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Hypoxic Ischemic Encephalopathy (HIE) remains a major cause of neurological disability. Early intervention with 
therapeutic hypothermia improves outcome, but prediction of HIE is difficult and no single clinical marker is 
reliable. Machine learning algorithms may allow identification of patterns in clinical data to improve prognostic 
power. Here we examine the use of a Random Forest machine learning algorithm and five-fold cross-validation 
to predict the occurrence of HIE in a prospective cohort of infants with perinatal asphyxia. Infants with perinatal 
asphyxia were recruited at birth and neonatal course was followed for the development of HIE. Clinical variables 
were recorded for each infant including maternal demographics, delivery details and infant’s condition at birth. 
We found that the strongest predictors of HIE were the infant’s condition at birth (as expressed by Apgar score), 
need for resuscitation, and the first postnatal measures of pH, lactate, and base deficit. Random Forest models 
combining features including Apgar score, most intensive resuscitation, maternal age and infant birth weight 
both with and without biochemical markers of pH, lactate, and base deficit resulted in a sensitivity of 56-100% 
and a specificity of 78-99%. This study presents a dynamic method of rapid classification that has the potential to 
be easily adapted and implemented in a clinical setting, with and without the availability of blood gas analysis. 
Our results demonstrate that applying machine learning algorithms to readily available clinical data may support 
clinicians in the early and accurate identification of infants who will develop HIE. We anticipate our models to 
be a starting point for the development of a more sophisticated clinical decision support system to help identify 
which infants will benefit from early therapeutic hypothermia.
1. Introduction

HIE occurs in approximately 1-2 per 1,000 term neonates in high-

resource settings. It remains a major cause of long term morbidity, with 
death occurring in 15-20% of cases, and long term adverse neurologi-

cal outcomes in 25% of those who survive [1, 2, 3]. Currently the only 
available treatment to mitigate the damage caused by HIE is therapeutic 
hypothermia, which has been repeatedly confirmed to reduce cerebral 
injury and improve neurological outcome [4]. Therapeutic hypother-
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mia has been proven to reduce the extent of brain injury if commenced 
within 6 hours of birth [5]. Due to this limited therapeutic time window 
and the improved outcomes associated with an early diagnosis, methods 
of identifying infants who will progress to develop HIE are of great im-

portance. If cooling is commenced even earlier, within 3 hours of birth, 
outcome is further enhanced [6]. No robust, quantifiable measure of hy-

poxic brain injury is currently validated to help decide who will benefit 
most from cooling [7]. Studies examining the implementation of cool-

ing have shown that current assessment methods lack accuracy, with 
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up to 40% of those deemed ineligible by clinicians, actually meeting el-

igibility criteria. Further complicating this, recent studies indicate that 
even when accurately applied, current eligibility criteria will miss ap-

proximately 20% of infants with significant brain injury [8].

Machine learning can be defined as a computer’s ability to learn 
from data without being explicitly programmed. The use of machine 
learning in clinical decision making has the potential to affect the lives 
of millions of patients [9] and transform our understanding of human 
disease. The use of machine learning in medicine is not new and has 
been used, for example, in the detection and diagnosis of cancer for 
decades [10, 11]. More recently, machine learning has been successfully 
used in medical imaging, including the classification of skin cancer [12] 
and the detection of diabetic retinopathy [13].

The Random Forest [14] is a machine learning algorithm that oper-

ates by ensembling a number of decision trees into a single prediction 
model. The Random Forest algorithm has been widely used in neurol-

ogy, for example, Parkinson’s disease [15], amyotrophic lateral sclerosis 
[16], ischemic and hemorrhagic stroke [17, 18] and Alzheimer’s disease 
[19, 20]. Random forests [21] are a popular class of supervised learning 
models that have demonstrated success across a wide variety of prob-

lems. One of the advantages of random forests is their ability to learn 
high-order, non-linear interactions. Here we use a Random Forest algo-

rithm applied to clinical data that is routinely collected after birth to 
improve the accuracy of current diagnostic measures for neonatal HIE 
with the goal of developing a clear method of identifying infants who 
will benefit from treatment by therapeutic hypothermia within a 6-hour 
time window.

