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Abstract: Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocata-
lysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme
NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle
of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular
structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 perox-
ygenase system has been designed with the assistance of a dual-functional small molecule (DFSM).
DFSMs, such as N-(ω-imidazolyl fatty acyl)-L-amino acids, use an acyl amino acid as an anchoring
group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base
catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated
P450 peroxygenase system has been used in various oxidation reactions of non-native substrates,
such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which
showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system
can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review,
the design, mechanism, evolution, application, and perspective of these novel non-natural P450
peroxygenases for the oxidation of non-native substrates are discussed.

Keywords: cytochrome P450 monooxygenase; peroxygenase; peroxidase; protein engineering; oxida-
tion; hydroxylation; epoxidation; sulfoxidation; dual-functional small molecule

1. Introduction

Cytochrome P450s (CYPs or P450s), a broad class of heme-containing enzymes, play
important roles in drug metabolism, detoxification of xenobiotics, and steroid biosynthe-
sis [1]. These enzymes are ubiquitous in nature, being found in animals, plants, bacteria,
fungi, and other organisms [2]. P450s have potential use in the catalytic monooxygena-
tion of various organic substrates, including aliphatic and aromatic compounds, alkenes,
and compounds containing heteroatoms such as nitrogen and sulfur [3–8]. In particular,
P450s can regio- and stereoselectively oxidize inert C–H bonds, thus acting as an attractive
enzyme class in the development of practical biocatalysts for organic synthesis [9–11].

A variety of approaches have been developed to solve the intrinsic drawbacks of
P450s, e.g., poor enzyme stability, low turnover rates, narrow substrate scope, and the
need for expensive cofactors (NAD(P)H). Protein engineering, including rational design
and directed evolution, represents a first choice for solving most of these issues [12–14].
Moreover, effective strategies have emerged to overcome some specific problems dur-
ing P450-driven catalysis [15–33]. For example, researchers have constructed a substrate
engineering approach to improve the acceptance and/or the stereo-/regioselectivity of
non-native substrates of P450s by introducing protecting/anchoring/directing groups to
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the substrate [15–24]. Watanabe and co-workers used a dummy co-substrate (so-called
decoy molecule) to modulate substrate promiscuity of P450s, enabling wild-type P450s
to hydroxylate various small molecules that are not accepted in the absence of the decoy
molecule (such as gas alkanes and benzene) [25–27]. Biological and chemical regeneration
of NAD(P)H has been used widely to support catalysis by P450s [28,29]. In addition, the
surrogate oxidants (e.g., hydrogen peroxide, tert-butyl hydroperoxide, and iodosylbenzene)
are also used to drive P450 instead of molecular oxygen and reduced NAD(P)H [30–33].
Despite being useful supplements to protein engineering, these strategies often play a
role in combination with protein engineering. There have been many reviews discussing
the abovementioned topics [34–41]. Herein, we focus on a unique H2O2-dependent P450
peroxygenase system facilitated by a dual functional small molecule (DFSM). The design,
construction, mechanism, and catalytic application of the DFSM-facilitated P450 peroxyge-
nases are reviewed, and current issues and future perspectives are also discussed.

2. Proof-of-Concept of the DFSM-Facilitated P450 Peroxygenase

The complex catalytic cycle of P450s needs reduced co-enzyme NAD(P)H and a redox
partner to support the activation of molecular oxygen. Thus, it had been suggested that
surrogate peroxide species can be used to drive P450 catalysis through its shunt pathway
(Figure 1), with low-cost H2O2 being one of the best choices. However, only a few native
P450 peroxygenases (e.g., CYP 152 family) can use the unique substrate-assisted mechanism
to activate H2O2 successfully [42–47], with most P450s examined (e.g., rat liver microsomal
P450, human P450s such as CYP1A2 and 3A4, thermophilic archaea CYP119, CYP175A1,
and P450cam) generally showing low efficiency for the H2O2-dependent reaction (shunt
pathway in Figure 1) [48–53]. Although the peroxygenase and peroxidase activity of P450s
can be partially improved by directed evolution, the catalytic efficiency of the evolved P450
variants is still not comparable to natural NAD(P)H-dependent P450s [54–57]. This may be
caused by the inherent structural characteristics of P450s. Indeed, those enzymes that make
good use of H2O2 in nature have acid-base amino acid residue pairs that play the role of an
acid–base catalyst in their active site (Figure 2) [58,59]. In contrast, the crystal structures
of other P450s have revealed that such amino acid residues are not present on the distal
side of their heme centers. Previous reports have suggested that the introduction of a basic
residue can modify myoglobin into a peroxidase through site-directed mutagenesis [60–62].
Similar strategies have been applied to improve the peroxygenase/peroxidase activity of
P450s [63,64]; however, the catalytic efficiency was not always satisfactory. Crystal structure
studies have provided hints for the poor activity in some cases, namely, the basic group
on the side chain of the introduced residue is distal from the heme center such that this
residue cannot efficiently activate H2O2 as the general acid–base catalyst [63].

