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Abstract: Dynamic changes in the oral microbiome have gained attention due to their potential diag-
nostic role in neurological diseases such as Alzheimer’s disease and Parkinson’s disease. Traumatic
brain injury (TBI) is a leading cause of death and disability in the United States, but no studies have
examined the changes in oral microbiome during the acute stage of TBI using a clinically translational
pig model. Crossbred piglets (4–5 weeks old, male) underwent either a controlled cortical impact
(TBI, n = 6) or sham surgery (sham, n = 6). The oral microbiome parameters were quantified from
the upper and lower gingiva, both buccal mucosa, and floor of the mouth pre-surgery and 1, 3, and
7 days post-surgery (PS) using the 16S rRNA gene. Faith’s phylogenetic diversity was significantly
lower in the TBI piglets at 7 days PS compared to those of sham, and beta diversity at 1, 3, and 7 days
PS was significantly different between TBI and sham piglets. However, no significant changes in
the taxonomic composition of the oral microbiome were observed following TBI compared to sham.
Further studies are needed to investigate the potential diagnostic role of the oral microbiome during
the chronic stage of TBI with a larger number of subjects.

Keywords: oral microbiome; neurological disease; porcine model

1. Introduction

The oral microbiome is the second most diverse in the human body after the gut and is
usually stable and nonpathogenic in healthy individuals [1]. The oral cavity is a significant
place for the microbial community and a door of invading pathogens and toxic substances
from outside of the body [2]. Bacteria are the main inhabitants on the oral cavity and
colonize on two types of surfaces: the soft (oral mucosal) and the hard tissue (teeth) [2].
Unlike the bacteria in the gut, which reside in the intestinal cavity with mucus, bacteria in
the oral cavity form a bacterial biofilm and coat the oral cavity surfaces, mainly dominated
by the genus Streptococcus [1,3]. The biofilms maintain a homeostatic balance with their
host under normal condition; however, it becomes dysbiotic in disease status by altering
the microbial composition or by loss of diversity [4]. These statuses can cause an imbalance
in the oral microbiome, which is detrimental to oral health and linked to increased risk of
systemic diseases [5].

Recently, researchers have shown the potential role of a diagnostic tool of oral microbes
in neurological diseases, with studies highlighting dynamic changes in the oral microbiome
of Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients. Wu et al. [6] reported
that AD patients had significant increases in Firmicutes, Lactobacillus, and Streptococcus lev-
els in dental plaque compared to that in healthy controls. Lactobacillus, which is known as
a probiotic in the gut microbiome, is considered pathogenic bacteria in the oral cavity since
it causes root caries and tooth loss [7,8]. Similarly, Streptococcus, the most commonly found
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in the oral microbiome, also contains some pathogenic species such as Streptococcus mutans,
which is an acid-producing bacteria that causes carious lesions [9]. Consistent with these
observations, more missing teeth and higher dental plaque weight were found in AD pa-
tients compared to healthy controls, and poor oral condition was correlated with cognitive
deficits [6], suggesting a potential link between the existence of periodontal pathogens and
AD development. Similarly, patients with PD had increased oral microbial levels of Strepto-
coccus (Streptococcus mutans [10] and Streptococcus pneumonia [11]), Lactobacillaceae [10,12],
and Lactobacillus [11,13], and study has shown a positive correlation between Lactobacillus
reuteri and slower movement in PD patients [13]. These studies suggest that dysbiosis of
the oral microbial community may be closely related to cognitive and functional decline in
neurological conditions and may serve as biomarkers of these conditions.

Traumatic brain injury (TBI) is one of the most common types of brain injuries and
often leads to major disability and death in global populations [14]. Despite the devastating
effects of TBI, there are a number of challenges, including detection of mild TBI, discerning
TBI severity, and predicting potential patient outcomes. Understanding the dynamic
interplay between TBI and the oral microbiome may provide unique insight into using the
oral microbiome as a biomarker to detect TBI. However, the majority of published studies
exploring the relationship between TBI and microbiome have almost exclusively focused
on the lower intestine or fecal samples [15–17]. To the best of our knowledge, there are no
studies that have explored the oral microbiome changes after TBI. Collecting fecal samples
can be challenging, as patients with brain injury commonly experience bowel dysfunction,
such as constipation [18]. Therefore, the highly accessible mucosal surface of the oral cavity
is potentially a preferable microbiome for evaluating TBI patient injury.

