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Abstract

Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent
mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of
apoptosis (XIAP) impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells.
This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize
cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to
antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal
effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-
dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent,
independent of the addition of TNF-related apoptosis inducing ligand (TRAIL). However, caspase activity assays revealed
that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of
a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma
cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of
embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated
that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased
proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not
induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent
on apoptosis.
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Introduction

Cholangiocarcinoma is a liver tumor with cellular features of

bile duct epithelial cells and is the second most common primary

liver cancer. Biliary tract inflammation predisposes to cholangio-

carcinoma, although most patients do not have recognized

underlying liver disease at the time of diagnosis. Chemotherapy

has been shown to prolong survival, but only modestly [1], and

five-year survival remains less than 10%. This may be due to

decreased tumor cell death in response to chemotherapy. A

number of mechanisms contribute to apoptosis resistance,

including overexpression of the caspase-inhibitory protein X-

linked inhibitor of apoptosis protein (XIAP).

XIAP is an E3 ubiquitin-protein ligase that binds and inhibits

caspases 3, 7, and 9 [2,3]. XIAP is ubiquitously expressed at the

mRNA level [4] and has been shown to be induced in

cholangiocarcinoma cells by the inflammatory mediator IL-6

[5]. XIAP protects cholangiocarcinoma cells from apoptosis

induced by chemotherapeutic drugs [5] and by the death receptor

ligand TNF-related apoptosis-inducing ligand (TRAIL) [6].

Treatment of cholangiocarcinoma cells with the small molecule

triptolide resulted in decreased XIAP protein levels and increased

sensitivity to TRAIL [7]. Together, these data suggest that

targeting XIAP in cholangiocarcinoma cells increases sensitivity to

apoptosis. XIAP’s antiapoptotic effects are overcome upon

mitochondrial membrane permeabilization and release of

SMAC/DIABLO [8], a protein that binds the BIR3 domain of

XIAP [9,10].

The small molecule embelin has been found to inhibit XIAP

and computer modeling as well as fluorescence polarization

competition assays suggest it binds the SMAC-binding pocket of

XIAP [11]. Treatment with embelin has been shown to sensitize

cells to apoptosis through TRAIL, chemotherapy, and targeted

therapy plus cFLIP knockdown. Further, embelin treatments

decreased XIAP protein levels in leukemia cells [12]. Based on

these findings, embelin has been described as an XIAP antagonist.

However, alternate/additional mechanisms of embelin action

have been described, including inhibition of NF-kB [13] and

inhibition of Akt/mTOR/S6K1 [14].

In this study, we sought to assess the effects of embelin on XIAP

protein levels, apoptosis, and proliferation in cholangiocarcinoma
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cells. While embelin decreased cellular XIAP protein levels,

caspase activity was not increased. Proliferation was inhibited by

embelin and cells were arrested in S and G2/M phases. These

observations indicate that embelin reduced tumor cell survival and

proliferation, but did not increase apoptosis.

Results

To assess the potential for antagonism of XIAP in cholangio-

carcinoma cells, we first determined XIAP expression at the

protein level in several cell lines. XIAP protein was expressed in all

three cell lines with highest expression in Mz-ChA-1 cells and

HuCCT cells, and somewhat lower XIAP protein levels in

KMCH cells (Fig. 1A). Upon treatment with embelin, cellular

XIAP protein levels decreased with time in Mz-ChA-1 and

KMCH cells, while XIAP was essentially unchanged in HuCCT

cells treated with embelin for up to 32 hours (Fig. 1B).

We sought evidence that embelin binds directly to XIAP protein

in our cells by employing the cellular thermal shift assay [15]. This

assay is based on the observation that ligand binding often

stabilizes the cognate target protein [16–19]. The cellular thermal

shift assay measures heat-induced protein denaturation in the

absence and presence of the small molecule ligand. In this case,

lysed Mz-ChA-1 cells were incubated with vehicle or embelin and

XIAP denaturation was measured by loss of solubility upon heat

treatment. We observed that XIAP protein in cell lysates became

insoluble at about 60uC. The denaturation temperature was not

different in the presence or absence of embelin (61.0+/21.4 uC
versus 59.9+/20.7uC, respectively; p = 0.49 by t-test; Fig. 1C).

