8nM [6, 7, 68]
L-Oxy Affinity 500 nM [6, 7]

Dark Reaction Frequency >0.2 [7, 9]
Degradation of NFLuc and CFLuc 1.36.10°% s Calculatedt [4]
Parameters describing the protein pair

p53 and mdm2 Affinity 212nM [64]

Kon of p53 and mdm2 92103 nM st [64]

Ko of p53:mdm2 257! [64]

Nutlin-3 and mdm2 Affinity 216-250 nM Calculatedt
FRB and Rapamycin Affinity 26 uM [69]

FKBP and Rapamycin Affinity 200 pM [69]

FRB and FKBP:Rapamycin Affinity 12 nM [69]

Initial estimates for parameter values were taken from the literature where available. Some values were
calculated from experimental results (1) or estimated (%) from relative rate comparisons. Values for mutant
luciferases with a C domain deletion [12] or without the catalytic residues on the C domain [10] are reported
here (¥).

doi:10.1371/journal.pone.0148256.t001

(0.2 sec) after adding the substrates to 100 nM each of p53-NFLuc and mdm2-CFLuc. Nutlin-3
inhibits the p53-mdm?2 interaction by binding to mdm2. We estimated the K; of nutlin-3 to be
235 nM using previously obtained data and Eq 2 [4]. We added ODEs describing the interac-
tion of an inhibitor to a mdm?2 fused to CFLuc (S3 ODE) to Eqs 5 through 25. Using nonlinear
regression to Eq 3, we calculated the IC-50 of our simulation to be 440 nM, and the IC-50 of
the previous experiment to be 390 nM (Fig 6) [70]. We assume one of the causes for the differ-
ence between the experimental data and model simulation is due to disturbances in the mixing
of the substrate and enzyme solutions after injection, which would occur within the first second
of the reaction. Nonetheless, the results suggest that the model and parameters of the FLCA
identified in this study reasonably simulate the IC-50.

As an additional validation step, we simulated the FLCA at different concentrations of
NFLuc-p53 and CFLuc-mdm?2 (S4 Fig). These results also suggest that the model and parame-
ters accurately reflect the FLCA conditions, with the exception of early time points (within the
first second). We assume this discrepancy is also due to the disturbance of the solution after
injection of the substrate solution in the experiment. As a further validation step, we simulated
the in vitro FLCA for a second protein pair, NFLuc-FRB and CFLuc-FKBP in the presence of
equimolar rapamycin (S5 Fig). Rapamycin preferentially binds FKBP, allowing it to interact
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Fig 5. Model simulation (red) of the luminescence kinetics of p53-NFLuc and mdm2-CFLuc using in
vitro FLCA compared to the data (black) after optimization. The values for the parameters in the
mathematical model were estimated in three steps. First, parameter values were taken from the previously
published literature when able, or calculated from previous data (Table 1). Second, additional parameter
values were estimated by curve fitting the model to the luminescence kinetics of NFLuc alone [12] (Fig 3).
Finally, the binding and catalysis rates of the NC complex were optimized by curve fitting (red) to the
luminescence kinetics of 50 nM each of p53-NFLuc and mdm2-CFLuc obtained in this study (black).

doi:10.1371/journal.pone.0148256.9005

with FRB [69]. This three-way molecular interaction has a 20 times higher affinity than
p53-mdm?2 (Table 1). Simulating the interaction between FKBP and FRB in the presence of
rapamycin using the in vitro FLCA with the optimized parameters reasonably agrees with the
previously obtained in vitro FLCA data [4]. This result again suggests that the model and
parameters accurately model the in vitro FLCA. For both NFLuc-p53:CFLuc-mdm?2 and
NFLuc-FRB:CFLuc-FKBP we found a linear relationship between the maximum RLU detected
and the concentration of the protein pair used in the experiments (Fig 7). The model predicts
that the relationship between the maximum RLU and the concentration of the protein pair will
be linear (Fig 7) but the concentration affects the kinetics of light emission. Namely, the

Table 2. Comparison of Experimental and Estimated Values.