In the current study, we used a well-established piglet model [19–22] to assess changes
in oral microbial diversity and composition during the acute stage of TBI. The pig is
a robust translational model due to its comparable brain and gastrointestinal (GI) anatomy,
physiology, and pathophysiological traits relative to humans, thus making the pig an ideal
large-animal model for clinical research [22,23]. The findings of this study may support the
potential role of the oral microbiome as a diagnostic and prognostic biomarker for TBI and
provide the basis for future oral microbiome studies in TBI patients.

2. Materials and Methods
2.1. Animals, TBI Induction, and Oral Mucosa Collection

Castrated, crossbred male piglets (n = 12; 4–5 weeks old) were acquired from the
University of Georgia swine unit and randomly selected and assigned into two groups;
(1) TBI surgery group (TBI, n = 6) or (2) sham surgery group (sham, n = 6). Moderate/severe
TBI was induced using a controlled cortical impact (CCI) as previously described [21]
with the following parameters velocity: 4 m/s, depth: 9 mm, dwell: 400 ms. The sham
group underwent a craniectomy but did not receive a CCI. Induced TBI was confirmed by
magnetic resonance imaging (MRI) 1 day post-surgery (data not shown). Oral mucosa was
collected from the upper and lower gingiva, buccal mucosa, and floor of the mouth using
sterile cotton swabs at pre-surgery and 1, 3, and 7 days post-surgery (PS). Samples were
stored at −80 ◦C until further analysis. All work in this study was conducted in accordance
with the guidelines established by the University of Georgia Institutional Animal Care and
Use Committee.

2.2. Oral Microbial DNA Extraction and 16 s rRNA Gene Sequencing Analysis

Oral mucosa was dissolved into sterile PBS, and oral DNA extraction was processed
according to a modified protocol of the QIAamp Fast DNA Stool Mini Kit (Qiagen;
Germantown, MD, USA). The DNA concentration of each sample was quantified spec-
trophotometrically utilizing the Synergy H4 multimode plate reader (BioTek, Winooski,
VT, USA). Then, 16s ribosomal RNA (rRNA) gene sequencing was conducted from the ex-
tracted DNA samples by LC sciences (Houston, TX, USA). The V3-V4 region was amplified
with primer pairs S-D-Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) and S-D-Bact-
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0785-a-A-21 (5′-GACTACHVGGGTATCTAATCC-3′) and sequenced using the Illumina
NovaSeq platform. Data were demultiplexed before being converted into FASTQ files, and
the paired-end sequences were imported into QIIME 2 [24]. The non-biological nucleotides
were then removed, and sequences were denoised, dereplicated, and chimera-filtered using
DADA2 [25]. Taxonomies were assigned to the sequences by using a pre-trained naive
Bayes classifier trained on the SILVA 138 SSU database [26], and reads were classified by
taxon using the fitted classifier [27]. For alpha and beta diversity analyses, all samples
were rarefied to a common sequencing depth. Alpha diversity was determined by the
number of observed features (number of ASVs), Faith’s phylogenetic diversity (total length
of phylogenetic branches), Shannon index (species richness and evenness), and Pielou’s
evenness (species evenness). Beta diversity was assessed using the unweighted UniFrac
distance matrix, which considers phylogenetic connections and was visualized by principal
coordinate analysis (PCoA). Oral microbial composition was measured at phylum (relative
abundance >1%), family (>1%), genus (>1%), and species (>0.5%) levels. All indices of
microbial diversities and composition were examined using QIIME2 plugins.

2.3. Statistical Analysis

Mixed effects ANOVA was used to compare differences between groups and time
points. The results showed the main effect of time (time effect) and group (group effect)
and the interaction effect between time and group (time-by-group interaction effect). Data
are shown as fitted mean ± standard error of the mean (SEM). Differences in beta diversity
were evaluated by Bonferroni-corrected multiple comparisons (corrected p-value) between
each time point and between the groups. p-values under 0.05 were regarded as significant
for all statistical tests.

