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This paper established a delayed vector-borne disease model with saturated infection rate and cure rate. First of all, according to
the basic reproductive number R, we determined the disease-free equilibrium E; and the endemic equilibrium E,. Through the
analysis of the characteristic equation, we consider the stability of two equilibriums. Furthermore, the effect on the stability of the
endemic equilibrium E, by delay was studied, the existence of Hopf bifurcations of this system in E; was analyzed, and the length
of delay to preserve stability was estimated. The direction and stability of the Hopf bifurcation were also been determined. Finally,
we performed some numerical simulation to illustrate our main results.

1. Introduction

Malaria is a vector-borne infectious disease [1], caused by
parasites. It is popular in 102 countries and regions, especially
in some countries in Africa, southeast Asia, and South
America. In the 30s of this century, malaria spread throughout
the country. Clinical symptoms and signs of this disease, such
as typical periodic onset of malaria, secondary anemia, and
spleen, can cause serious consequences, including dangerous
malaria, malarial kidney disease, and black urine fever.

The main way of transmission of malaria is the bite of an
infected female anopheline mosquito. The mosquitoes would
also be infected when uninfected mosquitoes bite infected
people, and this transmission process has an incubation period
[2]. The important feature of malaria is that the recovered
immune system may establish immune memory for such
antigens. It is this characteristic that greatly reduces the spread
of malaria [3, 4]. Immune process is slow and, however, takes
years or even decades [5]. As time goes by, the immune system
gradually weakens, and at this time, reinfection likely occurs;
therefore, considering the function of delay and immune
system is necessary in the study of malaria.

For the vector-borne diseases such as malaria, a large
number of mathematical models have been created
[2,6,7,8,9], most of which consider the local immunity and

delay of the spread of malaria in the crowd. Different time
delay has been used to describe the latent period in the
course of disease transmission [7, 8, 9]. Local stability
conditions for the equilibrium of a model with two time
delays have been considered by Wan and Cui [8]. The global
stability of the equilibrium has been studied for a vector-
borne disease model with distributed delay by Cai et al. [10].

Based on the above model, this paper considers a delayed
vector-borne model with saturated infection rate and partial
immunity to reinfection. We prove that the stability of this
system can be changed by time delay and produce Hopf
bifurcation, calculating the length of delay to preserve sta-
bility. Using the center manifold theorem [11] and norm
theory, we determine the stability and bifurcation direction.

2. Model Formulation

N, (t) represented as the host population at time ¢ is divided
into three subclasses: the susceptible S(¢), the infected I (t),
and the recovered R(t). N, (t) represented as the vector
population at time ¢ is divided into two subclasses: the
susceptible T'(t) and the infected V (¢). The Hopf bifurcation
was determined in a model with direct infection and delay by
Wei et al. [9]. The mathematical formulation still needs
improvements. We consider an improved model as follows:
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where A, and A, represent the recruitment rate of the host
population and vector population, respectively. b represents
the average number of bites per mosquito per day. The
incidence rate b3, S(t)V (¢)/1 + aV (t) is the number of in-
fections of the susceptible host caused by the infected vector,
and « is the inhibitory effect rate caused by the infected
vector. p; and u, represent the death rates of the host
population and vector population, respectively. 3, is the
infection rate from vector to human. ¢ (0 < 0 < 1) represents
the degree of partial protection for recovered people given by
a primary infection, where o = 0 represents complete pro-
tection and o = 1 represents no protection. y is the per capita
recovery rate of the infected host population. f3, represents
the infection rate from human to vector. 7 is the time delay,
representing the incubation period in the vector population;
that is to say, a susceptible vector that bites an infective host
at time t — 7 will become infective at time ¢.
The model (1) meets the initial conditions:

[(S(0) = ¢,(0),
1(6) = ¢, (0),
R(6) = ¢5(6),
1 T(6) =9,00), (2)
V(0) = ¢5(0),
¢;(0)=0, (i=1,2,3,4,5),
| —T7<0<0,

where (9, (6), 9, (6), 95 (6), 9, (6), 95 (8)) € C([-7,0], )
is the Banach space of continuous functions mapping the
interval [-7,0] into R with the topology of uniform con-
vergence. The norm is defined as follows:

loll = _suepo{lsol O] |92 ). |03 (B)]. |94 (B)], |5 (O]}

(3)

Based on the fundamental theory of functional differ-
ential equations [12], it is easy to show that the solution of
the model (1) with the initial condition (2) is unique and is
nonnegative for all ¢ >0.

By (1), we know that

N]i(t) = Ak—ﬂka (t), (k = 1) 2)) (4)
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and can solve it by using the integrating factor:

N (£) = N, (0) e +ﬂ(1 —e ), (5)
Hi
That is,
. Ay
lim N (t)=—, (k=1,2). (6)
t—00 yk

Form the limiting theory of differential equation [13], we
can draw that model (1) is the equivalent of the following
equation:

(ds_ BRSWV(©)_
d ' 1+aV(b)

I bB,S(H)V (1) A e
V) = (o + ) (@),

av A
- b/:’2<#—22—V(t—T))1(f— EAY0)

/41S(t))

Next, the model (7) can be studied in the invariant set:

Q— (S,I,L)€R3|OSS+IS 1>OS&£ )SZO,IZO .
+
1‘1 A“Z

Now, let us consider the existence of equilibrium.
First, it is easy to show that system (7) always has a
disease-free equilibrium E; = (Sy, I, V) = (A;/4;,0,0).
The endemic equilibrium E, = (S;,I;,V,) satisfies the fol-
lowing equation:
bBS,\V
A 1+aV, 1S =0

bp, S,V A
1 #‘)1‘/114'01?[31(#—11—31—[1)‘/1—(#1 +y)I, =0,

A
bﬁz(‘u_z_vl>11 -1V, =0.

