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Eukaryotic genes often generate a variety of RNA isoforms that can lead to functionally distinct protein variants. The syn-

thesis and stability of RNA isoforms is poorly characterized because current methods to quantify RNA metabolism use

short-read sequencing and cannot detect RNA isoforms. Here we present nanopore sequencing–based isoform dynamics

(nano-ID), a method that detects newly synthesized RNA isoforms and monitors isoform metabolism. Nano-ID combines

metabolic RNA labeling, long-read nanopore sequencing of native RNAmolecules, and machine learning. Nano-ID derives

RNA stability estimates and evaluates stability determining factors such as RNA sequence, poly(A)-tail length, secondary

structure, translation efficiency, and RNA-binding proteins. Application of nano-ID to the heat shock response in human

cells reveals that many RNA isoforms change their stability. Nano-ID also shows that the metabolism of individual RNA

isoforms differs strongly from that estimated for the combined RNA signal at a specific gene locus. Nano-ID enables studies

of RNA metabolism at the level of single RNA molecules and isoforms in different cell states and conditions.

[Supplemental material is available for this article.]

In metazoan cells, a single gene locus can give rise to a variety of
different RNA molecules that are generally referred to as isoforms.
These RNA isoforms can differ in their 5′- and 3′-ends that arise
from the use of different transcription start sites and polyadenyla-
tion sites, respectively (Pelechano et al. 2013; Core et al. 2014;
Chen et al. 2016; Turner et al. 2018). In addition, alternative splic-
ing results in RNA isoforms that differ in the composition of their
RNA body (Tilgner et al. 2015; Garalde et al. 2018). Different
mRNA isoforms can result in functionally different proteins.
Vulnerabilities in splicing can lead to nonfunctional protein prod-
ucts. Diseases have been linked to alternative splicing, which can
generate aberrant RNA isoforms (Li et al. 2016). Duchennemuscu-
lar dystrophy (DMD), for example, can be pinpointed to a single
gene encoding the protein dystrophin. The underlying aberrant
RNA isoform shows a different splicing pattern and leads to a non-
functional protein, which disrupts muscular cell integrity (Long
et al. 2018). Likewise, the three most common types of breast tu-
mors are linked to exon skipping and intron retention (Eswaran
et al. 2013).

RNA isoforms can also differ in their stability. The untranslat-
ed region of an RNA molecule, which contains regulatory ele-
ments, can differ in length between isoforms and influence
stability (Mayr 2017). The length of the poly(A)-tail at the 3′-end
of RNA molecules can also vary between isoforms, affecting RNA
stability (Houseley and Tollervey 2009; Falcone and Mazzoni
2018) and, in some cases, resulting in disease (Yamaguchi et al.
2018).

Not much is known, however, about the synthesis and stabil-
ity of single RNA isoforms in cells because the systematic character-
ization of RNA isoforms and their metabolism is technically
difficult. In particular, the detection, quantification, and estima-
tion of the stability of RNA isoforms is essentially impossible
with short-read RNA sequencingmethods because those reads gen-

erally cannot be assigned to RNA isoforms. Also, alternative splic-
ing patterns can be manifold and are difficult to identify using
short-read sequencing approaches (Steijger et al. 2013). Finally, al-
though the length of poly(A)-tails of RNAs can be measured on a
genome-wide basis (Chang et al. 2014; Subtelny et al. 2014),
they cannot currently be obtained at the level of individual RNA
isoforms.

The architecture of RNA isoforms has been addressed so far by
short-read RNA sequencing approaches such as DARTS (Zhang
et al. 2019), VastDB (Tapial et al. 2017), and MPE-seq (Xu et al.
2019) to study alternative splicing or TIF-seq (Pelechano et al.
2013; Chen et al. 2016) to elucidate combinations of paired
5′- and 3′-ends of individual RNAs. More recent approaches in-
clude long-read sequencing on the Pacific Biosciences (PacBio)
SMRT sequencing platform (Tilgner et al. 2015) or Oxford
Nanopore Technologies (ONT) nanopore sequencing platform
(Garalde et al. 2018; Clark et al. 2020; Tang et al. 2020).With these
methods, however, it is not possible to study themetabolism of in-
dividual RNA isoforms as they lack the ability to assign age to sin-
gle reads.

Methods to measure the synthesis and stability of RNA in a
combined manner for entire gene loci are available (Dolken et al.
2008; Miller et al. 2011; Rabani et al. 2011). Transient transcrip-
tome sequencing (TT-seq) is a protocol used to distinguish newly
synthesized from pre-existing RNA in human cells (Schwalb
et al. 2016). TT-seq involves a brief exposure of cells to the nucle-
oside analog 4-thiouridine (4SU). 4SU is incorporated into RNAdur-
ing transcription, and the resulting 4SU-labeled RNA can be
purified and sequenced to provide a snapshot of immediate tran-
scription activity. RNA synthesis and stability at the level of the
combined RNA signal can then be computationally inferred for a
given gene locus.
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Recent methods to assess RNA stability include SLAM seq
(Herzog et al. 2017) and TimeLapse-seq (Schofield et al. 2018).
Like TT-seq, SLAM seq and TimeLapse-seq involve an exposure
of cells to 4SU for labeling of newly synthesized RNA. A chemical
modification of the incorporated 4SU then facilitates the identifica-
tion of labeled RNA in silico without the need for purification. All
of these methods, however, have limitations. First, sequencing
reads can usually be assigned to only entire gene loci and not to
RNA isoforms and thus only allow for a combined RNA stability as-
sessment. Second, they require template amplification, which can
lead to an imbalance inmeasured sequences and information loss,
for example, modified RNA bases (Shendure et al. 2017). Finally,
labeled RNA purification (TT-seq) and cDNA library preparation
(TT-seq, SLAM seq, and TimeLapse-seq) can also introduce biases,
such as cross-contamination with unlabeled RNA and read
duplication.

Therefore, monitoring RNA metabolism at the level of RNA
isoforms requires a method that can detect individual RNA mole-
cules. Recent advances in long-read nanopore sequencing indeed
enable the sequencing of single, full-length RNA molecules
(Garalde et al. 2018). Nanopore technology can directly sequence
the original native RNA molecule with its modifications, either
natural or acquired by metabolic RNA labeling. Moreover, with
the availability of the entire RNA and coding sequence (CDS)with-
in a single read, one can unambiguously and directly determine
exon usage (Clark et al. 2020). Direct RNA long-read nanopore se-
quencing also has the potential to detect the position and length
of the poly(A)-tail along with each individual isoform.

Here we aim at developing nanopore sequencing–based iso-
form dynamics (nano-ID), a method that combines metabolic
RNA labeling, native RNA long-read nanopore sequencing, ma-
chine learning, and computational modeling to fully characterize
RNA isoform dynamics.

Results

Experimental design

Tomonitor the RNAmetabolism at the level of single isoforms, we
sought to combine metabolic RNA labeling with direct, single-
molecule RNA nanopore sequencing (Fig. 1A). By culturing cells
in the presence of a nucleoside analog, cells will take up and incor-
porate the analog in nascent RNA during transcription, making it
possible to distinguish newly synthesized RNA isoforms from pre-
existing RNA isoforms in silico based on the quantification of an-
alog-containing subpopulations. From this, the synthesis rate and
stability of single RNA isoforms can be inferred. To dynamically
characterize functional and fully processed RNA transcripts, we de-
cided tomeasure polyadenylated RNA species. The library prepara-
tion kit offered by Oxford Nanopore Technologies for direct RNA
sequencing is specifically optimized for this purpose. A 3′

poly(A)-tail–specific adapter is first ligated to the RNA transcript.
This is followed by ligation of a second sequencing adapter
equipped with a motor protein to the transcript-specific adapter.
The preparation of RNA libraries from biological samples for direct
RNA nanopore sequencing is established and can be performed
within 2 h (Garalde et al. 2018). However, we faced significant
challenges both in finding a suitable nucleoside analog for RNA la-
beling and in detection of labeled RNA isoforms. Challenges in
detection are rooted in a low labeling efficiency, which is known
to be limited to ∼2%–3%, that is, only two or three out of 100 nat-
ural nucleosides are replaced by the analog (Jao and Salic 2008).