3. Results
3.1. Oral Microbial Diversity

The alpha diversity indexes were analyzed to examine changes in oral microbial
diversity in TBI and sham piglets during the acute stage of TBI (Figure 1). Significant
time effects were found in number of observed features (time effect p = 0.00), Shannon
(time effect p = 0.008), evenness (time effect p = 0.043), and Faith’s phylogenetic diversity
(time effect p = 0.00) up to 7 days post-surgery. However, there were no group or time-
by-group interaction effects in alpha diversity indexes except for Faith’s phylogenetic
diversity. Significant group (p = 0.003) and time-by-group interaction effects (p = 0.001)
were observed in Faith’s phylogenetic diversity, showing significantly lower levels in the
TBI group compared to the sham group at 7 days PS (Figure 1D). These results suggest that
species diversity and evenness were not significantly altered after TBI, but the phylogenetic
diversity differed 7 days post-surgery compared to the sham group.

Beta diversity of the oral microbiome was assessed using an unweighted UniFrac
distance matrix to examine the similarity or dissimilarity of microbial patterns between
the TBI and sham groups (Figure 2). Interestingly, both the TBI and sham groups had
significantly different beta diversity between time points (Figure 2A), showing altered beta
diversity at 1, 3, and, 7 days post-surgery compared to pre-surgery. The sham group also
showed different beta diversity at 7 days post-surgery compared to 1 and 3 days post-
surgery. These results indicate that the oral microbial structure was altered post-surgery
in both the TBI and sham groups. Between the TBI and sham group, distinct microbial
patterns were observed at 1, 3, and 7 days post-surgery, with the most apparent difference
at 7 days post-surgery (Figure 2B, all Bonferroni corrected p-value < 0.05). This finding
implies that TBI surgery altered oral microbial structure aside from the effects of surgical
stress and that the changes persisted up to 7 days post-surgery.

3.2. Taxonomic Composition of the Oral Microbiome

Oral microbial composition (Figure 3) was measured at the phylum (p, relative abun-
dance >1%), family (F, relative abundance >1%), genus (G, relative abundance >1%), and
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species level (S, relative abundance > 0.5%) in both TBI and sham groups pre-surgery and 1,
3, and 7 days PS. The oral microflora in this study showed a similar predominant bacterial
composition compared to previous human and porcine oral microbiome studies [28–30].
The top five most abundant phyla pre-surgery were Firmicutes (Mean relative abundance
± SEM, 50.56 ± 4.08%), Proteobacteria (34.10 ± 4.09%), Actinobacteria (8.66 ± 1.72%),
Bacteroidetes (4.6 ± 0.78%), and Fusobacteria (1.67 ± 0.20%). The top five most preva-
lent bacterial families pre-surgery were Streptococcaceae (27.03 ± 3.11%), Pasteurellaceae
(16.39 ± 1.98%), Moraxellaceae (10.66 ± 1.96%), Lactobacillaceae (6.45 ± 1.91%), and Veil-
lonellaceae (5.58 ± 1.12%). The top five most abundant bacterial genera pre-surgery were
Streptococcus (27.03 ± 3.11%), Actinobacillus (14.68 ± 1.77%), Moraxella (6.95 ± 1.39%),
Lactobacillus (6.44 ± 1.91%), and Veillonella (4.97 ± 1.04%). Lastly, the top five most preva-
lent bacterial species pre-surgery were Streptococcus suis (6.42 ± 0.95%), Actinobacillus in-
dolicus (3.59 ± 0.74%), Actinomyces denticolens (3.49 ± 1.60%), Actinobacillus porcitonsillarum
(3.08 ± 0.70%), and Actinomyces howellii (1.11 ± 0.49%).
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were observed except for Faith’s phylogenetic diversity. (D) Faith’s phylogenetic diversity was sig-
nificantly lower in the TBI group (n = 6) compared to the sham group (n = 6) at 7 days PS (time, 
group, and time-by-group interaction effects p < 0.05). *: Time-by-group interaction effect: Tukey 
post hoc comparison between the TBI and sham groups. PS, post-surgery. 
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Figure 1. TBI did not significantly alter alpha diversity indexes of the oral microbiome except for
Faith’s phylogenetic diversity. Alpha diversity indexes were measured by the number of observed
features, Shannon, Pielou’s evenness, and Faith’s phylogenetic diversity. (A–D) Significant time
effects were found in all alpha diversity indexes, while no group or time-by-group interaction effects
were observed except for Faith’s phylogenetic diversity. (D) Faith’s phylogenetic diversity was
significantly lower in the TBI group (n = 6) compared to the sham group (n = 6) at 7 days PS (time,
group, and time-by-group interaction effects p < 0.05). *: Time-by-group interaction effect: Tukey
post hoc comparison between the TBI and sham groups. PS, post-surgery.
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Figure 2. Beta diversity of the oral microbiome was different between TBI and sham piglets. Un-
weighted UniFrac matrix distance was used to evaluate the microbial pattern within and between
groups during the acute stage of TBI. (A) Both TBI (n = 6) and sham (n = 6) groups showed significant
changes in different beta diversity post-surgery compared to pre-surgery. (B) Distinct microbial
patterns were observed between the TBI and sham groups at 1, 3, and 7 days PS, with the most
apparent difference at 7 days PS. Bonferroni corrected p-value: * p < 0.05, ** p < 0.01. TBI, traumatic
brain injury; PS, post-surgery.
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Figure 3. TBI did not significantly change the taxonomic composition of the oral microbiome between
TBI and sham piglets. The oral microbial composition was analyzed at the phylum (>1%), family
(>1%), genus (>1%), and species (>0.5%) levels pre-surgery and 1, 3, and 7 days post-surgery in
(A) TBI (n = 6) and (B) sham (n = 6) groups. There were no significant compositional differences
between TBI and sham groups up to 7 days post-surgery. TBI, traumatic brain injury; PS, post-surgery.