Parameter Full length (experimental)t} NC complex (estimated)t NFLuc alone (estimated)} N domain (experimental)t
LH, Affinity 7.2-15 uM [9, 12] 16 UM 27.50 uM 26-67 uM [9, 12]

ATP Affinity 160-230 uM [9, 12] 160 uM 683 uM 560—-6900 uM [9, 12]
LH,>-AMP Affinity 4.70 uM [10] 45 nM 45 nM 550 nM [10]

L-oxy Affinity 500 nM [6, 7, 68] 70 nM 70 nM =

L-AMP Affinity 3.80nM [6, 7] 45 pM 45 pM -

Adenylation Rate — 500s~" 0.004 57" -

Oxidation Rate 0.23s7'[10] 0.22s7" 4.00-1077 57" 3.11-107°s7'[10]

Dark Reaction Frequency 0.2[7,10]

T: Values obtained from the literature.

0.29 0.29 >0.2[10]

*: Estimated values were obtained from the curve fit.
—: data unavailable. Values for mutant luciferases without the catalytic residues on the C domain [10] or with a C domain deletion [12] are also reported

here.

doi:10.1371/journal.pone.0148256.t002
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Fig 6. Nutlin-3 IC-50 curve (red), simulated using the in vitro FLCA model, agrees with the
experimental data (black). Experimental RLU values of the FLCA with 100 nM each of p53-NFLuc and
mdm2-CFLuc at 0.2 s (black) are compared with simulated RLU values (red) across a range of nutlin-3
concentrations [4]. The calculated IC-50 of the experimental data is 390 nM, while the simulation IC-50 is 440
nM.

doi:10.1371/journal.pone.0148256.9006
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Fig 7. The model predicts a linear relationship between maximum RLU and concentration of the
protein pair. Maximum RLU values obtained experimentally (black) are compared with simulated RLU
values for (A) NFLuc-FRB, CFLuc-FKBP, and equimolar rapamycin (red) and (B) NFLuc-p53 and CFLuc-
mdmz2 (blue). The linear trendlines were calculated using nonlinear regression. The experimental data was
obtained from [4].

doi:10.1371/journal.pone.0148256.9007
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concentration of a protein pair affects the concentration of the inhibitory products, which
affect the rate of light emission after the maximum RLU is reached (S6 Fig).

The model and parameters obtained by the curve fit brought us a
quantitative understanding of the luminescence production in in vitro
FLCA

9 The model and parameters obtained in this study expanded our understanding of lumine-
sence production in the FLCA with two important findings. First, previous experimental data
showed that a mutant of the C domain residues K443 caused some changes in enzymatic activ-
ity. The mutation reduced the LH,-AMP oxidation rate by about 7000 times, from 0.23 s " in
full length luciferase to 3.11-107° s~ ! in the mutant (Table 2) [10]. On the other hand, the bind-
ing affinity for LH,-AMP increased by 8 times in the mutant, from 4.7 yM in full length lucifer-
ase to 550 nM in the mutant (Table 2) [10]. These data indicate that K443 in the C-domain of
firefly luciferase increased the oxidation rate of LH,-AMP while reducing the binding affinity
of the N-domain for LH,-AMP [10].

The optimized parameters in the FLCA show a similar trend. The oxidation rate of LH,-
AMP by NFLuc alone is 4.00-107 s™' (Table 2). This is about 78 times slower than that of the
mutant. On the other hand, the optimized parameters of the binding of LH,-AMP by NFLuc
alone is 45 nM (Table 2). This is a 12 times higher affinity than that of the mutant. These
parameters suggest that removing the C domain from the firefly luciferase peptide exaggerates
the effects of the mutant.

Second, when the active site is reconstituted within the NC complex through the interaction
of the proteins fused to NFLuc and CFLuc, the affinity of LH, increases from 27.5 uM in
NFLuc alone to 16 yM in the NC complex. This is comparable to the full length affinity to LH,,
which has been measured between 7.2-15 yM [9, 12]. The affinity of ATP also increases from
683 uM in NFLuc alone to 160 yM in the NC complex. This is also within the range of previ-
ously obtained full length affinity to ATP (160-230 uM) [9, 12]. The oxidation rate of the NC
complex was estimated to 0.22 s~', which is very close to experimental values for full length
luciferase (0.23 s™) [10]. On the other hand, the adenylation rate of LH, by the NC complex
was estimated to be 500 s™', which is about 10° times higher than the value we obtained for
NFLuc alone (0.004 s™'). Overall, the set of optimized parameters suggest that the NC complex
reconstitutes the oxidation activity of full length firefly luciferase, while the affinities of the NC
complex to LH,-AMP, L-oxy, and L-AMP are higher than the affinities experimentally
obtained for full length firefly luciferase (Table 2).