2

(9)

Form (9), wehave S; = A, (1 + aV)/bB,V + u, (1 +aV)
and I, = u,V,/bB, ((A,/u,) = V), where V, satisfies the fol-
lowing equation:

P,V +P,V+P,=0, (10)

where

P, = obp, [AlbzﬂlﬁZ + s (BB + 0‘.“1)]’

A
P, = b2ﬂ1ﬂzA1#1 - UbﬁlAlbzﬁlﬂz_z + O-bﬂhuil’lZ

)
+ ity (g +y) (BB + o), (11)
Py = ity (1, +¥) (1-Ry),
_ BBiBAA,

O i (g +y)
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where V= (=P, + \/P}-4P,P,)/2P, and V,= (-P, -
\|P? —4P,P, )/2P, are the two roots of (10) since ¢ € [0, 1],

and we have

P> bzﬁlﬁzAL‘h + O‘bﬁll’é[h + gty (g +y) (BB + )
A
- bﬁlAlbzﬁlﬁZ‘u_z = bzﬁlﬁZAh“l + Ubﬁl“.“i“z
2

+ bty (uy +y) (1-Ry).
(12)

Obviously, P, >0,P, >0 and P, >0if R,<1,and P, >0
and P, < 0if R, > 1. From the relationship between roots and
coefficients, we know that V, and V, are both negative if
R, <1 and V is positive if R, > 1. According to the above
discussion, we can obtain the following theorems.

Theorem 2.1. System (7) has the disease-free equilibrium E
if Ry < 1. System (7) has the disease-free equilibrium E, and
an endemic equilibrium E, if Ry > 1.

3. Stability of Equilibrium and Hopf Bifurcation

In this section, we study the stability of equilibrium and the
existence of Hopf bifurcation of system (7).

The characteristic equation of the linear approximate
equation of the system (7) at equilibrium E = (S,1,V) is

bp, v b
A+ B + U, 0 —ﬂls 5
1+aV (1+aV)
bp,v bp,S
bB,V —-—L— A+ obB,V B o =
obp, T+av +obBV +p +y (1+0¢V)2+ 0,
A, ) -1
0 “bB,| —-V |e" A+ p, +bpIe
Hy
(13)

where Q = —obf; (A, /p)-S-1).

3.1. The Local and Global Stability of the Disease-Free
Equilibrium. At the disease-free equilibrium E, equation
(13) can be expressed as follows:

AN,
(/\"'l“‘l)(}lz + (i +y )+, (1 +y)—b2/31/32ﬁe g ) =0.
12

(14)

Obviously, equation (14) has a negative real root
A, = —,. To discuss the rest of the characteristic roots of
(14), we consider the following equation:

A,
Uil

eV =0.

N (i +y+ o)A+ s (g +7) - B,y
(15)
When 7 = 0, equation (15) is equivalent to

Nt (u+y+ )+ (uy +y)(1-Ry) =0.  (16)

By the using Routh-Hurwitz criterion, (16) has two
eigenvalues with negative real parts if R, < L.

When 7 > 0, then the roots of (15) can enter the right-half
plane in the complex plane by crossing the imaginary axis as
the delay 7 increases.

Let A = wi(w > 0) be a purely imaginary root of equation
(15), then separating the real and imaginary parts yields

0 (i +y) = BB B cos ur,
M -
(U +py +y)w = —bzﬁlﬁzAlAz sin wr.
tit
Squaring and taking the sum of (17) yields
W' + (15 + (1 +7)" )@’ + py (4 +7) (1-Ry)
(18)

A A
X (.”2 ( +y)+ bzﬁlﬁz #1 2
1

):0.
Ha

Equation (18) has no roots if R,<1. Therefore, we
conclude that all eigenvalues of equation (14) have negative
real parts.

If Ry>1, let
2 2 AIAZ -At
FO =Gyt (i +y) Uiy e ™
152

(19)

which implies that

F(0) =y (g +7)(1-Ry) <0,

(20)

lim f(A) = +oo.
A—+00

By the continuity of f (1) and zero point theorem,
f(A) =0 has at least one positive root. So, the disease-free
equilibrium E, is unstable. Based on the results, we can draw
the conclusion.

Theorem 3.1. For any 1, the virus-free equilibrium E,, of the
system (7) is locally asymptotically stable if Ry <1, and it is
unstable if Ry > 1.

In fact, using a similar approach to the literature [14], we
can know that E,, is globally asymptotically stable if R, < 1. A
detailed proof is given below.

For a continuous and bounded function f (¢), we define

o= tlim sup f (),

(21)
foo® Jim inf £ (2)

For system (7), any solution with the initial conditions is
(S(t), I(t),V (t)), and we have

0<S,, <S8 <00,
0<I,<I*® <00, (22)

0<V  <V¥<co0.