Previous studies have found that siRNA-mediated depletion of

XIAP was sufficient to sensitize cholangiocarcinoma cells to

apoptosis. We tested cell treatment with embelin or embelin plus

TRAIL in KMCH (Fig. 2A) and Mz-ChA-1 cells (Fig. 2B) by

quantifying altered nuclear morphology after staining with the

DNA-binding dye, 49-6-diamidino-2-phenylindole (DAPI). The

addition of embelin (1–10 mM) increased TRAIL-induced DAPI-

positive nuclei in both cell types. Interestingly though, in Mz-ChA-

1 cells, embelin alone appeared to have as much effect as embelin

plus TRAIL (Fig. 2B). Additional testing of the highly tumorigenic

rat-derived BDEneu cell line also showed increased numbers of

DAPI-positive nuclei after embelin treatment (Fig. 2C). This

suggested embelin may have single-agent activity in cholangio-

carcinoma cells. Single-agent activity was somewhat unexpected

and (in conjunction with the caspase data, see below) prompted us

to closely examine the nuclear staining. Untreated live Mz-ChA-1

cells stained with DAPI showed very low nuclear fluorescence

(unstained nuclei outlined), while a sporadic apoptotic nucleus

showed bright staining and obvious fragmention (Fig. 2D). Close

examination of nuclei in embelin-treated cells revealed DAPI-

positive staining with local regions of bright signal, however nuclei

did not appear fragmented or condensed, and were not consistent

with apoptotic nuclei (Fig. 2E).

Because apoptosis is a process, assessment at a single time point

may not accurately capture the apoptotic signal. We have

performed a time course of DNA laddering upon embelin

treatment (4, 8, 16, and 24 hours) compared to the positive

control staurosporine over the same time. The results demonstrate

minimal DNA laddering in vehicle (DMSO) treated cells at

24 hours (Veh) that was similar to the laddering seen in embelin-

treated cells at 24 hours. In contrast, the kinase inhibitor

staurosporine was included as a positive control and showed rapid

formation of a DNA ladder with ,180 bp spacing, consistent with

apoptotic internucleosomal fragmentation (Fig. 2F). The results of

this experiment support the previous conclusions based on DAPI

staining and add additional evidence that the nuclear morphology

changes we initially observed were unlikely to reflect apoptosis.

Based on the known function of XIAP in inhibiting caspase

activity, it was anticipated that embelin treatment would increase

caspase activation and can increase the levels of cleaved poly

(ADP-ribose) polymerase (PARP), a marker of caspase-induced

apoptosis. Surprisingly, treatment of Mz-ChA-1 cells with embelin

did not result in increased caspase 3/7-like hydrolase activity, but

instead caused decreased caspase activation at 30 mM (Fig. 3A).

This observation was repeated in BDEneu cells, which also

showed inhibition rather than activation of caspase 3/7 (Fig. 3B).

Caspase actvity was then assessed at an earlier time point, 4 hours,

in case caspase activation was an early rather than late event.

Embelin treatment did not increase caspase activity at 4 hours,

while the positive control staurosporine caused robust caspase

activity in Mz-ChA-1 and KMCH cells (Fig. 3C). Staurosporine

did not increase caspase activity to a significant degree in HuCCT

cells, possibly indicating resistance or slower apoptosis kinetics in

HuCCT cells. To determine if embelin-induced nuclear DAPI

staining was caspase dependent, we treated BDEneu cells with

vehicle, embelin, or embelin plus the pan-caspase inhibitor Z-

VAD-fmk and quantified DAPI-positive nuclei. Embelin treat-

ment resulted in nuclear changes in the presence or absence of Z-

VAD-fmk (Fig. 3D), consistent with morphology changes that were

not caspase-dependent. Control experiments using the same Z-

VAD-fmk concentration confirmed that the inhibitor blocked

caspase activity (data not shown). Next, we tested whether embelin

treatment affected total PARP protein levels or PARP cleavage in

Mz-ChA-1 cells. Clearly, there was no change in the levels of

PARP or cleaved PARP with embelin treatment (Fig. 3E).