Based on previous reports, it has become clear that to use the shunt pathway of P450s
efficiently, two points should be met: (1) a basic group located on the distal side of the
heme center is necessary; and (2) the basic group should be placed at a suitable position
to ensure that this residue plays the role as an acid-base catalyst efficiently. To this end,
Ma et al. designed a DFSM approach to modify cytochrome P450BM3 monooxygenase
from Bacillus megaterium into its peroxygenase mode (Figure 3) [65–67]. Typical structures
of DFSMs, such as N-(ω-imidazolyl)-fatty acyl-L-amino acid (Im-Cn-AA), are shown in
Figure 3B [66]. These DFSMs have an acyl amino acid moiety at one end as an anchoring
group to bind with the enzyme, and an imidazolyl group at the other end as a basic group to
assist the activation of H2O2. Moreover, the position of imidazolyl can be optionally tuned
by changing the chain length of a flexible spacer having various CH2 numbers, while the
introduced basic residues by site-directed mutagenesis often can’t extend sufficiently into
a suitable catalytic site [63]. Ma et al. reasoned that the DFSM-facilitated P450BM3-H2O2
system was capable of running smoothly with a catalytic cycle that was similar to the native
UPO peroxygenase under ideal conditions (Figure 3C) [68,69].
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Figure 2. Active site structures of HRP ((A), PDB ID: 1ATJ) [58] and unspecific peroxygenase ((B), PDB
ID: 2YOR) [59].

This concept was firstly validated by the H2O2-dependent epoxidation of styrene
catalyzed by the P450BM3_F87A mutant. The presence of the best DFSM, N-(ω-imidazolyl)-
hexanoyl-L-phenylalanine (Im-C6-Phe), increased the catalytic turnover number (TON)
more than 30-fold than that of the F87A alone. The roles of the DFSMs were further
demonstrated by using mono-functional small molecules (MFSMs) without the terminal
imidazolyl group or acyl amino acid group, the latter didn’t improve TON and even inhibit
the reactions. The ability of the DFSMs to generate peroxygenase activity was further
demonstrated by using the double mutant F87A/T268V. The authors found that mutating
the highly conserved T268 [69–73] abolished the H2O2 activity of the enzyme, which can be
recovered upon the addition of DFSM. This discovery provides a unique choice of protein
engineering sites for developing catalytic promiscuity of the current peroxygenase system
(will be discussed below by combination with other results).
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genase. (A) The NADPH-dependent P450BM3 monooxygenase. (B) Proposed catalytic cycle of the
DFSM-facilitated P450 peroxygenase. (C) Chemical structures of the DFSM molecules. (D) Styrene
epoxidation in the presence of the DFSM and control experiments.