2. Methods

This was a secondary analysis of clinical and biochemical data col-

lected prospectively from infants enrolled into two perinatal asphyxia 
cohorts with identical recruitment criteria; the first was recruited from 
May 2009 to May 2011 (BiHiVE study) at Cork University Maternity 
Hospital and the second from March 2013 to June 2015 (BiHiVE2 
study) at both Cork University Maternity Hospital and Karolinska Uni-

versity Hospital, two large maternity services with 8,000 and 4,500 
annual deliveries respectively [22]. The BiHiVE2 study was registered 
on clinicaltrials .gov (NCT02019147) and has been previously reported 
[23]. Both studies were approved by the Clinical Research Ethics Com-

mittee of the Cork Teaching Hospitals, and the BiHiVE2 cohort was also 
approved by the regional ethical review board in Stockholm, Sweden. 
Written informed consent was obtained from parents of all study partic-

ipants. The study team at each centre recorded maternal information, 
delivery details, the newborn’s health at birth, and neonatal course on 
a study specific internet based database (www .MedSciNet .net /bihive). 
Source data was cross checked for quality control in 10% of cases across 
both sites.

Over the combined recruitment periods of 51 months approximately 
53,000 deliveries were screened. Inclusion criteria were gestation ≥ 36 
weeks and one or more of the following: Cord pH < 7.1, 5-minute Apgar 
score ≤ 6, the need for intubation or ongoing cardiopulmonary resusci-

tation at 10 minutes of age. Infants with suspected or confirmed sepsis, 
or co-existing congenital abnormalities were excluded from the analy-

sis. Infants were then followed throughout their neonatal course and the 
development of clinical encephalopathy was documented and graded 
using the modified Sarnat score. Infants with signs of perinatal asphyxia 
who did not develop HIE were classed as perinatal asphyxia (PA). Ma-

ternal, delivery and neonatal data were collected at birth by attending 
clinical staff and recorded in a study-specific electronic database within 
the first 72 hours of life. A total of 154 clinical variables were recorded 
for each birth. Of these, 45 felt to be most relevant and with most 
complete data were included in our study. Apgar score was assigned 
by clinical staff attending the delivery. Initial postnatal blood gas val-

ues (pH, Base deficit and lactate) were recorded on admission to the 
neonatal unit following resuscitation. Postnatal blood gas analysis was 
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performed at the discretion of the attending clinician and were either 
venous or capillary in nature. All infants with clinically suspected HIE 
in both cohorts received continuous EEG monitoring which was com-

menced within the first 24 hours of life as previously described [24]. 
Grade of HIE was assigned using a modified Sarnat score and was later 
confirmed by analysis of the EEG recordings by a neurophysiologist and 
expert in neonatal EEG (GB). Infants that had missing values for > 66% 
of the 45 included clinical variables were excluded from further analy-

sis. A total of 409 infants were included in this study: 208 PA; 68 mild 
HIE; 44 moderate HIE; and 17 severe HIE. The baseline characteristics 
of the included infants for each of the 45 clinical variables are listed in 
Table S1.

3. Data preparation

Missing values, or “missingness”, in medical datasets is a common 
problem. There are various causes including subject dropout, missed ap-

pointments, unperformed tests or measurements and lost data at data 
entry [25]. Listwise deletion (omitting observations with missing val-

ues), pairwise deletion, and mean substitution (replacing all missing 
values with average scores) are easy to implement but reduce statistical 
power and potentially introduce bias [26, 27]. We used the R-package 
“inspectdf” to compare that pattern of “missingness” between infants 
with HIE and PA for each feature (Fig. 1). More than 60% of the in-

fants with PA were missing biochemical markers of pH, lactate and base 
deficit. As this was performed at clinician discretion they possibly had a 
milder clinical presentation, affecting predictive ability. Therefore, we 
developed two models. The first, where the features pH, lactate and 
base deficit were removed from the dataset (Model 1), and the sec-

ond where infants without pH, lactate and base deficit were removed 
from the dataset (Model 2). Furthermore, “Maximum Temperature” “Es-

timated Blood Loss” and “Baby length” were removed from both models 
as they had > 50% missingness.