By the fluctuation lemma [15], we know that there is a
sequence {t,}; when t, — co, we have S(t,) — S and
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X+ 0+ A )+ Ay +(B,) + B+ By)e M =0, (27)

S'(t,) — 0(n —> 00). Substituting t, into the first  where
equation of (7) yields bﬁ v,
b, S(t,)V (t, +2u, + 0bBV +y + Uy,
S (tn) :Al_%(ti))_ﬂls(tn)gf\l_ﬁs(tn)' 2T aV, ' v ?
(23) bp,\v
A= ﬁﬁL pr | (0bB V) + iy +y + 1)
Let us take the limits on both sides: !
Jm 8 (t) <Ay lim S(8,), e, ST <A, + (0B V +pay + )
(24)
_( BBy
Similarly, Ao = (1 ra, HH ) RV b )
(09) 00y 700 A (&)
(4, +P)I® < (1-0)bB,S®V® + 0bB,—L V™, B, = bB,1,,
1
A (25)
WV <bp, /421 : B, = b/3211<1 +1Wll + bV, +2u, + y) o
Combining (24) and (25), we know that
g (24) and (25) o _bﬁlsl( 1 —l)yh—#(#w)
Ve <b’Bf,—— 22—V (26) 1+aV, \1+aV, R
pathz (¢ +7)
Since V' is the supremum of the function V (t), V*° > 0. B, = bﬁzjl( bB, V', + U ) (b, V, +uy +7)
If V>0, by using (26), u, <bBi s (A Ay/uypy (1) + 7)), 1+aV,
which contradicts R, < 1. That is to say, V*° =0, which
implies that lim V (t) = 0. In the same way by using (25), _ bB,S, [ BBV, tu | 1
e . . l+aV, \1+aV, "' J\1+aVv,
we have thm I(t) = 0. According to the limit theorem [13],
—00
we have lim S(t) = A;/p,. Combined with the local as- \% bﬂ
o o Xt T i (i +y)
ymptotic stability of E;, we can get the following theorem: 1, \1+ ocV A
Theorem 3.2. For any t, the virus-free equilibrium E, of N bp,\vV, bR,V b, S, vy
system (7) is globally asymptotically stable if R, < 1. 1+aV, TP (1+ 0ch)2 o I
When 7 = 0, equation (27) is equivalent to
3.2. The Local Stability of the Endemic Equilibrium. From 2V +H,A>+HA+H,=0, (29)
(13), the characteristic equation of linear approximate
equation of the system (7) at the endemic equilibrium E, is ~ where
_ BBV
H,=A,+B, = T+aV, L BB, + 2uy + phy + 0LV, + >0,
bp,v
Hy=A +B, = LA 1 (BB +uy +y + py) + 0bB, Vi, + BB, T ﬁl bRV +2u, +y
1+ och aV,
bp, S, 1 Vi
1- —>0,
Trav, U Trav, )T, (30)
bp\v bpS, W,V
Hy = Ay + By = (#{XVZ + /41) (66, V1 +py +y)bBoIy + 06, Vi, | + (1 _a)bﬂlvlm =

S 1 |4
o bp, S, 1- H 150.
1+aV, 1+aV, /) I,
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Notice that
[ BBV, bp,V,
H,H,-H, = +b/321 + 2+ + 0bBV +y || oty | X (0bB VY + ) + 0bB Vi,
1+aV, 1+aV,;
bB,\V, b, S, 1 Vi
2 1- —
+op.0 < VMbﬁ‘V1+ MY I T e, U T av, )T,
bB,V, ) bpiS:  wV,
- ——+ obB,V, +u, +y)bB,I, + obB,V -(1-0)bB,V,—m——— —=—
(1 +av, Hy [( BV + Y) B.1, By 1#2] By 1(1 +ocV1)2
b, S, 1 VYV, bB,V, bp,V,
/411 T av, 1 1+av,) 1, 2 1+aV, tutiy 1+aV, (v + ) + 0B,V iy + bB, 1,
bp,S, 1 bp,V, bp,\V,
X(Gbﬁlvl+”l+w]+1+avl i “2 1+ocV1+‘ul Trav, t
bpiS, .V, bp;S; 1 Vi
: I —(1- 1-
[(obB, V' +py + y)bBy I, + 0bB, Vi, ] - (1-0)bB,V, (1+ thl)z I, 1T+ oV, 1vav,) I,
bB,Vv, bB,S V, bB,V bB,S \%
> By TP, ()/ !41) B1S: _ WV bBV, obB,V, B1S: . HaVy
1+aV, (1+ocV1) I, 1+aV, (l+ocV1)
(31)
Vi _ ity bty _(m+y)(A+avy) (32)
I, (bB,S,/1+aV,) + abB, ((Al/ﬂ1)_51_11) (bB:S/ (1 +aV )) bB, S,

It follows that

bB,V, b,S,
H,H,-H,> +py)— P
241 ZT+av, o (y + ) (1 +ocV1)2
bp,V, (!41 +y)(1+aVy)
1+aV, bp.S,
bB\V, bB\V
Tray e (r+s) 0+ av,) (v + 1)z
bV, 1
C1+aV, #2()’*’#1)( 1+(xV1>>0'
(33)

By using the Routh-Hurwitz criterion, equation (29)
only has eigenvalues with negative real parts if R, >1. We
can obtain the following theorem:

Theorem 3.3. For 7 =0, the endemic equilibrium E,
system (7) is locally asymptotically stable if Ry > 1.

of

3.3. Hopf Bifurcation. In this subsection, we devote to in-
vestigating the stability of the endemic equilibrium and the
existence of Hopf bifurcation.

Let A =wi(w>0) be the root of equation (27),
substituting it into equation (27) and separating the real and
imaginary parts; we can obtain the following equation:

{ A,w* - Ay = (B, — B,w*)cos wt + Bywsin wr, (34)
w’ = A w = B w cos wt — (B, — B,w?)sin wr.
Squaring and taking the sum of (34) yields
w® + p2w4 + plw2 + py =0, (35)
where
p>= Az -24,- B,
p1 = A] -2A)A, +2ByB, - B , (36)
bo = Ao - B;.
Let x = w?, then equation (35) is equivalent to
Fx)2x + pyx’ + pyx+ py =0, (37)

then f'(x)=3x*+2p,x+ p,. The two roots of equation
3x% +2p,x + p; =0 are



. TPt \Pi-3p

X >
3
(38)
o \P3 =3P
= f’

According to [16], the condition that equation (37) has
positive roots is as follows:

Lemma 3.4. For equation (37),
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(iii) If py>=0 and p3>3p,, then equtaion (37)
has positive roots if and only if x*>0 and

f(x*)<0

Based on Lemma 3.4, we concluded that if (ii) is set up,
then the stability of E, will not change when 7 increases. If
equation (37) has a positive root, then the stability of E; may
change with the change in 7.