Furthermore, the nucleoside context, namely, sequences flanking
the analog, poses additional difficulties for detection.

5-Ethynyluridine can be detected in RNA by nanopore

sequencing

To investigate if nucleoside analogs incorporated into RNA are
detectable in the nanopore, we used synthetic RNAs derived
from the ERCC RNA spike-in mix (Invitrogen). These synthetic
RNAs of approximately 1000 nucleotides (nt) in length were cho-
sen with similar U content (Supplemental Table S3). RNAs were
transcribed in vitro either using the standard bases A, U, C, or G
as a control or using one of the natural bases exchanged for a nu-
cleoside analog (Fig. 1B; Methods). Subsequently, we subjected
these synthetic RNAs to direct RNA nanopore sequencing
(Supplemental Fig. S1A,B). We compared the nucleoside analogs
5-Ethynyluridine (5EU), 5-bromouridine (5BrU), 5-iodouridine
(5IU), 4sU, and 6-thioguanine (6sG). To this end, we used the
base-called and aligned direct RNA sequencing results to calculate
how probable the identification would be at the level of single nu-
cleotides. In particular, we assessed how likely a single-nucleoside
analogwas to cause amismatch in the reference alignment in com-
parison to natural U or G (Fig. 1C, Methods).

The thiol-based analogs, 4sU and 6sG, showed lower incorpo-
ration efficiencies during in vitro transcription (IVT) and led to
substantially shorter reads during nanopore sequencing. The orig-
inal molecule was putatively full-length, but we observed that
these reads did not span the entire molecule (Supplemental Fig.
S1A). 5EU and 5IU could be detected to a similar extent bynanopore
sequencing, whereas 5BrU was less easily recognized (Fig. 1C,D).
Because 5EU has already been established to label endogenous
RNAs in mammalian cells without toxic effects (Jao and Salic
2008; Bharmal et al. 2010; Abe et al. 2012), we used 5EU for a
more detailed analysis. Approximately 37% of all U positions in
5EU-containing synthetic RNAs cause mismatches above back-
ground in reference sequence alignment after base-calling and
can thus be discerned from U (Fig. 1E; Supplemental Fig. S1B,E).
This observation is also supported by a shift in the electric current
associated with 5EU in comparison to natural U (Fig. 1D). Aberra-
tions caused by stretches of RNA containing 5EU are distinguish-
able from stretches of RNA containing the naturally occurring
U in the nanopore (Fig. 1E). Further analysis showed that different
5-mers harboring the nucleoside analog show varying degrees of
detectability (the probability of identification ranges from 0 to
0.6) with a tendency of better detectability toward higher U con-
tent (Supplemental Fig. S1F). Taken together, 5EU-based RNA label-
ing is well suited for nanopore sequencing.

Detection and sequencing of newly synthesized RNA isoforms

We next investigated whether it is possible to use metabolic RNA
labeling with 5EU in human cells to detect single RNA molecules
by nanopore sequencing. Identification probability assessment us-
ing the direct RNA nanopore sequencing of the 5EU-containing
synthetic RNAs showed that RNAs are recognizable as 5EU contain-
ing with a probability of 0.75 once a minimum length of 500 nt is
reached (Supplemental Fig. S1C). This covers the vast majority
(93%) of all mature RNAs in the human organism (UCSC RefSeq
GRCh38).

We then established direct RNA nanopore sequencing in the
human myelogenous leukemia cell line K562. We cultured K562
cells in the presence of 5EU for 60min (5EU 60min) in six biological
replicates (Methods) (Supplemental Tables S1, S2). The labeling
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Figure 1. Nanopore sequencing–based isoform dynamics (nano-ID) combines metabolic RNA labeling with long-read nanopore sequencing of native
RNA molecules. (A) Experimental schematic of 5EU-labeled RNA isoforms subjected to direct RNA long-read nanopore sequencing. Metabolic labeling of
human K562 cells with the nucleoside analog 5-ethynyluridine (5EU) in vivo. Newly synthesized RNA isoforms will incorporate 5EU instead of standard uri-
dine (U) residues. Newly synthesized RNA isoforms (labeled) can then be distinguished frompre-existing RNA isoforms (unlabeled) in silico after sequencing
the native full-lengthmolecules on an array of nanopores (Garalde et al. 2018). 5EU-containing RNA isoforms are computationally traceable and can thus be
classified. Identification and quantification of single molecules subsequently enable assessment of exon usage, poly(A)-tail length, and RNA isoform stabil-
ity. (B) Experimental schematic to derive synthetic RNAs for nucleoside analog benchmark. RNAs were in vitro transcribed: Either the standard bases A, U, C,
and G were used as a control, or one of the natural bases was exchanged for a nucleoside analog (shown for 5EU). (C) Barplot showing the probability of a
single-nucleoside analog to cause a mismatch in the alignment (compared with natural U or G, Methods) of all tested nucleoside analogs (5EU). (5BrU) 5-
bromouridine; (5IU) 5-iodouridine; (4SU) 4-thiouridine; (6SG) 6-thioguanine. (D) Box plots showing the electric current readout (averaged per read) of the
nanopore in pico-Amperes (pA; y-axis) associated with different nucleoside analogs 5EU, 5BrU, 5IU, 4SU, and 6SG (center position in 5-mer) in comparison to
A, C, G, and U. Black horizontal lines indicate median raw electric current readout associated with G and U nucleosides. (E, top) Base miscalls (colored ver-
tical bars) of the standard base-calling algorithm for synthetic RNAs containing 5EU instead of U (‘-5EU-,’ 7756molecules) and synthetic control RNAs (‘-U-,’
17,149 molecules) in comparison to the original sequence (reference) of an exemplary region on synthetic RNA “Spike-in 8” (Methods) (Supplemental
Table S3). (Middle) Synthetic RNA sequences with (-5EU-) and without 5EU (-U-). (Bottom) Alignment of the raw signal readout of the nanopore in pico-
Amperes (pA) to the reference sequence (nt). Synthetic control RNAs (-U-, 17,149molecules) are shown in black. 5EU-containing synthetic RNAs are shown
in red (-5EU-, 7756molecules). Traces represent the average signal of all molecules. 5EU-containing synthetic RNAs showa clear deviation from the expected
signal level in blue. Blue boxes indicate mean and standard deviation of 5-mers in the nanopore (provided by ONT).
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duration was chosen to be in the range of the reported median
mRNA half-life in the same cell type (∼50 min) (Supplemental
Note 1; Supplemental Fig. S3D; Schwalb et al. 2016). For compari-
son, we created three biological replicates of cells exposed to 5EU
labeling for 24 h (5EU 24 h) and three biological replicates of cells
that were not labeled (control) (Methods; Supplemental Tables S1,
S2). After base-calling, we could map reads to support 13,673
RefSeq annotated transcription units (RefSeq-TUs) (Methods),
8608 of thesewere supported in all conditions, and 2068were sup-
ported in all samples (Supplemental Tables S1, S2).

All combined samples were then used to perform a full-length
alternative RNA isoform analysis by means of the FLAIR algorithm
(Methods; Tang et al. 2020). This makes it possible to define in-
stances of unique exon–intron architecture with unique start
and end sites in human K562 cells. Raw human direct RNA nano-
pore reads were corrected with the use of short-read sequencing
data (RNA-seq) to increase splice site accuracy (Methods). We
were able to detect 41,090 distinct RNA isoforms with an average
of three isoforms per gene. Of which, 63% have not been annotat-
ed so far compared with RefSeq. This shows that direct RNA nano-
pore sequencing uncovers individual RNA isoforms in human
K562 cells (Fig. 2D) with high reproducibility (Supplemental Fig.
S2B,C).