We additionally removed the lowest cord pH from Model 1, even 
though the missingness was < 20%. The logic for this was that Model 
1 could then be developed for use in a low resource setting as no blood 
tests would be required whereas Model 2 is intended for use in a set-

ting where pre- and postnatal blood sampling is readily available. After 
further inspection of Model 2 data after the removal of 175 infants that 
were missing pH, lactate and base deficit (Fig. 2) we removed the du-

ration of ruptured membranes, maternal tertiary education, duration of 
labour stage 1 and 2, and baby’s head circumference as they had > 25% 
missingness. We used the R-package “mice” [28] with default parame-

ters to impute the remaining missing data for both datasets. The default 
imputation method depends on the measurement level of the target col-

umn and in this case was predictive mean matching. Fig. 3 shows the 
principal component analysis for Model 1 and 2 after imputation of 
missing values.

The datasets were split into a training and independent test set 
(70%/30% respectively), and then the training set was further split 
into a training and validation set (70%/30% respectively) (Table 1). 
A random forest was trained in five-fold cross-validation. The hyper-

parameters of the Random Forest were selected using a grid search on 
the training set in five-fold cross-validation. The highest accuracy for 
Model 1 was achieved with an “mtry” of 5, a minimum node size of 2 
and 200 trees, using Gini impurity as the “splitrule”. The highest accu-

racy for Model 2 was achieved with an “mtry” of 2, a minimum node 
size of 2 and 200 trees, using Gini impurity as the “splitrule”.

3.1. Feature selection

For each machine learning task, there exists a unique subset of 
features that are most important for high classification accuracy. Identi-

fying the optimal combination of features to train a classifier is essential 
as it improves system accuracy and computational efficiency. We used 

http://clinicaltrials.gov
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Fig. 1. The pattern of “missingness” (NA) between HIE and PA infants for each feature. Pink stripes indicate a different missingness, and grey stripes indicate equal 
missingness.

Table 1. Table showing the number of infants in each category in the training, validation and 
independent test sets for Model 1 (biochemical markers of pH, lactate, base deficit and lowest 
cord pH removed) and Model 2 (infants with missing pH, lactate and base deficit removed). 
PA = perinatal asphyxia without encephalopathy, HIE = hypoxic ischaemic encephalopathy 
(all grades), Mild = mild HIE, Mod = moderate HIE, Severe = severe HIE.

Model 1 Model 2

PA HIE Mild Mod Severe PA HIE Mild Mod Severe

Training 141 61 30 22 9 57 59 32 20 7

Validation 59 26 14 9 3 22 26 15 10 1

Independent 80 42 24 13 5 36 34 18 11 5

Total 280 129 68 44 17 115 119 65 41 13
iterative random forests (iRF) [14] for feature selection as it can iden-

tify important feature interactions. The iRF weights features according 
to feature importance, growing more relevant trees to uncover complex 
interactions. The stability score describes the fraction of times an inter-

action occurs, with stable interactions having scores greater than 0.5. A 
higher stability score means it is less likely that random chance alone 
caused identification of the interaction [29]. Table 2 shows the interac-

tions recovered by iRF with stability score > 0.5 for both Model 1 and 
Model 2 on the validation set. Feature selection was performed based on 
the iRF interactions and the variable importance plots as shown in Fig-

ures S1 and S2. Variable importance is measured by the mean decrease 
in Gini impurity, a higher mean decrease in Gini impurity indicates a 
3

higher variable importance. The features selected for both models are 
shown in Table 3.

3.2. Model evaluation and validation

To evaluate the performance of our models we measured accu-

racy, specificity, sensitivity, precision, the false positive rate (FRP) and 
Matthews correlation coefficient (MCC) on the independent test set as 
follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦= 𝑇𝑁
𝑇𝑁 + 𝐹𝑃
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Fig. 2. The pattern of “missingness” (NA) between HIE and PA infants for each feature in the Model 2 data after the removal of 175 infants that were missing pH, 
lactate and base deficit. Pink stripes indicate a different missingness, and grey stripes indicate equal missingness.