Suppose that equation (37) has three positive roots,
written as x,, x,, and x;. Then, equation (35) has positive
roots wy = /Xy (k =1,2,3). By using (34),

(By— Byw?) (A,w* — Ay) + Biw (w0 — A, w)

(i) If py <O, then equation (37) has at least one positive COS WT = 5 N
root (By — B,w?)” + (B, w)
(ii) If py=0 and p3<3p,, then equation (37) has no (39)
positive root Define
| B, — B,w?) (A,w? — A,) + Byw; (0} — A, w
T]E]):_ arccos( 0~ Bywp) (A, i g) 1 k(zk 1 k)+2j7r , (40)
W (By—B,w}) +(B,wy)

where k=1,2,3, j=0,1,.... Obviously, tw,i is a pair of
pure virtual root of equation (27).

Next, we verify the transversal condition. Differentiating
the two sides of equation (35) with respect to 7, we have

Let <d}t>1 B 302+ 24,0 + A,
F_ O [0 dr) AN +A 2+ AL+ A
T =T ﬁ%ﬁ’k b 1) ( ’ A+ o) (42)
. 2AB, + B, T
0 = w. + 5 -
0 A(B,A* + B+ B,y) A
It follows that A(7) =&,(7) +iw(r) is the root of then
equation (35) satisfying £, (7*) = 0 and w(7*) = w*.
Re (d)t)"l 3w +2(A2-2A, - B})w"? + A2~ 2A)A, +2B,B, ~ B
dr) |._. (B,w*)* + (B, - Byw*2)
(43)

f' (@)

(B,w*)* + (By - Byw™?)"

Thus,

dRe (1)
signy——

} = sign{ReK%)l

T—T*:| } (44)
- sin{ ()}

If f'(0*?)>0, the transversal condition is satisfied.
Therefore, according to the above discussion and the Hopf
bifurcation theorem of the differential equations [12], we can
get the following result:

Theorem 3.5.

(i) If po=0 and A = p-3p, <0, then the endemic
equilibrium E, is locally asymptotically stable for all
7>0.

(ii) If py <0 or py=0,A>0,x" >0, and f(x*)<0, then
the endemic equilibrium E, is locally asymptotically
stable for 0 <7< 7*, and if f' (w**) #0, the system (7)
undergoes a Hopf bifurcation at E, when T =17,
where



Computational and Mathematical Methods in Medicine 7
.1 B, - B, )(Aw* - Ay) + Bjw* (0" - Aw*
T = — arccos( L2 )( 2 . (;) ! (2 ! ) . (45)
@ (By—B,w*’)” +(B,w*)
(dX(t) [ BBV, bB,S,
4. Estimation of the Length of Delay to . _(1 ray, T X®O= (+av, Z(),

Preserve Stability

In this section, we use a Nyquist criterion [17] to calculate
the length of delay to preserve stability.

Consider the system (7) and the space of the real
continuous functions that is defined in [-7,+00] and
satisfied the initial conditions (2) in the interval [-7,0].
Define

S(t) =8, + X(1),

() =1, +Y(¢),
V)=V, +Z (1)

(46)

Linearization system (7) at the endemic equilibrium E, is
expressed as follows:

bﬁlsl

b
SL[X]_X(O):_<1-[§1(xVI+M1>L[X]_ rav))
1

Vi

bB\V,

1 SL[Y]-Y(0) :(1 av
1

2

where

L[Y,] = ro e Y (t-1)dt = Jre_StY(t —7)dt
0 ' (49)

(o)
+ J e 'Y (t - 7)dt.
T

Let t = t; + 7, then

L[Y,] = JO (Y (¢)dt, + Jmeﬂ(fﬁﬂy(tl)dtl

-T 0

=M,e" +e"'L[Y],
(50)

where M, = I?T e Y (t)dt.

- ab/)’lV1>L[X] —(obBVy +u +y)LIY] + |:

av () ( bV,
dt  \l+av,

+ ob[j’1<2—11— S, -1, )]Z(t),

dZzZ(t) Ay

A i —u Z (t) + bﬁz(ﬁ

—-abp,V, >X(t) —(obB, V| +py +p)Y (1)

+[ b:S,
(1+av,)’

-V, )Y(t — 1) —b,1, Z(t - 7).

(47)

2

By taking the Laplace transformation for (47), we can
obtain

SL1Z],

bB,S,

(1+av,) (48)

+ abﬂ(% -5, -1, >]L[Z],

A
SL[Z]-Z(0) = —u,L[Z] + bﬁz(f‘ Vi )L[Yr] -bB,I,L[Z,],

Similarly,
0 (9]