A neural network identifies newly synthesized RNA isoforms

The next step was to derive a computational method that could
classify each sequenced RNA molecule into one of two groups,
newly synthesized (5EU-labeled) or pre-existing (unlabeled) RNA.
To this end, the nucleoside analog 5EU had to be detected in
RNA molecules, allowing the quantification of RNA isoforms gen-
erated during the 5EU-labeling pulse. Because of the high error rate
of nanopore sequencing, the random nature of nucleoside analog
incorporation, and the context dependence of detectability
(Supplemental Fig. 1F), a single 5EU base-call is inappropriate as
an indicator. We instead used the raw signal of the entire RNA
nanopore read, including the base-calls and the alignment
(Supplemental Fig. 1C,D), to discriminate 5EU-labeled from unla-
beled RNAs. This discrimination was implemented as a classifying
neural network trained on human K562 direct RNA nanopore se-
quencing data (Supplemental Tables S1, S2, S5, samples 10–15).
We developed a custom multilayered data collection scheme to
train a neural network for the classification of human RNA iso-
forms under the assumption that after 5EU 24 h 5EU-labeling
(Supplemental Tables S1, S2, samples 13–15) samples exclusively
contain labeled reads and that the control samples (Methods;
Supplemental Tables S1, S2, samples 10–12) solely contain unla-
beled reads (Fig. 2A,B; Methods). Support for this assumption (24
h 5EU-labeling) is given by the observation that upon 24 h of 5EU
labeling, stable RNA species are strongly labeled as detected by
fluorescence read-out (Jao and Salic 2008). Furthermore, human
RNA half-life distributions of previous studies (Rabani et al.
2011; Schwalb et al. 2016) suggest that there is only a minor frac-
tion of RNA species that lives >24 h. Thus, the majority of RNA
molecules in the 5EU 24 h samples (Supplemental Tables S1, S2,
samples 13–15) are putatively 5EU containing.

We then trained a neural network (Methods) on the 5EU 24 h
versus control samples with an accuracy of 0.87 and a false-discov-
ery rate (FDR) of 0.1 (fivefold cross-validated) (Fig. 2C). Tomitigate
the risk of overtraining the neural network, we introduced several
drop-out layers in the network structure (Methods) (Supplemental
Table S5). A ROC analysis (1 – specificity versus sensitivity) for all

reads of the test set showed an area under the curve (AUC) of
0.94. For reads with an alignment length >500 nt and >1000 nt,
the AUC improved to 0.95 and 0.96 (Fig. 2C; Supplemental Fig.
S2B). Each single layer alone and all possible pairwise combina-
tions were only able to yield an AUC between 0.86 and 0.92
(Supplemental Fig. S3C). All three different layers therefore con-
tain additional unique information for training the neural net-
work and classification of reads (Methods). Given that our
carefully designed neural network mitigates the risk of overtrain-
ing and that we apply computational measures to validate this,
we consider the degree of redundancy between layers harmless.
Subsequently, we used the trained neural network to classify
reads of the 5EU 60 min samples into 5EU labeled and unlabeled.
Taken together, 5EU-containing RNA isoforms are computational-
ly detectable with high accuracy (Fig. 2C). Thus, we were able to
determine for each single RNA molecule with a low FDR if it had
been produced during 5EU labeling or before (Fig. 2C).

Nano-ID estimates the stability of RNA isoforms

The ability to distinguish newly synthesized and pre-existing RNA
molecules allowed us to derive estimates for the stability of RNA
isoforms. For each single direct RNA nanopore read, we were able
to assign the RNA isoform it represents. Additionally, we were
able to assess the stability of RNA for single RNA isoforms by apply-
ing a first-order kinetic model (Methods) to derive estimates for
RNA isoform–specific synthesis and stability. This can be per-
formed based on the number of reads classified as 5EU labeled
and unlabeled by the neural network. For a half-life estimate to
be considered for further analysis, the corresponding RefSeq-TU
had to be supported by at least five reads in each of the six biolog-
ical replicates (5EU 60min) (Methods; Supplemental Tables S1, S2).
Comparison of our half-life estimates with estimates derived from
the short-read approach 4sU-seq (Schwalb et al. 2016) yielded only
a moderate correlation of 0.25, which is likely owing to technical
differences such as the purification step of premature RNAs not
present in nano-ID (Supplemental Fig. S3A). Taken together,
nano-ID has the capability to infer synthesis rates and stability es-
timates of individual RNA isoforms in different cell states and con-
ditions and to thus monitor their dynamic metabolism.

Determining factors of RNA isoform stability

To show the strength of nano-ID derived stability estimates, we
wanted to know to what extent determining factors such as se-
quence, poly(A)-tail length (Methods; Supplemental Fig. S3B,
nanopolish) (Workman et al. 2019), RNA secondary structure in
silico or in vivo (as measured by DMS-seq) (Rouskin et al. 2014),
translation efficiency (as measured by Ribo-seq) (Ingolia et al.
2014), and RNA-binding proteins (RBPs, as measured by eCLIP)
(Van Nostrand et al. 2020) influence RNA stability on the com-
bined RNA (i.e., RNA that originates from the entire gene loci re-
gardless of isoform assignment, gene level) as well as at the level
of RNA isoforms. To address this, we asked whether we can predict
if an RNA isoform is stable (abovemedian half-life) or unstable (be-
low median half-life) using a classifying neural network (Fig. 3)
compared with the combined RNA (gene level). This analysis sug-
gested that all of these factors are indeed associated with RNA
stability. For features such as sequence, RNA secondary structure,
and translation, the ability to predict RNA stability improved fur-
ther at the level of RNA isoforms compared with the combined
RNA (gene level). This suggests that these features have stronger
variability among different isoforms even if they arise from the
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same genomic locus and, thus, molecular environment. In con-
trast, poly(A)-tail length and RBP association performed better
on the combined gene level, suggesting a regulatory nature of
these features on the gene level rather than on the RNA level.
Taken together, nano-ID–derived RNA stability estimates can be
validated by independentmethods and, in principle, allow for fur-
ther studying factors determining RNA stability.

Nano-ID monitors RNA isoform dynamics during heat shock

To show the advantages of nano-ID, we subjected human K562
cells to heat shock (42°C) for 60 min in the presence of 5EU (5EU
60 min HS) (Fig. 4A). The heat shock response provides a well-es-
tablished model system (Supplemental Fig. S4; Theodorakis et al.
1989; Sistonen et al. 1992; Mathew et al. 1998; Vihervaara et al.