Table 2. Interactions recovered by iRF with stability score > 0.5. Model 1 (biochemical markers of pH, 
lactate and base deficit and lowest cord pH removed) and Model 2 (infants with missing pH, lactate and 
base deficit removed).

Model 1 Model 2

1-min Apgar + 10-min Apgar 1 5-min Apgar + 10-min Apgar 1

5-min Apgar + 10-min Apgar 1 10-min Apgar + Initial base deficit 1

1-min Apgar + 5-min Apgar 0.97 5-min Apgar + Initial base deficit 0.97

Duration of membrane rupture, h + 10-min Apgar 0.90 10-min Apgar + Lowest cord pH 0.80

Birthweight, g + 1-min Apgar 0.90 1-min Apgar + Initial base deficit 0.77

Socio-economic group + 10-min Apgar 0.87 Umbilical cord pH + Initial base deficit 0.73

Birthweight, g + 10-min Apgar 0.87 1-min Apgar + 10-min Apgar 0.70

Socio-economic group + 5-min Apgar 0.83 10-min Apgar + Umbilical cord pH 0.70

Socio-economic group + 1-min Apgar 0.80 10-min Apgar + Initial lactate 0.67

Duration of membrane rupture, h + 1-min Apgar 0.80 Maternal age + Initial base deficit 0.67

Duration of stage 2 + 10-min Apgar 0.73 5-min Apgar + Lowest cord pH 0.60

Duration of membrane rupture, h + 5-min Apgar 0.70 5-min Apgar + Umbilical cord pH 0.60

10-min Apgar + Head circumference 0.70 5-min Apgar + Initial lactate 0.57

Birthweight, g + 5-min Apgar 0.70 Lowest cord pH + Initial base deficit 0.57

Maternal age + 1-min Apgar 0.70 Birthweight, g + Initial base deficit 0.53

Maternal age + 10-min Apgar 0.70

1-min Apgar + Head circumference 0.63

Maternal age + 5-min Apgar 0.63

Duration of stage 2 + 1-min Apgar 0.60

5-min Apgar + Head circumference 0.57

Time of birth, 24 h + 10-min Apgar 0.53
4
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Fig. 3. Principal component analysis (a) after removal of biochemical markers of pH, lactate and base deficit and lowest cord pH followed by imputations of missing 
values (Model 1) and (b) after removal of infants with missing pH, lactate and base deficit (Model 2). PA: perinatal asphyxia without encephalopathy, HIE: hypoxic 
ischaemic encephalopathy.
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦= 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√
(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)

where:

• True positives (TP): the number of infants predicted as HIE that are 
observed in the HIE class.
5

• False positives (FP): the number of infants predicted as HIE that 
are not observed in the HIE class.

• True negatives (TN): the number of infants predicted as PA that are 
observed in the PA class.

• False negatives (FN): the number of infants predicted as PA that 
are not observed in the PA class.

4. Results

Of the 53,000 screened deliveries, 129 infants with HIE were re-

cruited; giving a rate of HIE of 2.4 per 1,000 live births (similar to 
expected in the high income settings studied). Infants with neonatal 
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Table 3. Table showing the features selected for each model. 
Features were selected based on the iRF interactions (Table 2) 
and the variable importance plots (Figures S1 and S2). ∗ iden-

tifies feature appearing in the variable importance plots only 
and ∗∗ identifies feature selected based on the iRF interactions 
only.