Together, these results suggest that embelin treatment did not

alter caspase activity.

Embelin has been shown to inhibit cell proliferation in cancer

cells [20–22]. We tested the effect of embelin on Mz-ChA-1 cell

growth, using the MTT assay. Growth was significantly reduced,

initially apparent as no increase in cell number at 24 or 48 hours,

followed by a significant reduction in the number of viable cells at

72 hours in the presence of 15 mM embelin (Figure 4A). Growth

inhibition was also apparent in KMCH cells at 24–72 hours,

though to a smaller extent than in Mz-ChA-1 cells. HuCCT cells

were found to be resistant to the growth-inhibitory effects of

embelin, similar to the lack of effect of embelin on XIAP protein

content in these cells (see Fig. 1B). To further analyze the effect of

embelin on proliferation, investigation of cell cycle progression was

performed using propidium iodide staining followed by flow

cytometry. Mz-ChA-1 cells were chosen based on their response to

embelin treatment in growth assays. In vehicle-treated cells

(DMSO), 76% of cells were in the G0/G1 phase (2N), with the

remaining cells divided between S phase and G2/M (4N).

Treatment with 15 mM embelin caused cell cycle arrest and an

increase in the percentage of cells in G2/M as well as an increase

in the percentage of cells in S phase. Correspondingly, a decrease

in the number of cells in G0/G1 was observed (Fig. 4B and 4C).

Discussion

The results of this study relate to effects on proliferation of

cholangiocarcinoma cells upon embelin treatment. Our results

demonstrated that embelin decreased cellular XIAP protein levels,

caused a caspase-independent change in nuclear morphology,

decreased proliferation, and slowed progression through the cell

cycle. Each of these findings will be discussed below.

Embelin has been described to have numerous activities,

including antifertility [23] and analgesia [24] functions. Recently,

Embelin Inhibits Cholangiocarcinoma Proliferation
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embelin has received attention as an antitumor agent that

promotes apoptosis [11,13,25,26] and decreases proliferation

[12,21,27,28]. In a computational screen for structures that bind

XIAP, embelin was selected for further characterization. Embelin

could compete with SMAC for XIAP binding and in prostate

tumor cells (PC3) caused loss of cell growth, increased apoptosis

(defined as annexin V-positive, propidium iodide-positive cells),

and an increased percentage of cells with activated caspase 9 [11].

In a pancreatic cancer cell line, combined treatment with an

antisense oligonucleotide to cFLIP, embelin, and TRAIL de-

creased cell viability compared to cFLIP antisense and TRAIL

alone in a tetrazolium-based assay [25]. Because XIAP has a

strong effect in cholangiocarcinoma cell lines to protect against cell

death, we tested the effect of embelin on XIAP protein levels in

human cholangiocarcinoma cell lines and found that embelin

caused a reduction in XIAP in Mz-ChA-1 and KMCH cells.

The differential effect of embelin treatment on XIAP protein

levels depending on the cell line tested is consistent with literature

reports. Embelin treatment of the leukemia cell line HL 60 caused

a reduction in XIAP protein levels and increased caspase 3 and

caspase 9 cleavage [12]. However, in glioma cell lines, embelin did

not significantly alter XIAP protein levels [26]. In a breast cancer

cell line overexpressing ErbB2, embelin alone decreased the

viability of cells (tetrazolium), although siRNA to XIAP did not.

Figure 1. Embelin caused XIAP degradation in cholangiocarcinoma cell lines. (A) Immunoblot of XIAP in untreated cholangiocarcinoma cell
lines. Actin was included as a loading control. Apparent molecular weight for each band is indicated to the right. (B) Cells were treated with 15 mM
embelin in DMSO or DMSO alone (Veh) for the indicated times. Whole cell lysates were blotted for XIAP and actin. (C) For the cellular thermal shift
assay, Mz-ChA-1 cells were lysed by freeze-thaw and then incubated with embelin (50 mM) or DMSO (Vehicle) for 30 minutes and separated into
20 mL aliquots. Aliquots were heated to the indicated temperatures and cooled to room temperature and soluble XIAP measured by immunoblot.
Band intensity was determined by densitometry of scanned films and data are plotted compared to the signal intensity observed at 45uC (100%).
Data are fitted using the Boltzman function; the dashed line indicates the fit for vehicle-treated samples, the solid line for embelin-treated samples.
Blot is representative of four replicates used in the graph.
doi:10.1371/journal.pone.0090238.g001
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Combined treatment with traztuzumab (an antagonistic ErbB2

