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The di-peptide Trp-His activates AMP-activated protein kinase
and enhances glucose uptake independently of insulin in L6 myotubes
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ABSTRACT

The di-peptide Trp-His (WH) has vasorelaxant and anti-atherosclerotic functions. We hypothesized
that WH has multiple biological functions and may aid AMP-activated protein kinase (AMPK) acti-
vation and affect the glucose transport system in skeletal muscle.

First, we examined whether WH or His-Trp (HW) can activate AMPKa. Treatment of L6 myotubes
with WH or HW significantly increased phosphorylation of AMPKa. WH activated AMPK indepen-
dently of insulin and significantly increased glucose uptake into L6 myotubes following transloca-
tion of glucose transporter 4 (Glut4) to the plasma membrane. This activation was induced by the
LKB1 pathway but was independent of changes in intracellular Ca?* levels and the CaZ*/calmodu-
lin-dependent kinase pathway. L6 myotubes express only one type of oligopeptide transporter, pep-
tide/histidine transporter 1 (PHT1, also known as SLC15a4), and WH is incorporated into cells and
activates AMPKa following PHT1-mediated cell uptake.

These findings indicate that (1) WH activates AMPK and insulin independently enhances glucose
uptake following translocation of Glut4 to the plasma membrane, (2) activation of AMPKa by WH
is mediated by the LKB1 pathway, without altering the Ca?*-dependent pathway, and (3) L6 myotu-
bes express only one type of peptide transporter (PHT1; SLC15a4), which incorporates WH into cells
to activate AMPKao.

© 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Type 2 diabetes is caused by the development of insulin resis-
tance in peripheral tissues with a failure of insulin secretion. The
quantity of cell-surface glucose transporter (Glut) is a major deter-
minant of glucose uptake by cells. Glut4 is an insulin-sensitive glu-
cose transporter that is translocated to the cell surface from an
intracellular pool in skeletal muscle and adipose tissue. Type 2 dia-
betes is characterized by defects in the muscle glucose transport
system resulting from insulin resistance [1].

Abbreviations: AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMPK,
AMP-activated protein kinase; CaMK, Ca®*/calmodulin-dependent kinase; DMEM,
Dulbecco’s modified Eagle’s medium; 2DG, 2-deoxy-p-glucose; Glut, glucose
transporter; IRS-1, insulin receptor substrate-1; KRH, Krebs-Ringer-HEPES buffer;
PHT1, peptide/histidine transporter 1; PM, plasma membrene; TEA, triethanola-
mine; VDCC, voltage-dependent calcium channel
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Glucose transport can also be regulated by AMP-activated pro-
tein kinase (AMPK), a heterotrimeric protein activated by phos-
phorylation at Thr172 of the catalytic o subunit [2]. AMPK has
been shown to upregulate catabolic pathways that generate ATP
and downregulate anabolic pathways that consume ATP [3]. AMPK
has been identified as an important target in the prevention and
treatment of obesity and type 2 diabetes [4]. Activation of AMPK
via an insulin-independent mechanism can lead to increases in
Glut4 expression or translocation to the plasma membrane (PM)
[4].

AMPK is activated by some type 2 diabetes drugs including
metformin, the thiazolidinediones, and 5-aminoimidazole-4-
carboxamide ribonucleoside (AICAR) [5-7]. We previously demon-
strated that AMPK is activated in type 2 diabetic mice administered
anthocyanin-rich bilberry extract, which led to a decrease in blood
glucose levels and increased insulin sensitivity [8]. In addition,
AMPK is activated by 10-hydroxy-2-decenoic acid, a medium-chain
fatty acid found in royal jelly, resulting in Glut4 translocation and
increased glucose uptake into cells [9]. Furthermore, AMPK has
been shown to be activated by other drugs and food-derived
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compounds with potentially anti-diabetic effects [10]. Taken
together, these studies demonstrate the tremendous potential of
AMPK activators as therapeutics for diabetes and insulin resistance.

We previously demonstrated that Trp-His (WH) produces a
dose-dependent and endothelium-independent relaxation in pre-
contracted rat aortic rings [11]. A number of papers have demon-
strated that other di-peptides have multiple functions, including
anti-atherosclerotic and anti-diabetic effects or increased diabetic
wound healing [12,13]. These findings along with our previous
studies on WH led us to ask whether WH has multiple biological
functions, including activating AMPK, thereby affecting glucose
transport in skeletal muscle cells.