Significant time effects were observed in several microbial taxonomic compositions
including P_Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, F_Streptococcaceae,
Pasteurellaceae, Lactobacillaceae, Lachnospiraceae, Micrococcaceae, Ruminococcaceae, Leptotrichi-
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aceae, G_Streptococcus, Actinobacillus, Moraxella, Lactobacillus, Rothia, Blautia, Leptotrichia,
S_Streptococcus suis, Actinobacillus indolicus, and Bergeyella porcorum in both TBI and sham
groups (data not shown, all p < 0.05). Among oral bacteria, significant time-by-group
interaction effects were found in P_Proteobacteria (p = 0.026), F_Leptotrichiaceae (p = 0.037),
F_Micrococcaceae (p = 0.019), and G_Rothia (p = 0.023) in both TBI and sham groups; however,
the post hoc Tukey HSD (honestly significant difference) comparison did not show any
differences between TBI and sham groups at any time point post-surgery. Therefore, the
oral microbial composition did not differ between TBI and sham groups at the phylum
(1>%), family (1>%), genus (1>%), or species (0.5>%) level during the acute stage of TBI,
despite showing some differences in phylogenetic diversity and microbial patterns by alpha
and beta diversity, respectively.

4. Discussion

Here, we investigated for the first time changes in the oral microbiome during the
acute stage of TBI in a piglet model. Moderate/severe TBI induced differences in Faith’s
phylogenic diversity and beta diversity between the TBI and sham piglets. The Faith’s
phylogenetic diversity was lower in the TBI group at 7 days post-surgery compared to
the sham group, and different beta diversity (microbial patterns) was found between the
groups post-surgery, with the most distinct alterations at 7 days post-surgery. However, the
taxonomic composition of the oral microbiome did not significantly change following TBI.
This translational study provides novel insight into the oral microbiome TBI response and
suggests that further studies are warranted to investigate changes in the oral microbiome
during the chronic stage of TBI.