antibody) and embelin had no effect while siRNA to XIAP plus

traztuzumab increased apoptosis, suggesting that embelin does not

simply mimic loss of XIAP [29]. Embelin treatment of PC3

prostate cancer cells did not decrease XIAP protein levels, and did

not increase caspase 9 activation (alone or combined with ionizing

radiation) although there was an increase in annexin V and

propidium iodide double-positive cells [21]. Thus, the effect of

embelin on XIAP protein depends on the context. Similarly, the

effect on cell viability of embelin alone or in combination

treatments varies.

We next sought evidence of a direct interaction of embelin with

XIAP in our cells. We utilized the recently-described cellular

thermal shift assay [15] to assess the stability of XIAP in the

presence or absence of embelin. In our experiments, however,

embelin did not reproducibly alter the stability of XIAP. Thus, we

Figure 2. Embelin induced altered nuclear morphology in cholangiocarcinoma cell lines. (A) KMCH cells were treated for 24 hours with
TRAIL at the indicated concentrations with or without embelin (1 and 10 mM). Cells were then stained with DAPI and bright nuclei were counted as a
percentage of total nuclei. Data from one experiment are plotted as percent DAPI-positive nuclei on the vertical axis. (B) Mz-ChA-1 cells were treated
with TRAIL (4 ng/mL) or medium for 24 hours with 5 or 10 mM embelin, and DAPI-positive nuclei counted as a percent of total cells. Data are mean of
3 experiments +/2 standard error of the mean. n.s. = not significantly different. * p,0.05, ** p,0.01 by ANOVA with Bonferroni compared to medium
alone. (C) Rat BDEneu cholangiocarcinoma cells were treated with DMSO (Vehicle; open bar) or embelin (50 mM, filled bar) for 48 hours, followed by
DAPI staining. Data are mean of 3 experiments +/2 SEM. *** p,0.001 compared to vehicle, Students t-test. (D) Vehicle-treated Mz-ChA-1 cells were
stained with DAPI and imaged by epifluorescence without fixation. Healthy nuclei (indicated by grey outlines) did not stain with DAPI while a
sporadic apoptotic nucleus (arrow) was brightly stained. Bar = 10 mm. (E) DAPI-positive nuclei of Mz-ChA-1 cells treated with embelin (15 mM for
24 hours) did not show characteristic apoptotic fragmentation or pyknosis. (F) Mz-ChA-1 cells were treated with DMSO (Veh), embelin (15 mM), or
staurosporine followed by analysis of DNA fragmentation on a 2% agaraose gel. Vehicle treatmetn was for 24 hours. Embelin and staurosporine
treatments were for 4, 8, 16, and 24 hours. M = 100 bp DNA marker. The gel was stained with ethidium and photographed and the image was
inverted to show DNA as a dark signal on a light background. Images in Panel D, E, and F were adjusted for brightness and contrast to ensure that
features were visible and the entire image was treated equally.
doi:10.1371/journal.pone.0090238.g002
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were unable to confirm direct binding. This can be interpreted

either as a lack of direct binding, or that binding does not

significantly stabilize XIAP structurally. In previous heteronuclear

single quantum coherence spectroscopy experiments, embelin was

found to alter the spectrum of the XIAP BIR3 domain, suggesting

a physical interaction [11]. The lack of stabilization in the complex

cell lysate (this study) does not rule out a direct interaction, and

similarly, observation of a direct binding interaction in a single

component system does not answer the question of binding in the

cellular environment.