In the present study, we show that WH activates AMPK via
phosphorylation of Thr172 of its catalytic a-subunit, leading to
an increase in glucose uptake via AMPK-dependent Glut4 translo-
cation to the PM. Furthermore, the LKB1 pathway is involved in
this AMPK. This study also demonstrates that L6 myotubes have
only one type of peptide transporter peptide/histidine transporter
1 (PHT1, also known as SLC15a4) and that WH is transported into
cells via PHT1 to activate AMPK.

2. Materials and methods
2.1. Chemicals

WH and His-Trp (HW) were synthesized using an Fmoc solid-
phase synthesis method according to the manufacturer’s instruc-
tions (Kokusan Chemicals, Tokyo, Japan). AICAR and insulin were
obtained from Wako Pure Chemical Industries (Osaka, Japan).
LKB1 (siRNA ID: s163339) and PHT1 (siRNA ID: s140941) siRNA oli-
gonucleotides were purchased from Life Technologies (Tokyo,
Japan). Fluo-4AM was obtained from Dojindo (Kumamoto, Japan).
Compound C, 2-deoxy-p-glucose (2DG), 2DG-6-phosphate sodium
salt, glucose-6-phosphate dehydrogenase from Leuconostoc mesen-
teroides, and resazurin sodium salt were obtained from Sigma-
Aldrich (St. Louis, MO, USA). B-NADP" and diaphorase from Clostrid-
ium kluyveri were obtained from Oriental Yeast (Tokyo, Japan). The
various antibodies used in this study were obtained from Cell Signal-
ing Technology (Tokyo, Japan; phospho-AMPKo (Thr172, No. 2531),
AMPKo (No. 2532), B-actin (No. 4967), phospho-Akt (Ser473, No.
4060), Akt (No. 4691), insulin receptor substrate-1 (IRS-1, No.
2382), LKB1 (No. 3047), phospho-CaMKII (Thr286, No. 3361), and
CaMKII (No.4436)), Santa Cruz Biotechnology (Dallas, TX, USA;
Glut1, No. SC-7938), Life Technologies (Tokyo, Japan; phospho-
IRS-1 (Tyr612, 44816G)), or Abcam (Tokyo, Japan; Glut4, ab65267).

2.2. Cell culture

Rat myoblast L6 cells (JCRB9081) from the Health Science
Research Resources Bank (Osaka, Japan) were maintained in Dul-
becco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum at 37 °C in a humidified atmosphere with
5% CO,. For myoblast differentiation into myotubes, 80% confluent
myoblast cells were placed in DMEM containing 2% horse serum.
The medium was changed every 2 days and the cells were cultured
for an additional 7 days to obtain mature myotubes.

2.3. siRNA transfections

Transfection of L6 cells with negative control siRNA, LKB1, or
PHT1 siRNA was performed according to the manufacturer’s proto-
col. In brief, cells were seeded at 1.25 x 10° cells per well and
transfected with siRNA. After 24 h, the medium was changed to
fresh antibiotic-free differentiation medium. The cells were cul-
tured for an additional 4 days and were then re-transfected with

siRNA for 24 h. Cells were treated with WH 24 h post-transfection.
The knockdown efficiencies were evaluated by measuring mRNA
levels as previously described [14]. The knockdown efficiencies of
LKB1 and PHT1 were 73.2 + 1.7 and 80.1 + 2.9%, respectively.

2.4. Myotube treatment and immunoblot analysis of AMPK and related
proteins

Myotubes (differentiated for 7 days) were placed in serum-free
DMEM containing 1% BSA for 3 h. After incubation, the myotubes
were treated with AICAR (1 mM), WH, or vehicle (0.1% DMSO) for
the indicated time or condition. After treatment, the cells were
lysed [15]. Aliquots of supernatant were boiled in Laemmli sample
buffer for 5min [16]. The samples (25 pg protein) were then
resolved in SDS-PAGE, transferred onto nitrocellulose membranes,
and the blots were probed with various antibodies for 16 h at 4 °C.
The membranes were then reacted with horseradish peroxidase-
conjugated anti-rabbit or mouse IgG antibody, the immunoreactiv-
ity was visualized using ECL reagent (GE Healthcare Bioscience,
Tokyo, Japan), and the relative density was evaluated with Multi
Gauge Ver. 3.0 Densitograph Software (Fuji Film, Tokyo, Japan).
The experiments were performed in triplicate and representative
results are shown.