L[Y,] = J ey (¢))dt, + J ey (¢))dt,
-7 0

=M,e " +e"L[Y],

(51)
0 _
where M, = I_T e St Z (t)dt.
Thus, (48) can be written as
L[X]
(A-SI)| L[Y] |=B, (52)
L[Z]

where
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bp,v bp,S
_(ﬂll . > 0 _ le
1+aV, (1+aVy)
bp,v bp,S A
A= (ﬁ“‘;l—o’bﬁlvl> —(abﬁlVl + Uy +)/) ﬁi‘;l)zﬁ‘abﬁl(‘u—i—sl—Il) N
A, _ B
0 b, —-V, |e** —u, —bp,Ie" (53)
)
-X(0)
-Y (0
s (0)
A, _
-Z(0) +|bB, I, M, —bp,| —=—V, |M, |e"
ta
The inverse Laplace transformation of L[ X (t)], L[Y (¢)], Let
and L[Z(t)] will have terms which exponentially increase >
with time if LIX ()], LY (!)], and L[Z ()] have poles with [Bi] B +4(4,- By) (4, +[By)) 61)
positive real parts. Thus, E, is locally asymptotically stable if He = 2(A,-B,) ’
and only if all the poles of L[X (¢)], L[Y (#)], and L[Z ()] .
have negative real parts. obviously u, meets (60) and p, 2 fo-
By the method of [17] and the Nyquist criterion, the local From equation (59), we obtain

asymptotic stability of E, needs to satisfy the following two B, .
conditions: W' < By cospt +( By - 70 Sinut + Ay (62)

Re F (iyy) = 0, (54)
Im F (ip,) > 0, (55)
where
3 2 2 —sT
F(s)=s"+A,s +Als+A0+(st +Bls+BO)e ,
(56)

where p, is the smallest positive root of (54). Thus (54) and
(55) can be written as
2 2 .
Aug— Ay = (Bo - Bzyo)cos UoT + By sin T, (57)
_l/‘g + Aty >(Bo - Bzyé)sin foT = By phy €OS phyT.

In order to estimate the length of delay to preserve
stability, under the premise of ensuring stability, the fol-
lowing conditions need to be satisfied:

A’ - A, :(B0 —Bzyz)cosyr + By sin ut, (58)

A >(BO—B2y2)sin‘uT—Bly COS UT. (59)

If (58) and (59) are satisfied simultaneously, they are
sufficient conditions to guarantee stability. Our aim is to find
an upper bound p, to y, independent of 7 and then to
estimate 7 so that (59) holds true for all values of 0 <p <y,
and in particular at y = y,.

Since |cos y7| < 1 and |sin yt| < 1, from equation (58), we
have

Apt® <|By| + Byt +|ByJu + A, (60)

Since E, is locally asymptotically stable for 7 = 0, the
inequality (62) will continue to hold for sufficiently small 7
and p = p,.

On the basis of (58) and (62), we have

(Blﬂ —AyByu +

A,B
2 O)Sinyr +(Bz;42 + A,B; - BO)
¢ (63)

- (1-cosur) < Bzyz + A A, + A,B, - Ay - B,.

Note the left-hand side of (63) is @ (7, 4) and the right-
hand side is p. By using inequality singr<ur and
1 - cos pt = 2 sin® (ur/2) < (4*7?/2), we can obtain

o

2T2
+|B,y + A,B, - By| HT

A By

O (7,p) <D (7, p)| < <|31 ~ AB,|u +

(64)
=(|B, — A,B, |u* +|A,By| )T

2T2
+|Byy + A,B, - By| “T

Note the right-hand side of (64) is ¢ (7, ). Clearly,
O(r,w)<p(t,w)<@(r,u,) when pe [0,u.]. Thus, if
¢ (1,u,)<p<Kj, we have O(7,u,)<p<Kj. Let 7* be the
positive root of ¢ (7,u,) = K;, that is,

L1 —
T = Z—IQ(_KZ + K% +4K1K3 >,

(65)
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where
|Bz.”%r +AyB, - Bol.”%r
2 b

K, = |Bl _AszL“i +|AzBo|>

K, =

(66)

Ky = By’ + AjA, + A,B, - A, - B,

Summarizing the above discussions, we have the fol-
lowing theorem.

Theorem 4.1. If 0 <7< 71", then the Nyquist criterion holds
true and tT* estimates the maximum length of the delay
preserving the stability, where T* satisfies (65).

5. Direction and Stability of the
Hopf Bifurcation

We have obtained the conditions under which the Hopf

T=T(T= T,ij)). Let + iw be a pair of conjugate pure virtual
roots at E; when 7=T.
Define

x, () = S(1t) =Sy,
x,(t) =1(tt) -1,
x3 (1) =V (1t) -V,

T=T+U

(67)

Thus, system (7) is equivalent to the following functional
differential equation in C = C([-7,0], R%).

dx

L)+ f () (69)

where x () = (x, (t), x, (£), x; (£))" € R®. AndL,:C— R}
and f: RxC — R’ satisfy

bifurcation occurs at E; of the system (7). This section will L, (9) = (T +wB,$(0) + (7 + w)Byp (1), (69)
use the normal form theory and the center manifold theory .
to give the direction of the Hopf bifurcation and the stability fwd)=GF+w(f1,fr f3) (70)
of the bifurcating periodic solutions of system (7). We
suppose that system (7) undergoes Hopf bifurcation at E; for ~ where
_< A m) . WS
1+aV, (1+avy)
By =| BV, b S, (Al ) ’
————0bB,V, —(obB,\V;+u, +y) ————+obpB,| —-S, -1
L+aV, BV —~(0bB Vi +py +) (1+ och)z B 0 14
0 0 —ly
0 0 0
B, = 0 0 0 )
0 b/sz(—v ) o1,
S (71)
¢ (0) = (¢, (6) ¢, (0) $5(0))
bp, abp, 2 abBS;
=———¢,(0 0) + ——————= ¢, (0)¢5 (0) + ————=¢5(0
Ji (1+ocV1)2¢1( 92(0) (1+aV, )3¢1 #: (1+aV1)3¢3 )
a’bp, a’bp, S,
¢, (0)¢3(0) ————5¢5(0) +
(1+aV, )“b‘ % (1+aV )4¢3
12 = ~0b 1, (06,(0)= b, 62 019, (0) +— 2.6, (019, 0)~ L4, 01430
1+aV)) (I+av))
abBS; a’b bp, ﬁlsl
————5¢;(0) + (0)¢3(0) + (0) +
(1+aV,)’ g (1+aV )‘*‘b1 % (1+av,)* %