Based on the role of XIAP in preventing cholangiocarcinoma

cell apoptosis, we hypothesized that embelin would increase cell

death in combination with TRAIL. Initial experiments indeed

showed that an increased percentage of cells had altered nuclear

morphology upon embelin treatment, measured by the DNA dye

DAPI. However, careful analysis confirmed that the altered

morphology did not reflect increased apoptotic nuclei. Binding of

DAPI to DNA is known to result in increased fluorescent signal

over soluble unbound DAPI [30]. Altered nuclear morphology is a

hallmark of apoptosis, and can be easily visualized by DAPI

staining as increased fragmentation, compaction of the nuclear

signal, and increased staining intensity. Indeed, an advantage of

using DAPI as a DNA stain in apoptosis measurement is the

observation that many viable cells exclude the dye but dying cells

take up DAPI and fluoresce brightly, thus providing a strong signal

with low background staining of viable nuclei. Notably, some

living cells take up DAPI, possibly through the transporters

organic cation transporter-1 (OCT1) [31] and multidrug and toxin

extrusion proteins (MATE1 and MATE2) [32], and most cells will

gradually accumulate DAPI over time. Thus, a brightly stained

nucleus is not definitive evidence of apoptosis. Additional

morphological features can be used then to distinguish brightly-

stained living cells from brightly-stained apoptotic cells, including

fragmentation and condensation of the nucleus. Altered nuclear

morphology is also observed during different phases of the mitotic

or meiotic cell cycle (e.g., see [33] and [34]) and with different

chromatin state (heterochromatin versus euchromatin). Thus, an

alternate measure of apoptosis is important, such as DNA

fragmentation, biochemical assessment of caspase activity, and

immunoblot analysis of cleaved PARP levels. Importantly, in our

Figure 3. Embelin partially inhibited caspase activation and did not induce caspase-dependent cell death in cholangiocarcinoma
cells. (A) Mz-ChA-1 cells were treated with embelin for 24 hours and caspase 3/7 activity measured biochemically. Untreated cells were used for
comparison and caspase activity in untreated cells normalized at 1.0. (B) BDEneu cells were treated with embelin (48 hours) and caspase 3/7 activity
measured. (C) Caspase 3/7 activity was measured at an earlier time point (4 hours) in Mz-ChA-1, KMCH, and HuCCT cells to test for early caspase
activation. Following 4 hours of vehicle, embelin (15 mM) or staurosporine (1 mg/mL), caspase 3/7 activity was measured biochemically. (D) BDEneu
cells treated with 50 mM embelin for 48 hours were assayed for DAPI-positive nuclei with and without co-treatment with the caspase inhibitor Z-VAD-
fmk (50 mM). DAPI-positive nuclei are presented as percent of total cells, n = 3, mean +/2 SEM. Comparison of embelin versus embelin+Z-VAD-fmk
was not significantly different. Panels A, B, C & D data are mean of 3 or 4 experiments +/2 SEM; ** p,0.01, *** p,0.001 versus vehicle, ANOVA with
Bonferroni correction. (E) Mz-ChA-1 cells were treated with embelin (5–15 mM) in DMSO or DMSO alone (Veh) for 24 hours. Whole cell lysates were
blotted for PARP. Actin was included as a loading control. Apparent molecular weight for each protein is indicated to the right.
doi:10.1371/journal.pone.0090238.g003
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cells, embelin treatment did not induce DNA fragmentation and

caused inhibition, not activation of caspases, and did not increase

the levels of cleaved PARP. Further, inhibition of caspase activity

did not alter embelin-induced nuclear staining. Thus, we interpret

the altered nuclear morphology to reflect nuclear changes

unrelated to apoptosis, possibly due to altered cell cycle or

increased cellular DAPI uptake.

Despite decreasing XIAP embelin treatment did not increase

cell death. It is possible that XIAP levels were not sufficiently

decreased to disinhibit apoptosis. Alternatively, embelin may have

pleiotropic effects on cell death that mask sensitization. Moreover,

XIAP may not play a dominant role in apoptosis protection in

these cholangiocarcinoma cell lines. This latter explanation seems

less likely based on our previous experiments showing that siRNA

against XIAP caused increased apoptosis and increased caspase

activity in KMCH cholangiocarcinoma cells [6].