Dysbiosis, an indicator of an imbalanced microbiome, is characterized by a reduction
in microbial diversity and compositional changes and is associated with various disease
states [31]. Previous studies showed that AD patients had decreased microbial richness
and diversity, with lower levels of oral microbial numbers of operational taxonomic units
(OTUs) [6], Chao1 (species richness), Shannon index, and phylogenetic diversity whole
tree as compared to healthy controls patients [32]. Similarly, PD patients had lower alpha
diversity with reduced species richness and evenness as well as different microbial commu-
nities (beta diversity) compared to the healthy controls [10]. In this study, we examined the
oral microbiota profile in a translational piglet TBI model and found Faith’s phylogenetic
diversity only was lower in the TBI group 7 days post-surgery compared to the sham group,
while number of observed features, Shannon, and evenness only had significant time effects.
This suggests that TBI may have a limited effect on oral microbial diversity during the
acute stage of TBI. Faith’s phylogenetic diversity represents species richness, computing
the sum of the branches of phylogenetic trees connecting all species of a given taxonomic
group [33]. Faith’s phylogenetic diversity is known to be more sensitive in distinguishing
disease factors in humans, as this diversity measures phylogenetic differences between
species, whereas traditional species diversity does not differentiate between species [34,35].
Previous studies showed that phylogenetic diversity was reduced in the oral microbiome of
patients with AD [32] and nasopharyngeal carcinoma [36] compared to the healthy controls,
which was also shown in the gut microbiome of patients with AD [37], inflammatory bowel
disease [38], and autism [39]. These results suggest that decreased phylogenetic diversity
may be linked to poor microbial resilience and health. Therefore, reduced phylogenetic
diversity can be a potential indicator of TBI, but further studies are needed to clarify its
role during the acute stage of TBI.

Beta diversity represents similarity or dissimilarity in microbial structure between
groups that captures the changes in the microbial composition [40]. The current study
showed that the most distinct differences were found 7 days post-surgery between the TBI
and sham groups, similar to Faith’s phylogenetic diversity. Both UniFrac matrix of the
beta diversity and Faith’s phylogenetic diversity measure phylogenetic distances between
and within the communities, respectively; therefore, differential microbial patterns showed
by the beta diversity at 7 days post-surgery likely have a relationship with the changes in
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phylogenetic diversity between the groups. Previous studies showed that patients with
PD [10–12] or depression [41] had an alteration in oral bacterial ecology (beta diversity)
compared to healthy controls. Interestingly, those PD patients did not have more decayed
teeth or periodontitis [10], or their plaque index scores improved to a comparable level
to that of healthy controls after through toothbrushing [11], implying that the altered
beta diversity may be caused by the disease itself rather than inadequate dental hygiene.
PD patients also had high proportion of dental-caries-associated bacteria (Streptococcus
mutans [10], Lactobacillaceae [12], and Lactobacillus [11]), periodontitis-associated bacteria
(Kingella oralis [10], Negativicutes, and Tannerella forsythia [11]), and potential pathogenic
bacteria (Prevotella and Veillonella [12]). These bacteria can cause chronic inflammation,
which impairs the structure and function of oral tissues, leading to dental caries and
periodontal disease [42,43]. The inflammatory response is proposed as a key factor in
mediating the effects of oral pathogens on brain pathophysiology [44]. Therefore, the altered
beta diversity after TBI shown in this study may suggest an increased risk of worsening
oral conditions and an elevation in opportunistic oral pathogens as TBI progresses that will
affect disease severity or recovery.