f3 = _bﬁz‘Pz (—1)‘/53 (=D).
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Applying the Riesz representation theorem, there exists a
3 x 3 matrix-valued function 5 (-, 4) : [-1,0] — R¥3, such
that L,¢ = f dn (0, w)¢(0), ¢ € C. We choose

n(O,u) =(T+u)B,8(0) +(T+u)B,6(0+1), (72)

where 6 is the Dirac delta function, meeting 6 (0) = 0(6+0)
and [' 8(0)d6 = 1.
We define for ¢ € C([-1,0],R%),
6 ()
do ’
0

B dn (s, W (s),

0¢€[-1,0),
0=0.

0¢[-1,0),

A(we =
6=0, (73)

R(4) {
D9 Fwe,

Thus, (68) becomes
X, = A(wx, + R(wx,, (74)
where x, = x(t +0), 0 € [-1,0].
In order to construct coordinates to describe the integral

manifold near the origin, we need to define inner product
and the adjoint operator A* = A*(0) of A as follows:

_dy(s)

Computational and Mathematical Methods in Medicine

where v € C([0,1],R?) and 7(6) = 7(6,0). Form the dis-
cussion in Section 3, we know that + iwT are eigenvalues of
A(0). Thus they are also eigenvalues of A*. Define q(0) =
(l,ql,qz)Teia“’T and g*(s) = D(l,q}‘,q;)Te‘iS“’T to be the
eigenvectors of A(0) and A* corresponding to the eigen-
values iwT and —iw7, then

A(0)q(0) = iwTq(0),
(76)
A*q" (s) = —iwTq" (s).
We can calculate that
I (p + BB, e + wi) [,V (1+aV,) + (1 +aV, ) wi]

1= = >

bBS Vet

vV, (1+av,) wi
=(1+aV, A AR P aid
CI2 ( )Sl bﬁlsl

x _ bP\Vy + (4 —wi) (1 +aVy)
T =RV, bV, (1 +aV,)’

—wi)(1+ och)].

, se (0,1], q = I, (abpVy +py t)’—wi)[bﬁ1v1 + (1
Aty (s) = . ds ? V1€t BB,V —abB V(1 +aV,)]
J qu(t, 0y (-t), s=0, (77)
-1
. 0 o . According to (75), we know that
W=7 080~ [ [ 7 E-odn@p@a
(75)
(4" ().q(6)) = D(L.4;.3;) (L.an42)"
0 0 EaY w —xy —i(E-0)wT iEwr
- LZOD(L%,qz)e 0 (6) (1,q1,9,)" " dE
0 -
14419, + 3,9, — J_l (l)qi‘,qé‘)ee’e‘”dﬂ(f))(l,ql,qz)T} (78)

-7
{

:1’

E=Y A iWT o~ —% —iwr
=Dql+ ‘11‘11 + ‘b‘b + T%qzb/—’)2<#—_v1)e —79,9,bP,1,e }
2



Computational and Mathematical Methods in Medicine

thus

1
— - ~ = — % V — * ’
1+471q, + 459, + Te’“”(qlqz bﬁzy—zl -G q5bP,1 1)
1

(79)

D=

Next using the same notation as in [11] and a compu-
tation process similar to that in [18], we compute the center
manifold C; at y = 0.

Let x, be the solution of (74).

Define
z(t) =4q"> %), (80)
W (t,0) = x,(0) — 2Re{z (t)q (0)}.
On the center manifold C,, we have
W(t,0) =W (z(t),z(1),0), (81)

where

z? z2
W (z(t),z(t),0) = W,,(0) 5 + W, (0)zz+ W, (9)? +oee

(82)
For the solution x, € C, with ¢ = 0, we can get
Z'(t) = iwTz +4{q" (), f (0,W (2, Z, 0) + 2Re{zq (0)}))
=iwTz+q (0)f(0,W (z,%,60) + 2Re{zq(0)})
=iwTz+q (0)f,(2,2)

2iwTz + g(2,%),

9(z.2) =g (0)fo(2,2) =q" (0) £ (0, x,)

= TD{Z(kl +qpk, + Q2k3)7 + (L + QL + gy l5)zz + 2(my +q;m, + q2m3)7 +2(ny +qyn, + %”3)—]"

It follows

11
where
z? z2
9(z,2)=q (0)f,(z,2) = 920? + 91122 + 902?
(84)
N
92 B .

From (80) and (81), we obtain that
%, (0) = (%1, (6), x5, (0), x5, (0))"

=W (t,0) + 2Re{zq(0)}

2
iwrt — — —iwTO— V4
= (1>111’Q2)Te %z + (L‘h’%)Te Yz + Wy (9)7
7
+W11(6)z2+W02(6)7+~-.
(85)
From (70) and (84),

(86)
z

z
2

920 = 2%5(]‘1 + quz + ﬁ;kg),

gn =D (I, +q;1, + gy 1),

(87)