Model 1 Model 2

Apgar Score 1 Apgar Score 1

Apgar Score 5 Apgar Score 5

Apgar Score 10 Apgar Score 10

Most Intensive Resuscitation∗ Most Intensive Resuscitation∗

Maternal Age Maternal Age

Birth Weight Birth Weight

Time of Birth∗∗ First Postnatal Base Deficit

Assisted Ventilation at 10 mins∗ First Postnatal Lactate

Head Circumference∗∗ First Postnatal pH

Duration of Second Stage Lowest Cord pH

Duration Membrane Rupture

Socioeconomic Group

Table 4. Table showing the evaluation of Model 1 (no biochemical markers) on 
the independent test set. PA = perinatal asphyxia without encephalopathy, HIE 
= hypoxic ischaemic encephalopathy, Mild = mild HIE, Mod = moderate HIE, 
Severe = severe HIE, FPR = false positive rate, MCC = Matthews correlation 
coefficient.

PA vs 
HIE (all grades)

PA vs 
Mild/Mod

PA vs 
Mod/Severe

PA/Mild vs 
Mod/Severe

Accuracy 0.83 0.80 0.94 0.91

Specificity 0.89 0.88 0.99 0.97

Sensitivity 0.71 0.65 0.72 0.56

Precision 0.77 0.71 0.93 0.77

FPR 0.11 0.13 0.01 0.03

MCC 0.61 0.54 0.79 0.61

stroke, sepsis during NICU admission or other rare conditions (e.g. 
metabolic disorders, congenital cytomegalovirus (CMV), hypoglycemic 
brain damage or seizures of unknown aetiology) were excluded from 
the analysis. We retained 409 single birth infants (237 males and 172 
females) with a confirmed diagnosis of PA (n = 280), mild HIE (n =
68), moderate HIE (n = 44) or severe HIE (n = 17) from two centres, 
Cork University Maternity Hospital (n = 260) and Karolinska University 
Hospital (n = 149), of primarily Caucasian descent (83%).

As more than 60% of the PA infants were missing biochemical mark-

ers of pH, lactate and base deficit we developed two models. The first 
model (Model 1) does not include these biochemical markers as features 
whereas the second model does not include infants that were missing 
values for these biochemical markers (Model 2). Finally, 409 and 234 
infants were included in the Model 1 and Model 2 datasets respectively. 
Principal component analysis shows distinct discrimination between PA 
and severe HIE infants by the first component (28.3% of total variance) 
(Fig. 3). However the mild and moderate HIE infants are largely over-

lapping in both models, in concordance with the clinical picture, where 
these grades are difficult to differentiate.

The features used to train each model were selected based on the 
iRF interactions (Table 2) and the variable importance plots (Figures 
S1 and S2) on the validation sets. Apgar Score at 1, 5 and 10 minutes, 
the most intensive resuscitation required at birth (i.e. none, facial oxy-

gen, BMV/IPPV, CPAP/PEEP, intubation, CPR, CPR and adrenaline), 
maternal age and birth weight were included in both models (Table 3). 
The time of birth, head circumference, duration of the second stage of 
labour, the duration of membrane rupture, socioeconomic group and 
if assisted ventilation was required at 10 minutes were additionally 
included in Model 1. First postnatal base deficit, first postnatal lac-

tate, first postnatal pH and lowest cord pH were additionally include 
in Model 2 (Table 3).

Tables 4 and S2 show the evaluation of Model 1 (no biochemical 
markers) and Tables 5 and S3 show the evaluation of Model 2 (includ-

ing biochemical markers) on the independent test set. In both cases we 
6

Table 5. Table showing the evaluation of Model 2 (including biochemical 
markers) on the independent test set. PA = perinatal asphyxia without en-

cephalopathy, HIE = hypoxic ischaemic encephalopathy, Mild = mild HIE, 
Mod = moderate HIE, Severe = severe HIE, FPR = false positive rate, MCC 
= Matthews correlation coefficient.