Although changes were observed in oral microbial diversity following TBI, the present
study did not find significant differences in taxonomic composition between TBI and sham
animals. There are a number of potential reasons as to why oral microbiota composition
changes were not observed between TBI and the sham groups in the current study. First,
dysbiosis induced by TBI may cause higher inter-individual variation in microbial composi-
tion than sham piglets. According to the Anna Karenina principle, the microbial community
varies more in dysbiotic individuals than that of healthy individuals [45]. High variability
may reduce the ability of bacteria to regulate microbial composition, preventing the estab-
lishment of unique microbial communities [45]. This theory was also applied in a study of
relapse/refractory multiple myeloma patients who did not have a distinct oral microbial
composition compared to the general population [46]. To overcome this challenge, it may
be necessary to increase the number of animals to enhance the statistical power. Second,
surgical stress may have had a major influence on microbial changes in both TBI and sham
groups. It is expected that the significant time effects in the oral microbial composition
may have been induced by surgical or environmental stress, as both can alter microbial
diversity and microbial composition [47]. Existing studies reported that the Fusobacteria
level was increased in response to treatment of stress hormone and cortisol in subgingival
dental plaque samples cultured in vitro [48], and its genus level of oral Fusobacterium and
Leptotrichia spp. were positively associated with cortisol levels in humans [49]. The present
study also showed increased Fusobacteria post-surgery and Leptotrichia at 3 days PS in both
TBI and sham groups compared to pre-surgery (data not shown). This suggests a potential
impact of surgical stress on microbial changes in both the TBI and sham groups that may
mask the compositional differences between groups. The precise mechanisms by which
cortisol alters the oral microbiome are still unknown, but several stress hormones have been
related to both stimulatory and inhibitory effects on oral microbial growth [50,51]. Future
studies should consider this complexity of stress effect on oral microbiome changes. Third,
significant changes in the oral microbiome may not be apparent at the acute TBI stage.
Neurodegenerative diseases such as AD and PD are chronic diseases that develop slowly
over time and affect primarily elderly people [52,53]. Studies of chronic AD and PD patients
showed individuals possessed altered oral microbial diversity or abundance compared to
healthy controls [6,10–13,32]. Similarly, diseases that have been reported to have altered
oral microbiome are chronic inflammatory disorders (e.g., rheumatoid arthritis) or chronic
diseases such as cancer, diabetes, and cardiovascular disease [54]. Therefore, the acute stage
of TBI may have been too early to detect robust quantitative changes in alpha diversity
and differences in phylum, family, genus, and species. It will be intriguing to investigate
changes in the oral microbiota during the chronic stage of TBI. Finally, the changes in
the oral microbiome composition may differ based on several factors, such as sampling
location and the age of the pig. For example, in PD patients, changes in oral microbial
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diversity and composition were different between samples of soft (tongue dorsum and
buccal mucosa) and hard tissue (chewing surfaces of the molars) of the oral cavity [11].
Moreover, the oral microbiota in infant and toddlers was less diverse than that of adults
and contained some species not commonly identified in the adults oral cavity [55], sug-
gesting that the oral microbiome dynamically changes and develops as an individual ages.
Therefore, future studies should consider these multiple variations that may affect oral
microbiome outcomes.

The mechanism by which the disease changes the oral microbial composition is still
unknown; however, oral homeostasis has gained attention in neurological disorders [4].
The oral cavity is maintained at a relatively stable temperature of 35–37 ◦C, pH 6.5–7,
and saliva production, which together provide an ideal environment for the growth of
commensal oral microorganisms as well as a medium that delivers nutrients to bacteria [1].
Interestingly, neurological disease such as AD reduced saliva production and basal saliva
pH, affecting the patient’s oral homeostasis [56,57]. Rozas et al. also found that PD patients
with dysphagia, drooling, and lower salivary pH than healthy controls had significantly
altered beta diversity and microbial composition, suggesting an important role of oral
environment on the oral microbiome [11]. The alterations in oral ecology status, especially
periodontal conditions, increased opportunistic pathogens such as Spirochetes (which in-
cludes Treponema) and Prevotella nigrescens over the commensal bacteria [58]. Treponema
species can utilize amino acids (e.g., serine, alanine, cysteine, and glycine) and generate
the fermentation products such as acetate, lactate, and pyruvate [58,59]. These compounds
can influence the composition of bacterial species within the biofilms as well as affecting
host tissue by penetrating the epithelial layers of the oral cavity [60]. Prevotella nigrescens
was associated with Th17-mediated mucosa immune responses in vitro, by producing
proinflammatory cytokines [42]. Findings from this current study suggest an alteration
of oral microbiota composition and microbial diversity, and the assessment of changes in
the oral microbiome may be an inexpensive and non-invasive biomarker for measuring
progress of recovery in the patients with neurological diseases. Further studies are needed
to elucidate detailed mechanisms of how changes in oral homeostasis are associated with
disease pathogenesis.