9o = Z?B(ml + ﬁfmz + q;”%),

g = 27D (n; +q;n,y +Gyn3),
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where
__ bp,q, abPiS,
Yo (+avy)? (1+av))’
bpiq, abB,S; 5
k, = —ab 1+q)+ - ,
2 B9z (1 +qy) (1+(xV1)2 (l+ocV1)3 2
_bﬁz%CIze_Zim)
bp, 2abp, S, _
L=-——"— _— ,
1 (1 oV )2 (QZ CI2) (1+av )3 9192
_ o bp, _ 2abB,S; _
1, =—-0b +g, + + +— - ,
2 By (@ + 9 + 919 + 919>) (1+ “V1)2 (@ +9>) (1+ aV1)3 9292
Iy = -bB, (019> + 0192)>
bB.g abB,S, _
my = — B1d> S B1S: 3‘15
(I+av))” (1+aV))
— b, (1+7) +— LB _o
(1+0£V1) (1+(XV1) (88)
= _b/jz%@ezm’
bp, (Wz(é)(o)— Wz((s))(o) (1) (3) ) abp, 2 — abP; S,
n =- + +q 0)+W7(0) |+ ————(q; +2 +—
Yo (+av))P\ 2 e 2 (1+av,)’ (42 +24:3:) (1+av,)’
a‘b
(WS 0, + 2w (0)) - 2B g
(1+av,)*
Wi (0)_ W0 (o _ Wi
= -atf (M2 00, MO s w0 w04 5 Vg 8 O w0,
WO (0)g ) p BB WRO L WRO) ), w0 g (22 +203)
11 1 (1+ “V1)2 2 2 5 1 11 (1+ aV1)3 2 292
(Xbﬁlsl (3) 30( bﬂlsl 27
———— (W, (0)g, + 2 W 0 _— S
(l+0cV1)( 20 (0)g; +2q, ()) (1+ V)4 D9
W(z ( 1)7 zw"zT W(3 1)7 iwr —iwt —iwt
= —b/32< 20 % + W (~D)gpe ™ + W (~1)ge ™7 ).
5 . : L { (A-2i0T)W,, (0) = —H,, (6), (o1)
y using (74) and (80), we can know AW, (6) = —H,, (6).

C { AW -2Re{q" (0) foq ()}, 0 e (-1,0),
W =x,-zq-zq=
AW -2Re{g" (0)foq(0)} + fo, 0=0,
2 AW + H(z,z,0),
(89)
where
2 -2

H(2,%,0) = Hy, (0) % +H,,(0)2Z + Hyy (6) % +
(90)

From (81), (89), and (90), we can get

From (89) (91), and the definition of A, we can calculate

‘/‘/20 (9) q (0) 1w19 902 q (O)e—lw‘t@ F eziw?O’ (92)

Wll (6) _ _l(\z_lzflq(o)eiw‘l’e gll q(o)e—lwre + Fz,
(93)

where T; = (l“l-(l),l"i(z),1";3))T €R® (i=1,2) are the three-
dimensional vectors.

Now, we determine I'; and I',. By (91) and the definition
of A, we have
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0 b abfB,S
J dn ()W, (0) = 2iwTW ,, (0) — Hy, (), G, = —abp, (‘12 + ‘11‘12) + P 27 Pisy 3513’
51 (94) (I+av))” (1+aV,))
| anow, ©®=-m, "
; G, = Teav P obp; |Re(q,) - obp,Re(q,3,)
where #(60) = 1(6,0). By (89), when 6 =0, (1+aVy)
H(z,2,0) = =q" (0) 49 (0)—q" (0) f,q (0) + f, __abBS,
_ o (95) 3D
=-9(2,2)9(0) - g(2,2)3(0) + f,. (1+aVy)
(97)
That leads to
Hy,(0) = =909 (0) — 9,9 (0) Since .
B bp, abBS; (iw'ﬂ— Jil e’g“"dn(e))q(o) =0,
(1+av,? (1+av,)} P o (98)
+27 , (—iw?[— J e_iewTdr](G))q(O) =0,
G, -1
~bP,q,q,e7 " we have
0o -
H,,(0) = -91,9(0) - 91,4 (0) <2iw?I— J 1eZ’G’”dr](O))E1
b abfB,S _
- (1 +§§/ )2 Re(q,) + (lfilvl)s%% _ bpy + abp, S, qz
) ! ! (1+aV,)* (1+av,)}* " (99)
+ 2T N ~
G, =27 G
0
—bp,Re (‘1152) _bﬂquqze—m’w‘r
(96)
We can calculate
where
_ bp, abPiS; bp,S,
7t 39 0 0
(I+av))” (1+aV)) (I+aVv))
2 . bﬁlsl
-2 G 2iw + obB,V, + u; + -+ ,
1 A, 0 BiVitu +y (1 N chl)z Q
_iwt A2 diwT . 2wt
—bB,g,9,e " -bp, PT =V | e T 2iw + py + b1 e T
2
1%
diw + bp,V, tuy - bp, . abp, S, 361; b, S, .
1+aV, (1+avy)” (1+aV,) (1+aVv,)
2
2 _ =~
"= A |- bp,V, + obB,V, G B b, S, +qQ | (100)
1+aV, (1+aV,)
0 ~bP,q, 96" 21 + iy + b, 1€
2iw + La\dn T 0 b 5+ abh5, 3 I
L+aV, (1+aV))" (1+aV,)
2 b, vV .
Ff3) = A_l - #oc\fll +0bB, V| 2iw+0obB Vi +u +y G, ,
A, —2iwt —2iwT
0 -bp, [T_Vl e -bB,q,9,¢
2
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Q = _Ubﬁl(ﬁ_sl -1 )’
th