The catalytic role and mechanism of DFSMs have been further disclosed by combining
structural biology and computational chemistry [74]. To mimic the pre-reaction state of
P450-bounded H2O2 and avoid the H2O2-initiated reaction, Jiang et al. skillfully adopted
the NH2OH molecule as the analog of H2O2 to prepare the co-crystal (Figure 4A,B). As a
result, they successfully reported the first X-ray structure of the P450BM3 heme domain
F87A mutant in complex with the DFSM, N-(ω-imidazolyl)-hexanoyl-L-phenylalanine (Im-
C6-Phe) and NH2OH at 2.70 Å resolution (PDB ID: 7EGN, Figure 4C). The crystal structure
clearly shows that Im-C6-Phe bound to P450BM3 through an H-bond network formed
by interactions of its terminal carboxyl group with Arg47 and Tyr51, and hydrophobic
interactions between its benzyl moiety and a hydrophobic pocket composed of Pro25,
Val26, Leu29, Met185, and Leu188 (Figure 4D). The unique binding mode that involves
additional hydrophobic interactions is distinct from those observed in the co-crystals of
P450BM3 in complex with fatty acids (native substrates) or perfluoroacyl amino acids (decoy
molecules) [75–77]. This binding mode plays a crucial role in positioning the imidazolyl
group of the DFSM above the heme center, where the distance between the heme iron atom
and the terminal nitrogen atom of the imidazolyl group is ~5 Å, indicating the imidazolyl
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group of the DFSM may act as a general acid–base catalyst in H2O2 activation, consistent
with the original hypothesis by Ma et al. [66].
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Figure 4. Structural basis of the DFSM-facilitated P450 peroxygenase. (A) Proposed pre-reaction
state of P450BM3 in the presence of H2O2 and DFSM. (B) The model structure with NH2OH instead
of H2O2. (C) The co-crystal structure of P450BM3_F87A in complex with NH2OH and Im-C6-Phe.
(D) The binding interactions of Im-C6-Phe with P450BM3.

The mechanism for H2O2 activation was further elucidated by QM-MM computational
investigations. These computational chemistry results revealed the crucial role of DFSM in
promoting a heterolytic O–O cleavage to favor Cpd I formation [74]. The DFSM facilitates
the formation of a proton channel between the imidazolyl group of the DFSM and proximal
H of H2O2, thus enabling a heterolytic O–O cleavage and Cpd I formation, which is similar
to the proposed mechanism for H2O2 activation in natural peroxygenases (e.g., UPO) or
peroxidases (e.g., HRP). In contrast, the formation of Cpd I is apparently sluggish via the O–
O homolysis mechanism in the absence of the DFSM. Similar results were also observed in
the theoretical simulation of H2O2 activation by the P450cam T252A mutant [78], indicating
weak H2O2 activation by NADPH-dependent P450s.
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3. Catalytic Applications of the DFSM-Facilitated P450 Peroxygenase

In recent years, peroxygenase UPO has attracted considerable attention because of
its versatile oxidation functions and potential in synthetic applications [79–86]. Moreover,
peroxygenase that uses green and economic H2O2 to circumvent the use of expensive
NADPH and the complex electron transfer system (redox partner proteins) has become a
promising practical bio-oxidative catalyst when compared with using NAD(P)H-dependent
P450 monooxygenases [79]. Despite concerns about the potential damage of H2O2 to
enzymes, the use of a controlled fed-batch reactor or in situ-generating H2O2 has been
demonstrated to enhance effectively the stability of peroxygenases through control of the
H2O2 concentration in the reaction system, resulting in high catalytic turnovers [87–91].
Therefore, developing the catalytic potential of the artificial P450 peroxygenase is not
only expected to expand the chemical space of P450 enzymes but also act as a beneficial
supplement to the relatively scarce natural peroxygenase resources in nature. In fact, the
DFSM-facilitated P450BM3-H2O2 system has shown versatile unique catalytic activity
towards the peroxygenation reaction of various non-native substrates, such as epoxidation,
hydroxylation, and sulfoxidation [66,92–95].

Asymmetric epoxidation of unfunctionalized olefins represents an important organic
transformation to prepare optically pure epoxides [96–99]; however, the (R)-enantioselective
epoxidation of styrene seems more difficult to achieve than the (S)-enantioselective reaction
through either synthetic molecular catalysts or natural enzymatic bio-catalysts [100–108].
DFSM-facilitated P450BM3 peroxygenase enabled access to (R)-enantioselective epoxida-
tion of unfunctionalized styrene and its derivatives (Figure 5). In view of the potential
of the double mutant F87A/T268V in the (R)-enantioselective epoxidation of styrene in
the presence of Im-C6-Phe, Zhao et al. systematically evaluated the effect of T268 residue
and disclosed the roles of the T268 mutation in tuning activity and enantioselectivity
of the NAD(P)H- and H2O2-dependent P450BM3 system, respectively [45]. Based on
the more selective, but lower activity profile of the double mutant F87A/T268I (97% ee,
TON = 335), a mutant library was constructed by introducing additional mutations at ten
key residues around the substrate-binding pocket (Figure 5A). Two beneficial mutants
were determined to give high (R)-enantioselective epoxidation of styrene (98% ee) with
>4000 TONs (Figure 5B). This approach also gave modest to very good TONs (362–3480) and
high (R)-enantioselectivities (95–99% ee) for the epoxidation of various styrene derivatives
(Figure 5C), being comparable with the best (R)-enantioselective styrene monooxygenases,
such as SeStyA from Streptomyces exfoliatus, AaStyA from Amycolatopsis albispora, and PbStyA
from Pseudonocardiaceae reported recently [109,110]. The further semi-preparative scale
experiments suggest its potential application in styrene epoxidation [92].