B

A C

D

Figure 2. Direct RNA long-read nanopore sequencing of 5EU-labeled RNA isoforms in human K562 cells. (A) Multilayered data collection scheme.
Parameter collection of samples was realized on three different layers: raw signal (electric current), base-call trace values, and alignment-derived mismatch
properties (Methods). (B) In this study, data were collected in human K562 cells: control (three replicates) and 5EU 24 h (three replicates), as well as 5EU 60
min (six replicates) (Supplemental Tables S1, S2). The neural network was trained on the 5EU 24 h versus control samples and used to classify reads of the 5EU
60 min samples into 5EU labeled and unlabeled. (C ) ROC analysis of fivefold cross-validated neural network training with an accuracy of 0.87 and a false-
discovery rate (FDR) of 0.1. Plot shows ROC curves (1 – specificity versus sensitivity) for all reads of the test set (black; alignment length ≥0 nt, AUC=0.94)
(Methods; Supplemental Table S5), for reads with an alignment length >500 nt (gray; alignment length ≥500 nt, AUC=0.95), and for reads with an align-
ment length >1000 nt (dashed gray; alignment length ≥1000 nt, AUC=0.96). (D) Genome browser view of classified direct RNA long-read nanopore se-
quencing reads of the human GAPDH gene locus on Chromosome 12 (∼8 kbp; Chr12: 6532405–6540375) visualized with the Integrative Genomics
Viewer (IGV; version 2.4.10; human hg38) (Robinson et al. 2011). From top to bottom, raw nanopore sequencing reads (unlabeled reads are shown in
gray, 5EU-labeled reads are shown in red, and poly(A)-tail is shown in green; shown are typical aligned raw reads below the accumulated coverage of
all measured reads), and corrected and collapsed isoforms (dark gray) determined with the FLAIR algorithm (Tang et al. 2020) based on raw reads and
RefSeq GRCh38 annotation (blue).
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2013, 2017; Niskanen et al. 2015). We then asked if the RNA iso-
form synthesis rate is altered by heat shock and observed signifi-
cant differential RNA isoform synthesis rates for 272 isoforms
(fold change >1.25 and P-value <0.1). One hundred fifty-four
RNA isoforms were significantly up-regulated, whereas 118 were
down-regulated (Supplemental Fig. S4B). RNA isoforms that
changed their synthesis rate during heat shock were also observed
to alter their stability (Fig. 4B,C). In particular, RNA isoforms that
were up-regulated in their synthesis during heat shock also showed
a lower stability and vice versa, resembling typical stress response
behavior (Miller et al. 2011). The destabilization of up-regulated
RNA isoforms is likely to ensure their rapid removal toward the
end of the stress response.

The metabolism of individual RNA isoforms differs from

combined RNA estimates

To show the importance of individual RNA isoformassessment, we
first derived estimates for the half-lives of combined RNAs (gene
level) regardless of isoform assignment under steady-state condi-
tions (Methods). We found a robust correlation of combined
RNA stability with poly(A)-tail length (Spearman’s rank correla-
tion coefficient 0.48) (Fig. 4D). We then asked whether changes
in RNA stability would also be reflected in changes in poly(A)-
tail length upon heat shock, and this was not the case (Fig. 4D).
Following this, we asked if there is differential behavior in RNA
stability of individual RNA isoforms genome-wide or if, instead,
RNA isoforms generally reflect the changes in RNA stability of
the combined RNA from their respective gene loci. To this end,
we compared changes in RNA stability estimates of individual
RNA isoforms to those from combined RNAs and found that the
dynamics of individual RNA isoforms during heat shock varies
globally. This indicates that the observed RNA stability fold chang-

es of individual RNA isoforms upon heat shock can differ signifi-
cantly from RNA stability fold changes of the combined RNA
level (gene level) that stems from entire gene loci (Fig. 4E). This
analysis includes the uncertainty of individual estimates over rep-
licate measurements and clearly indicates the need for detailed in-
dividual RNA isoform assessment as individual RNA isoforms can
lead to functionally distinct protein variants. Thus, it is crucial to
also study the behavior of individual RNA isoforms and not just
an averaged and combined view of the entire gene locus. Taken to-
gether, this shows that conclusions made using only combined
RNAs can be misleading and that much can be learned at the level
of single RNA isoforms by using nano-ID.

Discussion

Here we develop nano-ID, a method that can resolve the dynamic
metabolism of functional and fully processed RNA isoforms at the
level of single native RNAmolecules. Nano-ID combinesmetabolic
RNA labelingwithnativeRNAnanopore sequencing to enableRNA
isoform identification. In combinationwithmachine learning and
computationalmodeling, nano-ID is able to fully characterize RNA
isoformdynamics bymeans of age assignment and ameasurement
of thepoly(A)-tail lengthof a single RNAmolecule.Nano-IDvisual-
izes changes in RNA isoform synthesis and stability, revealing a so-
far-hidden layer of gene regulation. Nano-ID will, in principle, en-
able further study into the extent to which determining factors
such as sequence, poly(A)-tail length, RNA secondary structure,
translation efficiency, and RBPs influence RNA stability on the
combined gene level as well as at the level of RNA isoforms.
Nano-ID thus allows the study of transcriptional regulation in un-
precedented detail and can prevent misleading conclusions that
would be obtained when only combined RNA from an entire

Figure 3. Determining factors of RNA isoform stability. Bar plot showing RNA stability related features (x-axis), namely, sequence (red), poly(A)-tail
length (green), RNA secondary structure in silico or in vivo (violet), translation efficiency (dark blue), and RNA-binding proteins (RBPs; pink), and their abil-
ities to correctly classify RNA isoforms into stable (abovemedian half-life) or unstable (belowmedian half-life) species (AUC; y-axis) (Methods; Supplemental
Tables S4, S6). In black, all pooled features (listed above, excluding sequence and randomization) are represented (pooled). Bars with solid lines depict the
features on RNA isoform level. Bars with dashed borders represent (AUC) of features calculated on combined RNA signal (gene level; all RNAs encoded by
the entire gene loci regardless of isoform assignment).
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gene locus can be considered, as is the case with cDNA short-read
sequencing approaches such as RNA-seq, 4sU-seq, or TT-seq.

Nano-ID has many advantages over other sequencing-based
transcriptomic strategies because the original native RNAmolecule
is sequenced. In particular, there is no need for fragmentation of
RNA before sequencing. Hence, in the present study, reads can
be assigned to RNA isoformswithhigh confidence, leaving only re-
sidual ambiguity. Furthermore, nano-ID does not require template
amplification and thus omits copying errors, sequence-dependent
biases, and read duplication events. It therefore also prevents the
loss of information on epigenetic modifications and artificially in-
troduced RNA base analogs. Taken together, nano-ID overcomes
significant drawbacks and limitations of state-of-the-art approach-
es, allowing study of RNA metabolism at the level of individual
RNA isoforms.

Current limitations to nanopore sequencing are a lower
throughput and lower accuracy compared with short-read cDNA
sequencing approaches. In the specific context of nano-ID, the
random nature of nucleoside analog incorporation and the se-
quence context (5-mer) dependence of nucleoside analog detect-
ability may be limiting as well. Furthermore, we train the neural
network with an approach that bears the risk of learning transcrip-
tome-specific characteristics (i.e., human myelogenous leukemia
cells) that might prevent immediate applicability to other model
organisms. It is, however, possible to retrain the neural network
for a different model organism once such data become available.
Our neural network is carefully designed to mitigate the risk of

overtraining, and we take strict computational measures to vali-
date this.

These drawbacks, however, are outweighed by the novel in-
formation obtained about the age of the RNA sequencing sub-
strates. The longer the sequenced molecules are, the less
problematic the lack in accuracy in identifying their origin or clas-
sifying them into newly synthesized or pre-existing molecules. In
the present study, we show that our algorithmic strategies are suf-
ficient to addressmetabolic rate estimation in a reliablemanner for
abundant transcripts in human cells. The requirements for reliable
RNA stability estimation that we implemented (threshold on the
number of reads; Methods) as well as the depth to which we se-
quenced control and treated samples in biological replicates
(Supplemental Tables S1, S2) are sufficient to detect rate changes
in a significant manner for highly abundant RNA isoforms (Fig.
4E). Technical improvements in nanopore sequencing and its
computational processing will further improve the sequencing
depth and the accuracy of individual read sequences and thus
the detectability of nucleoside analogs such as 5EU. This will
have a direct impact on the robustness of RNA stability estimation
at the level of combined RNA as well as RNA isoforms toward larger
subpopulations that can be analyzed. Moreover, there are strate-
gies to enrich for subpopulations of RNAs with transcript-specific
adapters (ONT), which would allow an in-depth analysis of a cer-
tain loci of interest at a much higher sequencing depth.