The mathematical model explains that the alternation of the kinetics in
FLCA is due to rapid dissociation of the protein pair, lower adenylation
rate, and higher affinity to LH,-AMP

Although NFLuc alone has residual enzymatic activity, the oxidation activity that generates
light is about 10~° of the NC complex (Table 2). This suggests that the light detected in the
FLCA is mainly due to the activity of the NC complex. The model estimates the oxidative rate
of LH,-AMP in the NC complex is 0.22 s while the dissociation of p53 and mdm2, fused to
NFLuc and CFLuc respectively, is 2.0 s~'[64]. This suggests the active site formed in the NC
complex dissociates about 10 times faster than the rate of LH,-AMP oxidization. The model
suggests that this causes the delayed peak in the FLCA (Fig 8(A)). For example, a hypothetical
protein pair with a Kq of 10 pM dissociates at a rate of approximately 1-10™* s '[63]. The
model suggests that such a protein pair reaches its peak RLU around at 2.5 sec, while a protein
pair with K4 of 212 nM (p53-mdm?2) reaches the peak around at 5.0 sec.
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Fig 8. The model suggests that the delayed peak of the FLCAis due to dissociation of the protein pair,
while the slow decay isdue to the lower adenylation rate and higher affinity toward LH,-AMP. (A)
Luminesence kinetics of FLCAs and full length luciferase was predicted by the model. The protein pair with Ky
=10 pM (blue) shows a faster peak and decay, compared with the protein pair with Ky =212 nM (red). (B)
Luminesence kinetics of FLCA, hypothetical split luciferase, and full length was predicted by the model. FLCA
with the protein pair Ky of 212 nM (red) compared with a hypothetical split luciferase (blue) with the same Kg.
The hypothetical split luciferase has the same adenylation rate and affinity to LH,-AMP as full length
luciferase. Enzyme concentration used for these simulations was 50 nM.

doi:10.1371/journal.pone.0148256.9008

The model further suggests that two factors cause the slow decay of the FLCA: the lower
adenylation rate (estimated to be 500 s~ for the NC complex, and 5000 s~* for full length lucif-
erase), and a higher affinity to LH,-AMP. To demonstrate this, we simulated the kinetics of full
length firefly luciferase, the FLCA, and a hypothetical split luciferase that has full length values
for the adenylation rate and the affinity and LH,-AMP, and FLCA values for all other parame-
ters (Fig 8(B)). The hypothetical split luciferase shows similar kinetics to the full length,
although the peak is still delayed.

The mathematical model reveals maximum RLU detected in the FLCA
would underestimate changes in Ky of an interacting protein pair

Although the observed RLU in the FLCA is expected to correlate with the degree of interaction
of the protein pair, it is unknown how direct this correlation is. To address the question, the
relationship between changes in affinity of a protein pair and RLU was analyzed using the
mathematical model and parameters obtained in this study.

The model suggests that the relationship between the K, (the affinity of a protein pair) and
the RLU is exponentially rather than linearly correlated. To demonstrate the relationship, we
evaluated protein pair affinities over 24 different values, from 2.5 nM to 3 uM (Fig 9(A)). This
simulation demonstrates that the comparison of the RLU obtained using FLCA can be mislead-
ing about changes of the affinity of the protein pair. For example, when comparing the maxi-
mum RLU at 10 nM and 50 nM affinity, there is a 5 times decrease in the protein pair affinity,
but only a 1.45 times decrease in the maximum RLU (Fig 9(B)). This suggests that the FLCA
would underestimate changes in the K4 of protein pairs.