The direct hydroxylation of small alkanes to alcohols is a long-standing challenge
because of the higher bond dissociation energies (BDE) of their C–H bonds when compared
with that of the corresponding hydroxylated products, the latter easily leads to overoxi-
dation [111,112]. Natural oxidizing enzymes, such as methane monooxygenase, soluble
butane monooxygenase (sBMO), fungal peroxygenase (AaeUPO), and engineered P450s, are
promising biocatalysts for the selective hydroxylation of small alkanes [76,77,93,113–123].
Recently, Chen et al. reported the peroxide-driven hydroxylation of small alkanes (C3–C6)
by using engineered P450BM3 variants assisted by DFSMs [93]. Compared with some
main results through enzymatic hydroxylation of small alkanes [116–124], DFSM-facilitated
P450BM3 peroxygenase showed unique features and catalytic activities (Table 1). The
hydrophobic mutation of T268 residue substantially improved the hydroxylation activities
of small alkanes, which is distinct from NADPH-dependent P450 enzymes [94]. Here, the
presence of the DFSM was critical for accomplishing the catalytic functions of engineered
P450BM3 variants because the activity is completely lost in the absence of the DFSM.
Two triple-mutants BM3_F87A/T268I/A184I and BM3_F87A/T268I/A82T showed the
highest total turnover numbers (TTN) for the hydroxylation of propane and n-Butane
(Entries 1–2 in Table 1), respectively, with better activity than AaeUPO, the only known
H2O2-dependent native hydroxylase for small alkanes (entries 20–21 in Table 1) [116], and
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comparable activity to the P450BM3 decoy system (entries 3–8 in Table 1) [117–120], but
far lower than P450PMOR1 and P450PMOR2, two evolved NADPH-dependent propane
monooxygenases (entries 13–14 in Table 1) [121]. Notably, the product formation rates
(PFR) for 2-propanol and 2-butanol of the current artificial P450 peroxygenase are far better
than all reported natural or engineered enzyme systems. The contradiction between high
PFR and low TTN suggests that the DFSM-facilitated P450 peroxygenase may be unsta-
ble. Nonetheless, reducing instability should yield an efficient biocatalyst for the direct
hydroxylation of small alkanes. In addition, this peroxygenase system is unavailable for
the hydroxylation of smaller alkanes (e.g., ethane and methane), which has been achieved
by natural methane monooxygenase (MMO) or other enzymes (entries 9, 12, 16, 17 in
Table 1) [76,77,118,122,123]. Anyhow, Ciuffetti et al. reported that CYP52L1 from Graphium
sp. ATCC 58,400 can oxidize propane, but without any turnover numbers or catalytic
constants mentioned [124]. This may be the only known P450 enzyme that uses gaseous
alkanes as natural substrates, suggesting that P450 has a weak preference for small alkanes.
Therefore, further protein engineering may be necessary for the DFSM-facilitated P450BM3
peroxygenase to access the direct hydroxylation of methane or ethane.
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styrene derivatives by the DFSM-facilitated P450 peroxygenases.
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Table 1. Catalytic hydroxylation of small alkanes by various enzymes in literature.

Entry Enzyme Alkanes Final Product PFR a TTN b Ref.

1 BM3_F87A/T268I/A184I/Im-C6-Phe Propane 2-Propanol 630 1775 [93]
2 BM3_F87A/T268I/A82T/Im-C6-Phe n-Butane 2-Butanol 1042 2253 [93]
3 BM3/PFC10 Propane 2-Propanol 70 700 [117]
4 BM3/PFC9-L-Leu Propane 2-Propanol 256 2560 [76]
5 BM3/3CCPA-Pip-Phe Propane 2-Propanol 615 - [118]
6 BM3/PFC9 n-Butane 2-Butanol 110 1100 [120]
7 BM3/PFC11 Propane 2-Propanol - 1021 [120]
8 BM3/PFC7 n-Butane 2-Butanol - 3632 [120]
9 BM3/C7AM-Pip-Phe Ethane Ethanol 82.7 - [118]
10 P450cam_EB n-Butane 2-Butanol 520 - [123]
11 P450cam_EB_L294M/T185M/L1358P/G248A Propane 2-Propanol 505 - [123]
12 P450cam_EB_L294M/T185M/L1358P/G248A Ethane Ethanol 78.2 - [123]
13 P450PMOR1 Propane 2-Propanol 455 35,600 [121]
14 P450PMOR2 Propane 2-Propanol 370 45,800 [121]