A future challenge will involve the development of a novel
signal-level base-calling algorithm for direct RNA nanopore

E
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Figure 4. Nano-IDmonitors RNA isoform dynamics during heat shock (HS). (A) Experimental set-up of the HS treatment (60min at 42°C) in human K562
cells. 5EU labeling was performed for 60 min. (B) Box plot showing half-lives (min) of significantly up-regulated RNA isoforms in HS (5EU 60min HS) against
control samples (5EU 60 min). (C) As in B for significantly down-regulated RNA isoforms. (D) Bar plot showing correlation (Spearman’s rank correlation
coefficient ρ) of RNA half-lives and poly(A)-tail lengths before and after HS (1310 loci). The third bar shows the correlation of RNA half-life fold change
upon HS and poly(A)-tail length fold change upon HS. (E) Half-life fold changes upon HS (y-axis) depicted for individual RNA isoforms alongside the
half-life fold change derived from combined RNA (gene level; all RNAs encoded by the entire gene loci regardless of isoform assignment). Shown are
478 high-confident loci (x-axis). All estimates are supported across biological replicates (n≥5) and conditions (HS; control). Half-life estimates for com-
bined RNA (gene level) are depicted as a black line (sorted in decreasing order). Blue dots represent individual RNA isoform half-life estimates (1988 iso-
forms in total). All RNA isoform half-life estimates as well as one respective combined RNA half-life estimate (in black) sharing a common x-axis coordinate
belong to the same gene loci. Vertical blue and black lines represent standard deviations of individual estimates. For individual RNA isoform half-life esti-
mates, standard deviations are only shown if not overlapping with the standard deviation of the respective combined half-life estimates (black).
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sequencing with an extended base alphabet (A, C, G, U, and 5EU).
This requires a large amount of artificial sequences to train on.
These should ideally containnot only cases of non-5EU-containing
5-mer instances but also all possible combinations of 5EU-contain-
ing instances, especially those 5-mers carrying both 5EU and
U. Furthermore, increased throughput of the nanopore sequenc-
ing platform will further improve the statistical precision of meta-
bolic rate estimation to elucidate low abundance transcripts or
transient processes.

Nanopore-based transcriptomic studies will allow us to mon-
itor the formation of transcripts, post-transcriptional processing,
export, and translation at the level of single RNA isoforms.
Nano-ID is in principle also transferable to single-cell methodolo-
gies to catch heterogeneity of the RNA population in any state of
the cell. This, however, requires sequencing library preparation
with lower input amounts. The use of 5EU is widely established
for in vivo applications in the field, such as for fluorescence mi-
croscopy.We thus envision that nano-ID is in principle applicable
to a large range of organisms, cells, and conditions.

Methods

Labeling and direct RNA nanopore sequencing of synthetic

RNAs

Labeled synthetic RNAs and synthetic control RNAs are derived
from selected RNAs of the ERCC RNA spike-in mix (Invitrogen)
as previously described (Schwalb et al. 2016). Characteristics of se-
lected RNAs of the ERCC RNA spike-in mix are listed in
Supplemental Table S3. Briefly, selected spike-in sequences were
cloned into a pUC19 cloning vector and verified by Sanger se-
quencing. For IVT template generation, the plasmid (3 µg) was lin-
earized using a EcoRV-HF (blunt end cut) digestionmix containing
a CutSmart buffer and EcoRV-HF enzyme. The digestion mix was
incubated for 1 h at 37°C, and the reaction was terminated adding
1/20 volume of 0.5 M EDTA. Subsequently, DNA was precipitated
in 1/10 volume of 3 M sodium acetate (pH 5.2) and 2 volumes of
100% ethanol for 15min at−20°C. DNAwas collected by centrifu-
gation at 4°C and 16,000g for 15min. The pellet was washed twice
using 75% ethanol. DNAwas air-dried and resuspended in 5 µL of
H2O at a concentration of 0.1–1.0 µg/µL (quantified by
NanoDrop). Synthetic RNAs were in vitro transcribed using the
MEGAscript T7 kit (Invitrogen). IVT of synthetic control RNAs
was performed following the manufacturer’s instruction. For IVT
of labeled synthetic RNAs, 100% of UTP (resp. GTP) was substitut-
ed with either 5-ethynyl-UTP (5EU; Jena Bioscience), 5-bromo-UTP
(5BrU; Sigma-Aldrich), 5-iodo-UTP (5IU; TriLink BioTechnologies),
4-thio-UTP (4SU; Jena Bioscience), or 6-thio-GTP (6SG; Sigma-
Aldrich). Note that, for performing a successful IVT with 4-thio-
UTP and 6-thio-GTP, only a reduction to 80% substitution gave a
successful yield. IVT reactionswere incubated at 37°C. After 4 h, re-
action volume was filled up with H2O to 40 µL, and then 2 µL of
TURBO DNase was added and incubated for additional 15 min at
37°C. Synthetic RNAs were purified with RNAClean XP beads
(Beckman Coulter) following the manufacturer’s instructions.
The final synthetic RNA pool contained an equal mass of all re-
spective synthetic RNAs in a given library (Supplemental Tables
S1, S2). RNAwas quantified using Qubit (Invitrogen). RNA quality
was assessedwith the TapeStation system (Agilent). Synthetic RNA
pools were poly(A)-tailed using the Escherichia coli Poly(A)
Polymerase (NEB). The reaction was incubated for 5 min and
stopped with 0.1 M EDTA. Poly(A)-tailed synthetic RNA pools
were then purified with phenol:chloroform:isoamyl alcohol and
precipitated. Purified poly(A)-tailed synthetic RNA pools were sub-

sequently subjected to direct RNA nanopore sequencing library
preparation (SQK-RNA001, Oxford Nanopore Technologies) fol-
lowing the manufacturer’s protocol. All libraries were sequenced
on a MinION Mk1B (MIN-101B) for 20 h, unless reads sequenced
per second stagnated.

Culturing of human K562 cells

Human K562 erythroleukemia cells were obtained from DSMZ
(ACC-10). K562 cells were cultured antibiotic-free in accordance
with the DSMZ cell culture standards in RPMI 1640 medium
(Thermo Fisher Scientific) containing 10% heat inactivated fetal
bovine serum (FBS; Thermo Fisher Scientific) and 1× GlutaMAX
supplement (Thermo Fisher Scientific) at 37°C in a humidified
5%CO2 incubator. Cells used in this study display the phenotypic
properties, including morphology and proliferation rate, that
have been described in literature. Cells were verified to be free of
mycoplasma contamination using a Plasmo test mycoplasma
detection kit (InvivoGen). Biological replicates were cultured
independently.

5EU labeling and direct RNA nanopore sequencing of human

K562 cells

K562 cells were kept at lowpassagenumbers (fewer than six) and at
optimal densities (3 × 105–8×105) during all experimental setups.
Per biological replicate, K562 cells were diluted 24 h before the ex-
periment was performed (Supplemental Tables S1, S2). Per 5EU
60 min sample (six replicates), cells were incubated in 5% CO2

for 1 h at 37°C after a final concentration of 500 µM 5EU (Jena
Bioscience) was added. Per 5EU 24 h sample (three replicates), cells
were incubated in 5% CO2 for 24 h at 37°C. 5EU was added three
times during the 24-h incubation, namely, every 8 h (0 h, 8 h,
16 h) at a final concentration of 500 µM. Control samples were
not labeled (three replicates). Per 5EU 60 min HS (heat shock) sam-
ple (five replicates), cells were incubated for 5 min at 42°C (until
cell suspension reached 42°C), and then 5EU was added at a final
concentration of 500 µM. Further, heat shock treatments were per-
formed in a water bath (LAUDA, Aqualine AL12) for 1 h at 42°C.
Temperature was monitored by thermometer. To avoid transcrip-
tional changes by freshly added growthmedium, fresh growthme-
dium was added ∼24 h before heat shock treatments (Mahat and
Lis 2017). Exactly after the labeling duration, cells were centrifuged
at 1500g for 2 min at 37°C. Total RNA was extracted from K562
cells using QIAzol (Qiagen) according to the manufacturer’s in-
structions. Poly(A) RNAwas purified from 1mg of total RNA using
the µMACS mRNA isolation kit (Milteny Biotec) following the
manufacturer’s protocol. The quality of poly(A) RNA selection
was assessed using the TapeStation system (Agilent). Poly(A)-se-
lected RNAs were subsequently subjected to direct RNA nanopore
sequencing library preparation (SQK-RNA001, SQK-RNA002,
Oxford Nanopore Technologies) following the manufacturer’s
protocol with 1000 ng input. All libraries were sequenced on a
MinION Mk1B (MIN-101B) for 48 h, unless reads sequenced per
second stagnated.