The bidirectional communication between the oral microbiome and brain have not
yet been defined. However, it has been proposed that the oral microbiota may affect the
brain through direct or indirect means. Interestingly, Treponema species, the common oral
bacteria, were detected in post-mortem AD brains [61], indicating a direct interaction of
oral pathogens with the brain. AD patients also had increased levels of oral Moraxella,
Leptotrichia, and Sphaerochaeta in saliva samples compared to healthy controls [32]. These
Gram-negative bacteria release lipopolysaccharides (LPS), a strong stimulator of the im-
mune response and inflammation, which are closely associated with worsening AD out-
comes [62]. The levels of LPS and K99 pili protein released from Gram-negative bacteria
were greater in the brains of AD patients than in normal brains [63], and intraperitoneal
injection of LPS induced amyloid-beta plaques formation in rodent brain by stimulating
neuroinflammation [64]. Gram-negative bacteria such as Escherichia coli, Klebsiella spp.,
Kluyvera spp., Serratia spp., Proteus spp., and Enterobacter spp. were also isolated in the oral
cavity of PD patients [65]. Moreover, increased regional inflammation in the oral cavity was
found in PD patients, showing elevated cytokine levels of IL-1 and IL-1RA compared to
healthy controls [10]. These results suggest that an increase in oral pathogenic bacteria and
their proinflammatory molecules may enter the brain tissue through the bloodstream, cause
systemic and neuro-inflammation, and exacerbate disease severity and progression [44].
Therefore, oral dysbiosis may enhance neuropathology via the oral-brain connection. In
addition, it is proposed that bidirectional communication between the TBI and oral micro-
biome may be mediated through immunological pathways. The secondary injury in TBI
largely includes significant inflammation in the brain, such as the activation of microglia,
the resident immune cell of the brain, and astrocytes. These activated cells in the brain
produce a host of inflammatory cytokines (e.g., IL-1β, TNF-α) and chemokines (e.g., CCL2,
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CXCL10) that attracts peripheral immune cells to the brain, leading to an increasing cycle
of inflammation [66,67]. The interconnectivity of the oral cavity and brain through the
circulatory and lymphatic/glymphatic systems may potentially enable oral bacteria and
inflammatory molecules to enter the brain, particularly since the blood–brain barrier is
breached. Direct invasion of oral pathogens or inflammatory cytokines from the oral cavity
into the brain may increase the inflammatory responses in the brain and exacerbate its
severity or delay the recovery processes.

The top 10 most abundant genera in this study were Streptococcus, Actinobacillus,
Moraxella, Lactobacillus, Veillonella, Actinomyces, Rothia, Neisseria, Blautia, and Prevotella,
which is similar to a previous pig salivary microbiome study [30]. Oral and gut bacteria
have different habitats; thus, they have distinct microbial diversity and structure in both
humans [28,68,69] and pigs [30]. Maki et al. [28] summarized that the human oral microflora
has a high abundance of Streptococcus, Fusobacterium, Neisseria, Prevotella, Actinomyces,
Pasteurella, and Veillonella, whereas the gut has high abundance of Alistipes, Akkermansia,
Blautia, Faecalibacterium, Roseburia, Sutterella, etc. [28]. The results from this study and
others have shown that the pig oral microbiome was also enriched with Streptococcus,
Neisseria, Moraxella, Rothia, Actinobacillus, and Fusobacterium, while earlier studies from our
group and others have shown that fecal samples were abundant in Clostridium, Lactobacillus,
Turicibacteri, and Prevotella [30,70]. This supports that the oral and gut microbiome have
very different microbial composition. One similarity between the oral and gut microbiome
is that different regions of the oral cavity, such as saliva, tonsils, buccal mucosa, gingiva,
and plaque, have a distinct microbial composition [3], just as different gut segments have
different microbial composition [71]. The existence of these various microbiomes suggests
that it is important to understand how these diverse microbiomes of the human body
interact with its host and affect health.

5. Conclusions

The findings of this study demonstrated that TBI induced changes in microbial di-
versity but did not alter the taxonomic composition of the oral microbiota during the
acute stage of moderate/severe TBI in a swine model. The discovery of this phenomenon
provides preliminary evidence for investigating the oral microbiome as a potential TBI
biomarker and suggests future research directions. This is an early-stage study of the oral
microbiota, and more research is needed to evaluate the dynamic interplay between TBI
and the oral microbiome in longitudinal studies including the chronic TBI recovery stage.
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