where

b abf3, S
Gy = ~0bB, (4, + 9:195) + (1 f{lgj )2 - (1 +/i1V1)3 ;
1 1
2iw + bB.V, +u 0 _ RS R
1+aV, (1+av,)) (101)
bB VL bp,S, <A1 )
A, = +0bB, V| 2iw+ bV, +uy + —obB,| —=S,-1, ||.
(R av, obp, By Uty - ( N “V1)2 By 0 14
A, i , e
0 -bp, ‘“——V1 e T 2iw + Y, + b1 e 7"
2
Similarly, we have
bp, abB,S;
————SRe(p)+———— 5,
(1+av,) (I+aVv,))
0
| ancor, = - : (102)
—bB,Re (‘h%)
That leads to
b abf,S bB,S
_ ﬁl zRe(qz)"' ﬁl 1 5 ; 0 ﬂl 1 >
(I+aVv,) (1+aVv,) (1+aV,)
2 bp;S,
-2 G obB\V,+u +y ———+Q, |,
P A, 1 BV +u +y (1 N och)z 1
_ Ay
~bp,Re(q,9,) -bp, /l__ Vi ty + B 14
2
bB,V bp, abf;S bB,S
ﬂl 1 + iy _ (qz) ﬁ113q§ ﬁll .
L+aV, (1+av,)’ (1+aV,) (1+aVv,)
2
. bB, S, (103)
A +ob G - 4
2l 1+av, bV ! (1+av,) &
0 ~bB,Re(q,4,) ty + b1,
bp,\V, + 0 _ bp, _Re(q,) + abp, S, . ;
1+aV, (1+aVv,) (1+aV,)
2 bB,v,
r{ = o f o obB,V, obB,V, +u, +7 G, )
0 _bﬁz(_ ) ~bB,Re(q,4,)
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where
bp, — abp,S, —
G, = ————5-0dbpB; |Re —obB,Re -0
1 <(1 N och)2 ﬁl) (42) BiRe(q,9,) (1+ aV1)3 D492
A . S,
1+aV, (1+aV))
(104)
bB,V, bp,S, <A1 )
A, =|- +0obB\V, obB Vi +py+y —————-obp | —=S, -1, ||
2 1+aV, BV 0bB\Vy+py +y (1 +ocV1)2 By u, U
A
0 —bﬁz(”—z—V1> Hy + b, 1,
2

We can calculate W, (0) and W, (0) from (92) and (93).
The above analysis shows that g;; in (84) can be represented
by using the parameters in the system (7). Thus, we can get
the following equation:

‘ 2
i L A
c;(0) = T (9205711 _2|gll|2 B |g(;2| > * 9221)

Refc, (0)}

= TRV @Y (105

B, = 2Re{c, (0)},

B Im{c, (0)} + u,Im{A' ()}

T, =
2
wT

where the signs of y, determine the direction of the Hopf
bifurcation of the system (7), the signs of 3, determine the
stability of the bifurcated periodic solution, and T, de-
termine the period of the bifurcation periodic solution. We
can summarize the following theorem:

Theorem 5.1. For the model (7), the direction and the
stability of the periodic solution of Hopf bifurcation is de-
termined by using (105) when 7 =T.

(i) If u, >0, then the Hopf bifurcation is supercritical
and the bifurcation periodic solution exists for T>7T
in a T neighborhood; if u, <0, the Hopf bifurcation is
subcritical and the bifurcation periodic solution
exists for T<T in a T neighborhood.

(ii) If B, <0, then the bifurcation periodic solution is
stable; if B, >0, the bifurcation periodic solution is
unstable.

(iii) If T, > 0, then the period of the bifurcation periodic
solution increases; if T, <0, the period decreases.

6. Numerical Simulations

In this section, we use numerical simulations to illustrate our
result about the existence of Hopf bifurcation.

The following parameters are selected: A; = 8, b = 0.29,
B, =0.0033, a=0.06, u, =0.0029, o=048, y=0.56,
A, =9, 3, =0.0059, and p, = 0.03. We can calculate that
R, =80.2459 and E,; = (444.9472,450.8920, 288.7707).

Equation (37) has a positive root x = 0.5779. We have
7* = 2.1386. From Theorem 3.4, we know that the endemic
equilibrium E, is locally asymptotically stable for 0 < 7 < 7*
(Figure 1), and system (7) undergoes a Hopf bifurcation at
E, when t=1". At this time, we can calculate
¢, (0) = —2.3788 — 0.8427i, 1, = 9.8850 >0, B, = —4.7576 <0,
and T, = 1.7152 > 0. According to Theorem 5.1, system (7)
can produce a stable periodic solution, the Hopf bifurcation
is supercritical at 7%, and the period of the bifurcation pe-
riodic solution increases (Figure 2).

7. Conclusions

In this paper, we discuss the dynamics of the vector-borne
disease model with delay-saturated infection rate and re-
infection. By calculation, we have the basic reproductive
number R,. Through R,, we determined the existence of
disease-free equilibrium E; and the endemic equilibrium
E,. According to the characteristic equation of the equi-
librium points and using the Routh-Hurwitz criterion, we
obtained that if R; <1 the disease-free equilibrium will be
stable, and the endemic equilibrium is locally asymptoti-
cally stable if Ry>1 and in the absence of time delay.
Furthermore, by the fluctuation lemma and the limit
theory, we analyzed the global stability of the disease-free
equilibrium. We find that the time delay does not affect the
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FIGURE 1: E, is stable when 7 =2.12.
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FIGURE 2: E; undergoes Hopf bifurcation when 7 = 2.33.

stability of the boundary equilibrium but can change the
stability of E, and lead to the occurrence of Hopf bi-
turcation. Then by using the Nyquist criterion, we get the
maximum length of delay to preserve stability. Next, we
found that the conditions for determining the direction and
stability of bifurcating periodic solutions. Finally, the
correctness of the main conclusion is verified by numerical
simulation.
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