Cholangiocarcinoma cell lines exhibited growth inhibition upon

treatment with embelin. In Mz-ChA-1 and KMCH cells this was

manifested initially as growth arrest at 24 hours. Mz-ChA-1 cells

failed to proliferate after this arrest and eventually viability was

lost. In KMCH, after the initial 24 hours, the rate of proliferation

remained lower than vehicle-treated cells but was not completely

halted. HuCCT cells appeared to be resistant to embelin-induced

growth arrest. This pattern of strong inhibition in Mz-ChA-1,

intermediate inhibition in KMCH, and no effect in HuCCT cells

parallels the data on XIAP protein levels. Cell cycle analysis of

Mz-ChA-1 cells confirmed an effect of embelin on cell cycle

progression, and revealed more cells in S and G2/M phases. This

effect is similar to the growth inhibition in PC3 cells where

embelin caused a reduction in cells in G0/G1 and increased

numbers in S phase and G2/M phase [21]. An increase in the

number of cells in the later stages of the cell cycle can be consistent

with either increased proliferation, or decreased proliferation due

to a late-stage block or slowing in the cell cycle. For instance, cells

treated with topoisomerase inhibitor have decreased proliferation

Figure 4. Inhibition of proliferation and cell cycle arrest by embelin. (A) Cell proliferation was measured by MTT and cell number measured
by absorbance at 540 nm (Abs 540 nm). Signal represents the mean (n = 4) +/2 standard error of the mean, normalized to the starting value (day 0,
set at 100%). Cells treated with embelin (15 mM) are plotted with a solid line and filled symbols and vehicle-treated cells are plotted with a dashed line
and open symbols. ** p,0.01 and *** p,0.001 versus vehicle at the same time point, ANOVA with Bonferroni correction. Values for HuCCT were not
significantly different at any time point. (B) Cell cycle analysis of Mz-ChA-1 cells was performed by propidium iodide staining followed by flow
cytometry. A histogram of propidium iodide stained cells is shown for DMSO-treated and embelin-treated cells (15 mM, 24 hours). (C) Quantitation of
the percentage of cells with 2N or 4N nuclear DNA content, and cells that are in S phase (DNA content intermediate between 2N and 4N).
Representative experiment of 3 independent treatments.
doi:10.1371/journal.pone.0090238.g004

Embelin Inhibits Cholangiocarcinoma Proliferation

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e90238



and an increased percentage of cells are in both S phase and G2/

M (e.g., [35]), consistent with activation of a late checkpoint.

In conclusion, our results demonstrated sensitivity of cholangio-

carcinoma cells to treatment with embelin, which resulted in

inhibition of cell cycle progression and slowed proliferation. We

did not observe increased spontaneous or TRAIL-induced

apoptosis in embelin-treated cells, despite reduced XIAP protein

levels. In this regard, embelin did cause an alteration in nuclear

staining that was initially taken by us to reflect apoptosis.

Additional studies on caspase activation as well as cell-by-cell

analysis of staining instead revealed altered staining but no

increase in characteristic apoptotic nuclear features. Embelin may

cause altered cellular uptake of DAPI as untreated healthy cells did

not take up this DNA-binding dye. In addition, the effect of

embelin to delay cell cycle progression may have resulted in a

higher percentage of nuclei in various stages of mitosis manifesting

altered nuclear morphology. The late loss of cells that was

observed in tetrazolium-based proliferation assays (e.g., Figure 4A

at 72 hours) may reflect mitotic collapse, apoptosis, or necrosis.

Taken together, our data suggest that embelin may have a growth

inhibitory effect in cholangiocarcinoma, but to promote tumor cell

apoptosis additional treatments are required.

Materials and Methods

Cell Culture and Treatment
Human malignant cholangiocarcinoma cell lines used in this

study were KMCH [36], Mz-ChA-1 [37], and HuCCT cells [38].

The highly tumorigenic rat cholangiocarcinoma cell BDEneu was

a kind gift from Alphonse Sirica (Virginia Commonwealth

University) [39]. Human cells were grown in DMEM with high

glucose supplemented with 10% (v/v) fetal bovine serum (FBS),

penicillin (100 U/ml), streptomycin (100 mg/ml), G418 (50 mg/

ml), and insulin (0.5 mg/ml) at 37uC with 5% CO2 in a humidified

chamber. BDEneu cells were grown in DMEM supplemented with

10% FBS, human transferrin (5 mg/ml), and insulin (0.5 mg/ml).