RNA-seq

Two biological replicates of K562 cells were diluted 24 h before the
experiment was performed. Per replicate, 3.6 × 107 cells in growth
medium were labeled at a final concentration of 500 µM 4-thio-
uracil (4sU; Sigma-Aldrich) and incubated in 5% CO2 for 5 min
at 37°C. Exactly after 5 min of labeling, cells were harvested at
1500g for 2 min at 37°C. Total RNA was extracted from K562
cells using QIAzol according to the manufacturer’s instructions
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except for the addition of 150 ng RNA spike-in mix (Schwalb
et al. 2016) together with QIAzol. To isolate poly(A) RNA from
75 µg of total RNA, two subsequent rounds of purification
by Dynabeads Oligo (dT)25 (Invitrogen) were performed.
Purification based on the manufacturer’s instructions was per-
formed twice, using 1 mg of Dynabeads Oligo (dT)25 beads for
the first round and 0.5 mg for the second round of purification.
The quality of polyadenylated RNA selection was assessed using
RNA ScreenTape on a TapeStation (Agilent). Sequencing libraries
were prepared using the NuGEN ovation universal RNA-seq kit ac-
cording to themanufacturer’s instructions. Fragments were ampli-
fied by 10 cycles of PCR and sequenced on an Illumina NextSeq
550 in paired-end mode with a 75-bp read length.

Direct RNA nanopore sequencing data preprocessing of synthetic

RNAs

Direct RNA nanopore sequencing reads were obtained for each of
the samples (Supplemental Tables S1, S2). FAST5 files were base-
called using Guppy 3.1.5 (Oxford Nanopore Technologies) with
the following parameters: guppy_basecaller -i fast5 -s basecalled
‐‐num_callers 1 ‐‐cpu_threads_per_caller 12 -c rna_r9.4.1_70bp-
s_hac.cfg -r ‐‐fast5_out ‐‐calib_detect ‐‐u_substitution on -q 0.
Direct RNA nanopore sequencing reads were mapped with Graph-
Map 0.5.2 (Sovic et al. 2016) to the synthetic RNA reference
sequence with the following parameters: graphmap align ‐‐evalue
10−10. Further data processing was performed using the R/Biocon-
ductor environment. Note that for the IVT of our synthetic RNA
pools, 100% of UTP was substituted with 5-ethynyl-UTP (among
other analogs). This creates a sequence dissimilarity of >20% in
the alignmentnecessary formapping.Note also that these synthet-
icRNApools just serve thepurposeofbenchmarkingnucleosides to
be combined with nanopore sequencing. These samples are thus
not involved in training and validation of the neural network.

Direct RNA nanopore sequencing data preprocessing of human

K562 cells

Direct RNA nanopore sequencing reads were obtained for each of
the samples (Supplemental Tables S1, S2). FAST5 files were base-
called using Guppy 3.1.5 (Oxford Nanopore Technologies) with
the following parameters: guppy_basecaller -i fast5 -s basecalled
‐‐num_callers 1 ‐‐cpu_threads_per_caller 12 -c rna_r9.4.1_70bp-
s_hac.cfg -r ‐‐fast5_out ‐‐calib_detect ‐‐u_substitution on -q
0. Direct RNAnanopore sequencing readsweremappedwithmini-
map2 2.10 (Li 2018) to the GRCh38/hg38 genome assembly
(Human Genome Reference Consortium) with the following pa-
rameters: minimap2 -ax splice -k14 ‐‐secondary =no. SAMtools
1.3.1 (Li et al. 2009) was used to quality filter SAM files, whereby
alignments with MAPQ smaller than 20 (-q 20) were skipped.
Further data processing was performed using the R/Bioconductor
environment (v3.3.3; R Core Team 2017) and Python (see
Software availability).

Probability of 5EU-labeled RNA isoform identification based on

synthetic RNAs

The following parameters were collected on the direct RNA
nanopore sequencing data of synthetic RNAs and used to calculate
the probability of identification of a 5EU-labeled RNA isoform
as labeled. Detectability d is the number of 5EU causedmismatches
in the 5EU-labeled sample. Background b is the number of U
caused mismatches in the unlabeled control sample. Given these
parameters, the probability of identification p can be calculated
as the probability of a U-based mismatch being caused by a 5EU

in the transcript as

p = 0.25× 0.028(d(1− b)),

with 0.25 as the empirical probability of U content, and labeling
efficiency of 0.028 as the empirical probability of a U being re-
placed by a 5EU in the labeling process (Jao and Salic 2008). This
then allows to calculate the probability of labeled RNA identifica-
tion pRNA as

pRNA = 1− (1− p)bases,

the probability that an RNA contains at least one detectable 5EU.

Definition of transcription units based on the UCSC RefSeq

genome assembly GRCh38 (RefSeq-TUs)

For each annotated gene, transcription units were defined as the
interval from the first start site to the last poly(A)-site of all existing
inherent transcript isoforms (UCSC RefSeq GRCh38). It thus de-
fines the area of transcription of the entire gene locus.
Transcription units were considered expressed with a minimum
of two nanopore reads assigned in each 5EU 60 min samples.

Definition of isoform-independent exonic regions

(constitutive exons)

Isoform-independent exonic regions were determined using a
model for constitutive exons based on UCSC RefSeq annotation
(GRCh38). It defines the set of consecutive exonic bases (i.e., por-
tion of or entire exon) that belong to each isoform of the gene
(Bullard et al. 2010).

Isoform determination and quantification for human K562 cells

The full-length alternative isoform analysis of RNA (FLAIR) algo-
rithm (Tang et al. 2020)was used following the developer’s instruc-
tions for the correction and isoformdefinition of raw humanK562
direct RNA nanopore reads. Corrected and collapsed isoforms were
obtained by adding short-read data (RNA-seq) to help increase
splice site accuracy of the nanopore read splice junctions (https
://github.com/BrooksLabUCSC/FLAIR). First, “flair align” was
used to align all reads to the GRCh38/hg38 genome assembly
(Human Genome Reference Consortium) using minimap2 2.10
(Li 2018) and SAMtools 1.3.1 (Li et al. 2009) with the following pa-
rameters: align -m ./minimap2 -sam ./SAMtools -c chromsizes.tsv
-n –p. Second, “flair correct” was used to correct misaligned splice
sites using genome annotation (UCSC RefSeq GRCh38) and short-
read splice junctions (SJ.out.tab, extracted from assay 21 and 22 in
Supplemental Table S1 via STAR 2.3.0; Dobin and Gingeras 2015)
with the following parameters: flair correct -f RefSeq.gtf –c chrom-
sizes.tsv -j SJ.out.tab -n. Third, “flair collapse” was used to define
high-confidence isoforms from corrected reads using minimap2
2.10 (Li 2018) and SAMtools 1.3.1 (Li et al. 2009) with the follow-
ing parameters: flair collapse -f RefSeq.gtf -m ./minimap2 -sam
./SAMtools. For nanopore read to isoform assignment and quanti-
fication of isoforms, reads were mapped with minimap2 2.10 (Li
2018) to the resulting high-confidence isoforms generated with
flair collapse using the following parameters: minimap2 -ax splice
-k14 ‐‐secondary =no. Further data processing was performed us-
ing the R/Bioconductor environment and Python (see Software
availability).