This finding raises a question about the most valid interpretation of the FLCA data. Some
previously published papers claim that the K4 of the protein pair has a direct, linear relation-
ship with the RLU detected with in cellulo FLCA [1, 14]. It is conceivable that more variables
and parameters are needed to construct a mathematical model of in cellulo FLCA. The variables
specific for in cellulo include protein synthesis and degradation, diffusion rates of the substrates
across cell membranes, and the conversion of L-AMP to dehydroluciferyl-Coenzyme A by
Coenzyme A [71]. However, one can expect the same exponential relationship between the

PLOS ONE | DOI:10.1371/journal.pone.0148256 February 17,2016 14/21



@’PLOS ‘ ONE

Mathematical Model of Luciferase Complementation

1.45x

RLU
RL

5x

T —e—0on &
1 L — 1 —© 1 1 1 1 1 1 1 y
15 2 25 3 0 001 002 003 004 005 006 007 008 009 0.1
kd (uM) kd (uM)

L L
0 0.5 1

Fig 9. Directly comparing the RLU obtained by the FLCA may cause misunderstandings about their
affinities. (A) Predicted relationship between changes of K4 (from 2.5 nM to 3 yM) for a protein pair and the
RLUs detected in the FLCA. The model predicts an exponential relationship between changes of K4 and
maximum RLU. (B) Predicted relationship between changes of K4 (from 10 nM to 50 nM) for a protein pair and
the RLUs detected in the FLCA. Notice the RLU detected at 10 nM (orange grid) is only 1.45 times higher that
that at 50 nM (grey grid). Enzyme concentration used for these simulations was 50 nM.

doi:10.1371/journal.pone.0148256.9009

RLU and the Ky in cellulo. We, therefore, suggest the FLCA data be interpreted as a qualitative
measure of protein pair affinity until a detailed analysis or control experiment can be con-
ducted for the in cellulo FLCA.

Conclusion

In this study, we found that the change in luminescence kinetics between the FLCA and full
length luciferase is due primarily to the rapid dissociation of the protein pair fused to NFLuc
and CFLuc, a lower adenylation rate, and an increased affinity of the NC complex to LH,-
AMP. Branchini et al. first demonstrated the effect of the removal of the catalytic residues of
the C terminal domain on firefly luciferase by measuring the luminescence production in a
recombinant protein [10]. The model constructed in this study demonstrates that the relation-
ship between luminescence and the affinity of the protein pair fused to NFLuc and CFLuc is
exponential rather than linear. The model explains that, due to the non-linear relationship
between the RLU and K, of a protein pair, a single luminesence value cannot be a direct quanti-
tative measurement of affinity or protein pair complex.

One of the most challenging aspects in the FLCA when comparing the affinities of different
protein pairs is to understand how the active site in a NC complex is reconstituted. It is known
that when NFLuc and CFLuc are fused to different locations of a protein pair (.i.e., amino- or
carboxyl- terminal end of proteins of interest via a linker peptide), the RLU observed in the
FLCA assay varies greatly [4]. This suggests that the geometry of NFLuc and CFLuc in the
interacting protein pair influences how the active site is reconstituted. In other words, NFLuc
and CFLuc may not be able to reconstitute the fully active NC complex, depending on their
geometry. This phenomenon particularly demonstrates that direct comparison of RLUs
between different protein pairs, especially when the 3D structures of the proteins are largely
different, must be considered qualitative. Quantitative analysis with the FLCA is possible, as
demonstrated previously by Ohmuro et al. with their IC-50 analysis and our mathematical
model in this study [4]. We suggest that the titration of known concentrations of CFLuc to a
small concentration of NFLuc, such as for a traditional protein interaction assay, is required to
obtain quantitative results for in vitro FLCA [72].
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Supporting Information

S1 Fig. Kinetics of full length firefly luciferase is independent of concentration. (A) Kinetics
at 150 nM of firefly luciferase. (B) Kinetics at 450 nM of firefly luciferase.
(TTF)

S2 Fig. Determination of the degradation rate of NFLuc and CFLuc at 37°C. Previously the
heat stability of NFLuc and CFLuc was analyzed by measuring the activity after incubation
times ranging from 0 to 60 minutes at 37°C [4]. To calculate the degradation rate, the RLU val-
ues were digitized using PlotDigitizer and the maximum RLU values were extracted [61]. The
RLU value for no incubation time was considered 100% activity. This was curve fit to an equa-
tion describing degradation (Eq 1). The degradation rate was found to be 0.00136 s~