15 c CYP52L1 Propane 1-Propanol - - [124]
16 sMMO Methane Methanol 78 - [122]
17 sMMO Ethane Ethanol 45.6 - [122]
18 sMMO Propane 2-Propanol 33–58.8 - [122]
19 sMMO n-Butane 2-Butanol 7.2–28.8 - [122]
20 AaeUPO Propane 2-Propanol 17 999 [116]
21 AaeUPO n-Butane 2-Butanol 21 1258 [116]

a PFR: product formation rate in µmol·min−1·(µmol P450)−1. b TTN: total turnover number. c There is no catalytic
turnover data reported.

The O-demethylation of aromatic ethers is of important reaction to produce value-
added phenolic compounds, which is also involved in aromatic ring-opening reactions
of coniferyl and sinapyl lignin derivatives [125,126]. Various powerful oxidative en-
zymes, such as peroxidases from white-rot, soft-rot, and brown-rot fungi, as well as
some bacteria, can catalyze demethylation of lignin-derived compounds and their model
compounds [127–130]. A few P450 enzymes also show promise as an O-demethylase for
lignin-derived aromatic ethers [131–136]. Recently, Jiang et al. successfully applied the
DFSM-facilitated P450BM3 peroxygenase system to perform O-demethylation of various
aromatic ether substrates (Table 2) [94]. These reactions show excellent regioselectivity
toward the hydroxylation of the methoxy of aromatic ethers to give the demethylation prod-
uct after automatically releasing formaldehyde. A suitable combination of the beneficial
mutant and DFSM is important for controlling good regioselectivity. For example, some
combinations examined still give aromatic hydroxylation as the main product. Although
the DFSM-facilitated P450BM3 peroxygenase appears to open a new avenue for the key
demethylation step in the bioconversion of lignin, it is still restricted by low TONs and
narrow substrate scopes.
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Table 2. Regioselective aromatic O-dealkylation by the DFSM-facilitated P450 peroxygenases.
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The DFSM-facilitated P450BM3 peroxygenase is also capable of catalyzing other types
of reactions, including thioanisole sulfoxidation, aromatic hydroxylation of naphthalene,
and the benzylic hydroxylation of ethylbenzene (Figure 6) [66,95]. The F87A mutant ex-
clusively yielded sulfoxide with a PFR of 888 µmol·min−1·(µmol P450)−1 and a catalytic
TON of 3436 in the presence of the DFSM, 35-fold higher than that without the DFSM. Inter-
estingly, T268 mutations drastically affected the hydroxylation activity of the system, e.g.,
the double mutants F87G/T268V and F87A/T268V increased the TONs for the formation
of 1-naphthol and 1-phenylethanol to 200 and 319, being around 15-fold and 8-fold to the
single mutant F87G and F87A, respectively [95].
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4. Switching Peroxidase Activity of the DFSM-Facilitated P450 Peroxygenase