Differential expression analysis

Differential expression analysis was performed using the R/
Bioconductor package DESeq2 (Love et al. 2014). Isoforms with a
fold change of at least 1.25 and a P-value lower than 0.05 were
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considered differentially induced or repressed dependent on the
observed direction.

Parameter collection for neural network training and

classification

For each read in each human K562 sample (5EU 60 min, control,
5EU 24h, and 5EU 60minHS), weobtained approximately 4700 pa-
rameters from three different layers: The raw signal layer consisting
of electric current readout in [pA], the base-calls layer consisting of
trace and move values (base-caller confidence and movement of
substrate through the nanopore), and the alignment layer consist-
ing of mismatch and indel properties derived from the reference
sequence alignment. All three layers are described in more detail
in the following.

Raw signal layer

Raw signal values are assigned to the (base-called) read sequence by
means of the “move,” “stride,” and “num_events” values supplied
by the base-caller. In brief, the raw electric current values are divid-
ed into “num_events” intervals with a length given by the “stride”
parameter. Subsequently, the “move” parameter is used to com-
bine intervals belonging to the same 5-mer. This enables to assign
mean raw signal values to 5-mers (see Software availability). The
raw signal layer consists of 2048 parameters in total. This entails
raw electric current signal averaged for each possible 5-mer of nu-
cleotides as well as the raw electric current signal averaged for each
possible 3-mer centered in a 5-mer. The latter parameters were col-
lected for U-containing and non-U-containing instances. In addi-
tion to that, raw electric current signal was gathered for 5-mers
with all possible nucleotides in their center position also for U-
containing and non-U-containing instances, as well as 5-mers ex-
clusively leading or lagging U content. All collected raw signal pa-
rameters were standardized on all non-U-containing instances
given themean values of the poremodel (mean electric current sig-
nal of 5-mers in the nanopore) provided by Oxford Nanopore
Technologies. In brief, the raw signal is calibrated by means of a
standardization that calibrates the entire signal to a unified signal
level and magnitude (ONT pore model), but only considering raw
signal assigned to non-U-containing 5-mers for the calculation of
the standardization parameters. This approach unifies the raw sig-
nal on all non-U-containing 5-mers but keeps the relative signal
changes on U-containing 5-mers unaltered. Note that it is neces-
sary to calibrate global differences in the electric current readout
between different reads. These global differences are likely owned
to fluctuations in the voltage applied and different sensitivities of
individual nanopores. Given the incompleteness of 5-mers (espe-
cially non-U-containing) in typical reads, we implemented the
strategy of looking at the centered 3-mer contained in a 5-mer.
Given that the centered 3-mer contained in a 5-mer is more influ-
ential on the electric current readout of the nanopore
(Supplemental Fig. S3E), it makes the necessary standardization
more robust.

The base-calls layer

The trace values (flip- and flop-bases) supplied by the base-caller
(confidence in its output at each position of the signal considered)
are assigned to the (base-called) read sequence and can thus be dif-
ferentiated among different types of nucleotides. The base-calls
layer consists of 2330 parameters derived from the trace table sum-
marized for instances showing translocation and those that did
not (“move” parameter) as mean, median, and centiles for all
flip- and flop-bases and all different possible nucleotides in the
called sequence. Note that although base-calls are performed on

the raw signal, base identification adds on additional information
that is not contained in the raw signal layer (please see
Supplemental Fig. S3C). The base-call layer contains information
produced by the flip-flop algorithm,which informs on confidence
and alternatives of the called bases in the sequence. In some cases,
for example, the base-caller will call an instance of 5EU as a native
uridine. In such a case however, it will do so with a much lower
probability. The base-call layer also contains the number of moves
of the measured RNA molecule through the nanopore. This is
largely determined by the motor protein and will likely be influ-
enced by instances of 5EU in the measured molecule.

The alignment layer

The alignment is additional information that is added to the other
two previously described layers of raw signal and base-calls, given
that it informs on inserts, deletions, and homopolymer length
with respect to the reference sequence (please see Supplemental
Fig. S3C). The alignment layer consists of 147 parameters, includ-
ing the length of the reads, nucleotide occurrences, number of
nucleotide transitions (mismatch statistics, please also see
Supplemental Fig. S1E), number of inserts, and deletions on a sin-
gle-nucleotide basis, as well as on a 5-mer basis for U-containing
and non-U-containing instances. Note that the model thus incor-
porates background frequencies of sequencing errors for the defin-
itive classification of molecules into newly synthesized and pre-
existing based on each entire read. In other words, reads with
low sequencing quality are allowed to have more miscalls before
they are classified as newly synthesized. Formore detailed informa-
tion on parameter collection, please see R code (see Software
availability).

Neural network training, validation, and classification of human

RNA isoforms into 5EU-labeled and unlabeled

Neural network was trained on the 5EU 24 h (Supplemental Tables
S1, S2, samples 13–15) versus control (Supplemental Tables S1, S2,
samples 10–12) sample parameters under the assumption that the
5EU 24 h sample solely contains labeled reads and the fact that the
control sample solely contains unlabeled reads. Human RNA half-
life distributions of previous studies (Rabani et al. 2011; Schwalb
et al. 2016) suggest that there is only a minor fraction of RNA spe-
cies that live >24 h. Thus, themajority of RNAmolecules in the 5EU
24 h samples (Supplemental Tables S1, S2, samples 13–15) are pu-
tatively 5EU-containing. Further, 24 h of labeling with 5EU has
been shown to strongly label stable RNA species (Jao and Salic
2008). The trained neural network consists of eight dense layers
with decreasing output shape (dense; units = 512, 265, 128, 64,
32, 16, 8, and 1; activation= “relu” and “sigmoid”; see below)
with preceding batch normalization layers. Seven dropout layers
(with 25%dropout) in between regularize the attempted classifica-
tion. Trainingwas conducted on 294,467 reads; validationwas per-
formed on 126,130 reads in 40 epochswith the R interface to Keras
on a TensorFlow backend (https://github.com/rstudio/keras). For
more detailed information on neural network design, please also
see Supplemental Table S5 and the R code (see Software availabili-
ty). The neural network was fivefold cross-validated with an accu-
racy of 0.87 and a FDR of 0.1 and was used to classify reads of the
5EU 60 min (Supplemental Tables S1, S2, samples 4–9) and 5EU 60
min heat shock (Supplemental Tables S1, S2, samples 16–20) sam-
ples into 5EU-labeled and unlabeled. A ROC analysis (1 – specificity
vs. sensitivity) for all reads of the test set showed an AUC of 0.94.
For readswith an alignment length >500nt and >1000nt, the AUC
improved to 0.95 and 0.96. This suggests a small potential length
bias. This is, however, uncritical to RNA stability assessment,
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especially on the RNA isoform level, as non-full-length reads are
not considered. Note that different network architectures, such
as additional dense layers, batch normalization, and dropout per-
centage, did not change the performance of the classification. The
accuracy of the neural network is likely delimited by the lower ac-
curacy of the direct RNA platform rather than the number of reads
in the training set. Thiswill very likely improve in the future owing
to technical improvements driven by ONT. Note that the imple-
mented multilayered data collection scheme (raw signal, base-
calls, and alignment) might cause a high level of redundancy of
the underlying data/information. Our neural network, however,
is carefully designed, and we take a lot of computational measures
to validate this (fivefold cross-validation) and therebymitigate the
risk of overtraining.

Poly(A)-tail length determination

Poly(A)-tail length estimates were calculated with Nanopolishs’
poly(A)-tail feature (nanopolish polya) (Workman et al. 2019) ac-
cording to the developers’ instructions (http://gensoft.pasteur.fr/
docs/nanopolish/0.11.1/quickstart_polya.html).