(TIF)

S3 Fig. Determination of the initial concentration of NC complex. Initial concentration of
free NFLuc-p53, free CFLuc-mdm2, and NC complex was modeled using the affinity for p53
and mdm?2 from the literature [64]. (A) For luminescence kinetic data with incubation at 37°C
(shown in Figs 2 and 5), the degradation rate was included in the calculation of initial condi-
tions. (B) For luminescence kinetics data without any incubation (see 54 Fig), probes were not
incubated, but an average experimental delay of approximately 1 s is assumed.

(TIF)

$4 Fig. The mathematical model (red) reasonably matches experimental data (black) at
varying concentrations of NFLuc-p53 and CFLuc-mdm?2. (A) 50 nM of NFLuc-p53 and
CFLuc-mdm?2 each. (B) 150 nM of NFLuc-p53 and CFLuc-mdm?2 each. (C) 450 nM of NFLuc-
p53 and CFLuc-mdm? each. Each simulation was separately optimized with respect to the
effects of the detection lens (photomultiplier tube). Data obtained from [4].

(TIF)

S5 Fig. The mathematical model (red) reasonably matches experimental data (black) at
varying concentrations of NFLuc-FRB and CFLuc-FKBP:rapamycin. (A) 28 nM of NFLuc-
FRB and CFLuc-FKBP:rapamycin each. (B) 83 nM of NFLuc-FRB and CFLuc-FKBP:rapamy-
cin each. (C) 250 nM of NFLuc-FRB and CFLuc-FKBP:rapamycin each. (D) 750 nM of
NFLuc-FRB and CFLuc-FKBP:rapamycin each. Each simulation was separately optimized with
respect to the effects of the detection lens (photomultiplier tube). Data obtained from [4].

(TIF)

S6 Fig. The mathematical model predicts the concentration of the protein pair affects the
kinetics. The concentration of a protein pair with a K4 of 100 nM was varied from 5 nM to 15
uM. The concentration of the protein pair affects the amount of inhibitory products in solution
after the light emission peak is reached. When the concentration is higher than the K, of the
protein pair, a clear peak (maximum RLU) will be most easily detectable in the kinetics. Green
is the 100 nM concentration simulation.

(TTF)

S1 Table. Parameter values after optimization by curve fitting mathematical model to kinetic
data. Protein pair used in obtaining the experimental data for the curve fit was p53 and mdm?2.
Parameter estimations were obtained to 15 decimal points and rounded to the nearest hundreth.
(PDF)

S2 Table. Parameter values obtained from the literature. Dissociation rates (kog) calculated
by holding k., values at those found after optimization for the FLCA model.
(PDF)

PLOS ONE | DOI:10.1371/journal.pone.0148256 February 17,2016 16/21


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148256.s008

@’PLOS ‘ ONE

Mathematical Model of Luciferase Complementation

S1 ODE. System of equations describing the interaction and degradation of two proteins
(%1 and x,) and the interacting pair (x3). Used to calculate the initial concentrations prior to
substrate addition.

(PDF)

S$2 ODE. System of ODEs describing the binding and catalysis of NFLuc only. These equa-
tions were obtained using knowledge of the enzymatic activity of NFLuc, as shown by the liter-
ature. For the purposes of publication, the numbering system was conserved between the full
in vitro FLCA ODEs by removing the portions involving interaction with CFLuc.

(PDF)

S$3 ODE. System of equations describing the binding of an inhibitor (here, nutlin-3) to a
protein attached to CFLuc (mdm?2). These equations were added to the in vitro FLCA ODEs
to model the IC-50 data obtained when adding nutlin-3 to NFLuc-p53 and CFLuc-mdm?2.
(PDF)

S4 ODE. Here the in vitro FLCA ODEs were stripped down to be able to represent full-
length luciferase. Accordingly, only the interaction and catalysis of the NC complex is mod-
eled here, with all references to free NFLuc or CFLuc removed.

(PDF)

S1 Code. Matlab code used to generate long and short term simulations of NFLuc-p53 and
CFLuc-mdm?2, and compare it to the data.
(PDF)
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