Embelin was from Sigma-Aldrich and was resuspended in

dimethylsulfoxide (DMSO). Staurospirine was from Fisher and

was used at 1 mg/mL final concentration. Cells were treated with

0–50 mM embelin for 2–48 hours, as indicated in the figure

legends, and compared to DMSO-treated cells (vehicle). Recom-

binant human TRAIL was obtained from R&D Systems and used

at a final concentration of 4–8 ng/mL.

Immunoblotting
Treated cells were lysed in 50 mM Tris-HCl (pH 7.4), 150 mM

sodium chloride, 1 mM ethylenediamine tetraacetic acid, 1 mM

dithiothreitol, 1 mM sodium orthovanadate, 100 mM sodium

fluoride, and 1% triton X-100 (w/v) supplemented with Complete

protease inhibitors. After lysis, insoluble proteins were removed by

centrifugation and lysate was separated by sodium dodecylsulfate-

polyacrylamide gel electrophoresis (SDS-PAGE), transferred to

nitrocellulose, and probed for XIAP or actin. Mouse anti-XIAP

antibody (#610717) was from BD Biosciences, and anti-actin

antiserum was from SantaCruz. Rabbit anti-PARP antibody

(#9542) was from Cell Signaling.

Cellular thermal shift assay
Mz-ChA-1 cells were grown to 80% confluence and lysed in

PBS containing Complete protease inhibitors by three cycles of

freeze-thaw (liquid nitrogen), as described [15]. Cell debris was

pelleted by centrifugation (13,000 g for 20 minutes). Lysates were

divided into identical aliquots which were incubated with either

embelin (50 mM) or an equal volume of DMSO for 30 minutes

and were then heated for 3 minutes on a gradient thermal cycler.

The lower temperature was set at 46uC and the higher

temperature was at 70uC. Heated samples were then cooled at

room temperature for 3 minutes and centrifuged at 13,000 g for

20 minutes to pellet denatured protein aggregates. Supernatants

were analyzed by SDS-PAGE and immunoblot for XIAP.

Nuclear Morphology Assay
Treated cells were stained with DAPI (5 mg/mL final) for

20 minutes at 37uC prior to imaging by epifluorescence (Leica

DMI6000B). Cells were counted as DAPI-positive if the nucleus

showed bright staining, and as apoptotic if there was characteristic

nuclear fragmentation, blebbing, or pyknosis. Total cell number

was determined in the same field by phase contrast microscopy,

and data are expressed as a percent of DAPI-positive nuclei out of

total.

DNA fragmentation assay
Mz-ChA-1 cells were treated with vehicle (DMOS), embelin

(15 mM), or staurosporine (1 mg/mL) for 4–24 hours. Fragmented

DNA was then isolated essentially following the protocol of

Shiraishi et al. [40], except that DNA was extracted by

phenol:chloroform:isoamyl alcohol prior to RNase A treatment.

DNA was run on a 2% agarose gel and visualized by ethidium

bromide staining. The image was then digitally inverted and

brightness optimized without altering other aspects of the image.

Caspase 3/7 Assay
Cells were seeded in a 96-well plate and caspase 3/7 activity

measured by enzymatic cleavage of a fluorogenic substrate using

ApoOne Homogeneous Caspase 3/7 Assay (Promega). The pan-

caspase inhibitor Z-VAD-fmk was purchased from Sigma-Aldrich

and resuspended in DMSO. Final working concentration was

50 mM.

Proliferation and Cell Cycle
Cell proliferation was assayed by reduction of 3-(4,5-di-

methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Invi-

trogen). MTT was freshly dissolved into PBS at a stock

concentration of 12 mM and diluted into phenol-free DMEM

with 10% FBS for a final MTT concentration of 2 mM. Reactions

were carried out at 37uC for four hours and stopped by removing

the medium. Reduced MTT was dissolved in 100 mL isopropanol

and absorbance measured at 540 nm. All data are corrected to the

initial signal, set at 100%. Assays were repeated four times for each

condition.

Statistical Analysis
Data were analyzed by ANOVA with post-hoc Bonferroni

correction when multiple comparisons were possible. When only

two conditions were measured, student’s t-test was employed.

Groups were considered significantly different when the p-value

was less than or equal to 0.05.
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