RNA stability (degradation rate λij, half-life hlij) and synthesis rate

μij estimation of human RNA isoforms

Each neural network classified direct RNA nanopore sequencing
read of the 5EU 60 min and 5EU 60 min heat shock samples was as-
signed to a FLAIR-defined human isoform (or RefSeq-TU) either as
5EU-labeled Lij and unlabeled Tij−Lij. The resulting counts were
subsequently converted into synthesis rates μij and degradation
rates λij for isoform i in sample j assuming first-order kinetics as pre-
viously described (Miller et al. 2011) using the following equa-
tions:

lij = −aj − 1
t
× log(1− Lij/Tij)

mij = Tij(aj + lij),

where t is the labeling duration inminutes, and α is the growth rate
(dilution rate, i.e., the reduction of concentration owing to the in-
crease of cell volume during growth) defined as

aj = log(2)
CCLj

,

with cell cycle length CCLj [min]. The half-life hlij for isoform i in
sample j can thus be calculated as

hlij = log(2)
lij

in minutes [min].

Determining factors of RNA isoform stability

For all features, for example, sequence, poly(A)-tail length, RNA
secondary structure, translation (Ribo-seq) (Ingolia et al. 2014),
and RBP peak occupancy (eCLIP) (VanNostrand et al. 2020), a clas-
sifying neural networkwas trained to distinguish stable (aboveme-
dian half-life) and unstable (below median half-life) RNA
(combined gene level) and RNA isoforms. For each feature, the
area under the ROC curve was calculated as a predictor. Only ex-
pressed transcription units (see above)were used for gene level pre-
dictions. For isoform level predictions, only isoforms were used,
which were overlapping with expressed transcription units.
Quantification or sequence assessment was either performed on
entire isoforms (isoform level) or on constitutive exons (see above)
for the gene level.

Sequence

For each RNA isoform (or constitutive exon) not exceeding 5000
nt, the underlying sequence was split into all possible consecutive
k-mers (k= 1,…,9, overlapping by k−1). For each k, a neural net-
work was constructed containing an embedding layer (with
input_dimension=5k+1, output_dimension=16), a global aver-
age pooling layer (1d), and a fully connected layer (dense, units =
16, activation= “relu”). All layers were subsequently merged into
a final dense layer with sigmoid activation. The neural network
was trained against a binary classification of the respective half-
life into stable (above median) and unstable (below median) iso-
forms. Note that embedding layers possess the ability to account
for position of a k-mer.

Poly(A)-tail length: data (see above)

A neural network was constructed containing a batch normaliza-
tion, followed by three fully connected layers (dense, units = 64,
8 and 1, activation= “relu,” “relu,” and “sigmoid”). Additional
batch normalization and dropout (25%) layers were placed be-
tween the fully connected layer. The neural network was trained
against a binary classification of the respective half-life into stable
(above median) and unstable (below median) isoforms.

RNA secondary structure: in silico

For each isoform (or constitutive exon), the mean minimum free
energy was calculated from subsequent minimum free energy esti-
mates of 13-bp RNA sequence fragments tiling the entire length of
the respective feature using RNAfold from the ViennaRNApackage
(Lorenz et al. 2011).Minimum free energy estimateswere aggregat-
ed as mean, min, and centiles. In addition, the minimum free en-
ergy was calculated on the entire sequence. The neural network
was constructed and trained as for poly(A)-tail length.

In vivo

For each isoform (or constitutive exon), the DMS-seq (Rouskin
et al. 2014) coverage was calculated using the processed files of fol-
lowing samples: 300DMS, 400DMS, vitro, and denatured. Theneu-
ral network was constructed and trained as for poly(A)-tail length.

Translation

For each isoform (or constitutive exon), the Ribo-seq (Ingolia et al.
2014) coverage was calculated using the following samples:
GFPshCtrl and GFP0d (K562). Reads were mapped with STAR
2.3.0 (Dobin and Gingeras 2015) to the hg38 (GRCh38) genome
assembly (Human Genome Reference Consortium). SAMtools
1.3.1 (Li et al. 2009) was used to quality filter SAM files, whereby
alignments with MAPQ smaller than seven (-q 7) were skipped
and only proper pairs (-f2) were selected. The neural network was
constructed and trained as for poly(A)-tail length.

RBPs

For each isoform (or constitutive exon), the RBP peak occupancy
(eCLIP) (Van Nostrand et al. 2020) was calculated using the pro-
cessed files of all available K562 samples. The neural network
was constructed and trained as for poly(A)-tail length.

RNA-seq data preprocessing and antisense bias correction

Paired-end 75-base reads with additional six-base reads of barcodes
were obtained for each of the samples (Supplemental Table S1).
Reads were demultiplexed and mapped with STAR 2.3.0 (Dobin
and Gingeras 2015) to the hg38 (GRCh38) genome assembly
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(Human Genome Reference Consortium). SAMtools 1.3.1 (Li et al.
2009) was used to quality filter SAM files, whereby alignments
withMAPQ smaller than seven (-q 7)were skipped and only proper
pairs (-f2) were selected. Further data processing was performed
using the R/Bioconductor environment. We used a spike-in
(RNAs) normalization strategy essentially as previously described
(Schwalb et al. 2016) to allow observation of antisense bias ratio
cj (ratio of spurious reads originating from the opposite strand in-
troduced by the reverse transcription reaction). Antisense bias ra-
tios were calculated for each sample j according to

cj = median
i

kantisenseij

ksenseij

( )

for all available spike-ins i. Read counts (kij) for spike-ins were cal-
culated using HTSeq (Anders et al. 2015). The number of tran-
scribed bases (tbj) for all samples was calculated as the sum of the
coverage of evident (sequenced) fragment parts (read pairs only)
for all fragments in addition to the sum of the coverage of nonevi-
dent fragment parts for fragments with an inner mate interval not
entirely overlapping a RefSeq annotated intron (UCSC RefSeq
GRCh38). The number of transcribed bases (tbj) or read counts
(kj) for all features (RefSeq-TUs) were corrected for antisense bias
cj as follows using the parameter calculated as described above.
The real number of read counts or coverage sij for transcribed
unit i in sample j was calculated as

sij =
Sij − cjAij

1− c2j
,

where Sij and Aij are the observed numbers of read counts or cover-
age on the sense and antisense strand. RPKs were calculated upon
antisense bias corrected read counts (kj) falling into the region of a
RefSeq-TU divided by its length in kilobases. Coverages were calcu-
lated upon antisense bias-corrected number of transcribed bases
(tbj) falling into the region of a RefSeq-TU divided by its length
in bases.

Software availability

All information and detailed description regarding data collection
and the open source and custom code used in this study is ex-
plained in detail in the Methods section, and an additional con-
ceptual description of the data collection scheme and neural
network design is provided in Figure 2A and Supplemental Table
S5. Custom R and Python code was used to analyze the data and
has been deposited in a GitHub repository (https://github.com/
birdumbrella/nano-ID) and as Supplemental Code. R add-on soft-
ware packages used in custom R code are listed and cited in the re-
spective parts of the Methods section.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE127890 and to the Göttingen Research Online Data Archive
(GRO) under the DOI https://doi.org/10.25625/XNSXV6. GEO
contains ∗.fastq and ∗.bw files; GRO contains base-called ∗.fast5
files. Modified ∗.bam files for the 5EU 60 min and 5EU 60 min
heat shock samples contain an additional tag “YC” to highlight
5EU-labeled reads in Integrative Genomics Viewer (IGV; human
hg38), as well as the poly(A)-tail length estimate per read as elon-
gated alignment, and are available at https://www3.mpibpc.mpg
.de/downloads/cramer/illuMinatION/ or as a UCSC Genome
Browser Track Hub at https://www3.mpibpc.mpg.de/downloads/

cramer/nano-ID/. If reads are not highlighted in two different col-
ors (red and gray for labeled and unlabeled, respectively), right
click on the display to open the “configure 5EU 60min combined”
tab. Under “additional coloring modes,” you can activate the field
“use R,G,B colors specified in user-defined tag” and enter “YC” in
the adjacent box. After application, the reads should be colored
accordingly.
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