The catalytic promiscuity of enzymes is a fascinating topic for the biochemistry, syn-
thetic biology, and chemical biology communities [137–139]. P450s have been well docu-
mented to carry out multiple catalytic functions such as monooxygenase, peroxygenase,
and peroxidase activity [140]. However, research interest has focused on the monooxyge-
nase and peroxygenase activities of P450s, and only a handful of studies have examined the
catalytic peroxidase functionality of P450s. The non-natural DFSM-facilitated P450-H2O2
system described above mainly catalyzes various per-oxygenation reactions, including
epoxidation, hydroxylation, and sulfoxidation [66,92–95]. Interestingly, the oxidation of
guaiacol, a classical substrate of peroxidases [141–144], catalyzed by the DFSM-facilitated
P450BM3-H2O2 system yielded demethylated catechol as a major product, suggesting
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it mainly functioned as a peroxygenase but not as a peroxidase [94]. After carefully
analyzing the catalytic mechanism of the potential competitive oxidation pathways in
the DFSM-facilitated P450BM3-H2O2 system, Ma et al. hypothesized that mutation of
redox-sensitive residues may enable switching of peroxygenase activity to peroxidase activ-
ity [145]. Using a semi-rational design approach, similar to FRISM (focused rational iterative
site-specific mutagenesis) named by Reetz and Wu [146,147], Ma et al. identified muta-
tions of three key redox-sensitive tyrosine residues that are located on the surface of P450.
Screening for activity-enhanced peroxidase mutants yielded a mutant that efficiently cat-
alyzed one-electron oxidation of guaiacol through combination with other redox-sensitive
residues located in the electron transfer pathway. The engineered system also exhibits
favorable one-electron oxidation activity toward other peroxidase substrates, including
2,6-dimethoxyphenol, o-phenylenediamine, and p-phenylenediamine, and almost without
peroxygenase activity for these substrates. Notably, this system attains the best peroxi-
dase activity of any P450 reported [56,148], and rivals most natural peroxidases [149–153],
suggesting significant potential for catalytic promiscuity of the DFSM-facilitated P450BM3-
H2O2 system (Figure 7). Future efforts should explore the functional applications of the
DFSM-facilitated P450 peroxidase in synthetic chemistry.
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5. Summary and Perspectives

In summary, although only a few natural P450s, such as CYP152 peroxygenases from
Sphingomonas paucimobilis, Bacillus subtilis, and Clostridium acetobutylicum can directly use
an oxygen atom from peroxides for oxidation reactions [42–47], the engineered artificial
P450 peroxygenases have significantly expanded the substrate scope and reaction types
of P450-catalyzed per-oxygenation reactions. Therefore, it is no exaggeration to state that
H2O2-driven P450 peroxygenases are emerging as powerful bio-oxidation catalysts. Among
these, the DFSM-facilitated P450 peroxygenases provide a novel and unique solution for
the efficient use of H2O2 by P450s, which exhibit much higher H2O2 activities in various re-
actions when compared with those P450 peroxygenases that have been engineered through
site-directed mutagenesis and directed evolution [26–28,56,63,64,77,152,153]. Moreover,
the DFSM-facilitated P450 peroxygenases may offer better opportunities for enhancing the
regio- and enantioselectivity in oxidation reactions of non-natural substrates. On the one
hand, the introduced DFSMs can influence the orientation of substrates through interaction
with each other to modulate reaction selectivity, besides its role in the activation of H2O2,
which still requires further experimental characterization. On the other hand, the highly
conserved T268 residue can be optionally mutated in the DFSM-facilitated P450 peroxy-
genase system. In contrast, the mutation of T268 is not favorable in NADPH-dependent
P450BM3 oxidation because this residue is located on the proximal side of the heme cen-
ter and is thought to play multiple roles in NADPH-dependent catalysis [70–73,154]. In
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fact, successful examples of the DFSM-facilitated P450 peroxygenase system have demon-
strated that mutation of T268 has a significant influence on regulating the substrate pocket
space when employing a protein engineering strategy [45–48]. This suggests that pro-
tein engineering of the DFSM-facilitated P450 peroxygenase system may also have its
own unique advantages for controlling reaction selectivity in comparison with natural
NADPH-dependent P450s. In addition, the high peroxidase activity of the DFSM-facilitated
P450-system developed recently expanded the catalytic promiscuity of the system [145],
whose further application in organic transformation is expected.

The unique selectivity and activity of the DFSM-facilitated P450 peroxygenase system
have shown its potential to be as a promising bio-oxidative catalyst; however, it is worth
noting that there are still some drawbacks to hamper its further industrially utilization:
(1) despite high efficiency, the introduction of DFSM undoubtedly increases the cost of the
catalytic reaction, especially when a large excess is required; (2) oxidative damage of P450
caused by the presence of a large amount of H2O2; (3) the uncertainty associated with ap-
plying this strategy to other P450s; (4) the complex structures of DFSMs lead to an increase
in the threshold of popularization and use; (5) the full catalytic mechanism still needs to be
elucidated. In conclusion, the DFSM-facilitated P450 peroxygenase system simultaneously
faces opportunities and challenges. Maximizing the potential of the system and answering
the above issues will open new avenues for developing P450-based biocatalysts.
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