PA Vs 
HIE (all grades)

PA Vs 
Mild/Mod

PA Vs 
Mod/Severe

PA/Mild Vs 
Mod/Severe

Accuracy 0.81 0.82 0.94 0.86

Specificity 0.78 0.81 0.92 0.93

Sensitivity 0.85 0.83 1.00 0.63

Precision 0.78 0.77 0.84 0.71

FPR 0.22 0.19 0.08 0.07

MCC 0.63 0.63 0.88 0.58

trained independent random forest to discriminate between: PA versus 
all grades of HIE; PA versus mild and moderate HIE; PA versus moder-

ate and severe HIE; and PA and mild HIE versus moderate and severe 
HIE. Model 1 (without biochemical markers) performed well at discrim-

inating between PA and HIE (accuracy 0.83; specificity 0.89, sensitivity 
0.71). Model 1 was also able to identify those children most likely to de-

velop moderate/severe HIE (accuracy 0.94, specificity 0.99, sensitivity 
0.72). Similarly Model 2 (with biochemical markers) displayed a good 
ability to discriminate between PA and all HIE grades (accuracy 0.81, 
specificity 0.78, sensitivity 0.85) and improved ability to predict those 
with moderate/severe HIE (accuracy 0.94, specificity 0.92, sensitivity 
1) indicating ability to predict the severity of the HIE grade. ROC plots 
for Model 1 and 2 are shown in Fig. 4.

5. Discussion

Applying machine learning algorithms to readily available clinical 
data may support the early and accurate identification of infants who 
will develop HIE. Through the use of iRF and variable importance plots, 
we have identified a subset of features to predict HIE with the goal of 
creating a parsimonious model. The number of features has been re-

duced from 154 potential clinical predictors to 10 or 12. The strongest 
predictors were the Apgar Score at 1, 5 and 10 minutes, the need for 
resuscitation, maternal age, and infant birth weight, with the addition 
of the first postnatal measures of lactate, pH, and base deficit, if avail-

able. This will allow for faster and easier classification of patients when 
using this method. Although these markers have been recorded and 
used to determine HIE risk prediction for many years, they have often 
been used as dichotomous variables (i.e. pH < 7.1, Base deficit > 16). 
Their strength, for prediction, however lies in their changes across the 
spectrum of acidosis, as continuous variables. Being able to calculate 
risk using these indices as continuous variables greatly improves the 
strength and reliability of the model. The implementation of our mod-

els as decision support will be facilitated by the move of many centres 
to universal electronic health records. In-built algorithms could help to 
alert clinicians regarding the risk of HIE, and more importantly the like-

lihood of moderate/severe HIE, in order to guide the need for further 
monitoring, and initiation of therapeutic hypothermia. Although clini-

cal guidelines recommend cooling therapy only for those with moderate 
or severe HIE, there has been a very strong therapeutic drift, with many 
centres in the US and UK cooling all grades of encephalopathy [30]. 
Thus both prediction of HIE and prediction of grade are equally impor-

tant.

We have developed two models. Model 1 does not include biochem-

ical data and could be developed for use in a low resource setting as no 
blood tests would be required whereas Model 2 is intended for use in 
a setting where pre- and postnatal blood sampling is readily available. 
Apgar Score at 1, 5 and 10 minutes, the most intensive resuscitation re-

quired at birth, maternal age and birth weight were included in both 
models. When biochemical analysis of acid base status was available, 
this added significantly to the model (Model 2). However, when bio-

chemical data was not available, clinical markers (assisted ventilation at 
10 mins, infant head circumference, duration of second stage of labour, 
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Fig. 4. ROC plots (a) after removal of biochemical markers of pH, lactate and base deficit and lowest cord pH followed by imputations of missing values (Model 
1) and (b) after removal of infants with missing pH, lactate and base deficit (Model 2). PA: perinatal asphyxia without encephalopathy, HIE: hypoxic ischaemic 
encephalopathy.
duration of membrane rupture and maternal SE group) can be used, 
to increase the predictive value. The variables of most importance in 
the model were those reflecting the infant’s condition at birth (Apgar 
scores and most intensive resuscitation). Maternal age, birth weight and 
infant head size give an indication of the risk of obstructed or pro-

longed labour, whilst duration of second stage is a measure of labour 
progression. Finally the acid base derangement measurable on the first 
postnatal blood gas gives an indication of the effectiveness of, and in-

fant’s response to, early resuscitation.

There have been numerous applications of machine learning for 
the improvement of the treatment of neonatal HIE to date, with each 
providing unique benefits to the clinician. Machine learning has been 
utilised for the automation of EEG signals in order to aid in the detection 
of seizures in HIE neonates [31, 32]. This improves the ability to diag-

nose and grade severity in areas where specialists are not available for 
EEG readings. Machine learning has also been applied to aid in the in-

terpretation of MRI readings in order to predict mortality and long-term 
neurological disability [33, 34, 35]. Despite benefits in determining 
long term neurological outcomes these methods are not accessible with-

out the use of specialised equipment (EEG, MRI) and will not aid in 
identifying those in need of treatment from therapeutic hypothermia 
within the 6-hour treatment window. Machine learning methods have 
7

also been applied to readily available clinical data in order to assist 
clinicians treating neonates with HIE. Slattery et al. [36] used clini-

cal data collected over the first seven days of life and maternal data 
on pregnancy and birth to predict mortality risk with a median accu-

racy of 72%. O’Boyle et al. [37] combined routinely collected clinical 
data (Apgar scores, blood gases) with umbilical cord metabolites ala-

nine and lactic acid to distinguish between those who will develop HIE 
from those with PA and healthy controls with an accuracy of 97.3%. 
However, this study is the only machine learning based HIE study to 
demonstrate the ability of routinely collected clinical data alone for the 
prediction of HIE grade. It provides the advantage of not requiring spe-

cialist equipment and training for data collection and interpretation and 
therefore has the potential to be used in a wide variety of clinical set-

tings while still retaining high predictive power. It is also applicable 
from as early as 1 hour from birth, with or without the availability of 
blood gases, resulting it the potential of the model to guide treatment 
at a time where intervention may have the highest impact.

Study Limitations: This study took place in an inborn population 
of infants, in tertiary centres in two countries with advanced obstet-

ric care and newborn care, where all neonatal staff have been trained 
in newborn resuscitation. Thus its utility will have to be examined in 
other settings, in regional hospitals and low or middle income coun-
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tries, where the rates of severe HIE may be higher, and staff may not be 
specifically trained in newborn resuscitation.

We must also consider that there may be potential bias in the dataset 
for Model 2 as not all infants with PA had postnatal blood gas analysis 
performed. Those who had postnatal bloods drawn are likely to have 
had a more severe clinical presentation and thus be more similar to in-

fants with HIE. The cohort tested by Model 2 therefore, had a higher 
pretest probability prior to analysis. This may have affected Model 2’s 
ability to differentiate between PA and HIE. However, our data reflect 
what occurs in the clinical setting. Clinicians currently use their expe-

rience to decide on the need for blood gas analysis. Perhaps if this was 
part of an available clinical decision tool, it may become standard of 
care for all infants with evidence of perinatal compromise.

This study presents a dynamic method of rapid classification that 
has the potential to be easily adapted and implemented in a clinical set-

ting, with and without the availability of blood gas analysis. The main 
advantage of this technique is that it can be used at one hour after birth 
when post resuscitation gases are available. This will help determine 
those who will benefit from treatment with therapeutic hypothermia 
within the 6 hour time window. In fact, a rapid risk identifier could en-

able the initiation of therapeutic hypothermia within 3 hours after birth. 
Early cooling (< 3 hours) may lead to improved outcomes as it has pre-

viously been shown to be even more effective [6]. To para-phrase the 
authors “Time is brain”. A quantifiable risk calculator would be partic-

ularly useful for regional hospitals to aid communication with tertiary 
hospital and ensure rapid transfer for neuroprotective interventions and 
neuro-intensive care.

6. Conclusion

We have shown that, through the use of readily available clinical 
data with machine learning classification techniques, we can improve 
our ability to predict the development of HIE following perinatal as-

phyxia. These models can accurately identified infants who will develop 
HIE from those who will recover quickly and have a normal neona-

tal outcome. Readily available clinical markers, even in settings where 
blood gas analysis is not possible, can be used to predict the risk of 
HIE and the risk of moderate-severe grade HIE. This could be incorpo-

rated into bedside decision support tools to ensure targeted and rapid 
initiation of therapeutic hypothermia in those infants to whom it would 
benefit most.
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