2.5. AMPK activity assay

AMPK activity in the samples was measured using the AMPK
Kinase Assay Kit (Cyclex Co., Ltd., Nagano, Japan) according to
the manufacturer’s instructions.

2.6. ATP, ADP, and AMP analysis

Intracellular ATP, ADP, and AMP concentrations were measured
using HPLC as previously described [17].

2.7. Preparation of the PM fraction

The PM fraction was prepared according to the method of Nishi-
umi and Ashida [18]. The obtained fraction was resolved in SDS-
PAGE and the blots were probed for Glut4 and Glut1 as described
in Section 2.4.

2.8. Glucose uptake assay

Glucose uptake was determined using a fluorescence assay
according to the method of Yamamoto et al. [19]. Briefly, L6 myo-
tubes were incubated with serum-free MEM containing 0.2% BSA
for 18 h. The cells were incubated with WH and insulin for 1 h.
The cells were rinsed twice with Krebs-Ringer—-HEPES (KRH) buffer
(50 mM HEPES, pH 7.4, 137 mM NacCl, 4.8 mM KCI, 1.85 mM CaCl,,
and 1.3 mM MgS0,). 2DG uptake was performed by incubation
with KRH buffer containing 0.1% BSA and 1 mM 2DG for 20 min.
The cells were then washed twice with KRH buffer with 0.1% BSA
and 0.1 M NaOH was added to each well. The culture plate was
heated at 85 °C for 60 min. The dried cell lysate was neutralized
with 0.1 M HCl and 200 mM triethanolamine (TEA) buffer (pH
8.1) was added. The cell lysate was mixed with an assay cocktail
[50 mM TEA buffer (pH 8.1) containing 50 mM KCl, 0.02% (w/v)
BSA, 0.1 mM B-NADP’, 2 units/mL of diaphorase, 150 units/mL of
glucose-6-phosphate dehydrogenase, and 2 puM resazurin] in
another 96-well plate and incubated at 37 °C for 60 min. The fluo-
rescence of resorufin was measured with excitation at 540 nm and
emission at 590 nm using a Mithras LB 940 multimode microplate
reader (Belthold, Bad Wildbad, Germany). The 2DG concentration
in each well was calculated based on a standard curve generated
with a 2DG-6-phosphate solution.
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2.9. Measurement of intracellular Ca®* levels

L6 myotube cells were detached from plates with a trypsin/
EDTA mixture and washed with fresh cell culture medium by cen-
trifugation at 800 x g for 5 min. Cells were then resuspended in KRH
buffer containing 2 puM Fluo-4AM and incubated for 60 min at
37 °C in the dark. Cells were washed and resuspended in KRH buf-
fer at a concentration of 2 x 10° cells/mL and transferred to a cuv-
ette for whole-cell population calcium measurement. The Fluo-4
fluorescence was measured using a spectrofluorophotometer (RF-
5300PC; Shimadzu, Kyoto, Japan) with excitation at 495 nm and
emission at 518 nm [20].

2.10. Detection of peptide transporters in rat tissues and L6 cells using
RT-PCR

One male Sprague Dawley rat, 7 weeks of age, was obtained
from Japan SLC (Shizuoka, Japan). The rat was housed in an animal
room under controlled temperature (23 + 3 °C) and lighting (lights
on from 8:00 to 20:00 h) and allowed free access to water and a
laboratory chow diet (CE-2; CLEA Japan, Tokyo, Japan). After
1 week of breeding, the rat was deprived of food for 16 h and
euthanized by decapitation. The small intestine, kidney, skeletal
muscle, and spleen were then removed. Tissue samples were
immediately frozen using liquid nitrogen and stored at —80 °C
until use. The experimental design was approved by the Animal
Experiment Committee of Chubu University, and the rat was main-
tained in accordance with their guidelines.

Total RNA from various rat tissues and L6 myotubes was iso-
lated using QIAzol reagent (QIAGEN, Tokyo, Japan) according to
the manufacturer’s directions. Total RNA (1.0 pg) was reverse-tran-
scribed to cDNA in a final reaction volume of 20 pL using a Rever-
Tra Dash RT-PCR Kit (Toyobo Co., Ltd., Osaka, Japan) according to
the manufacturer’s directions. The resulting cDNA was used to per-
form PCR with ReverTra Dash RT-PCR Kit (Toyobo) with primers
specific for PEPT1 (SLC15a1), PEPT2 (SLC15a2), PHT1 (SLC15a4),
and PHT2 (SLC15a3) that were designed against rat sequences
(Table 1) [21-23]. B-Actin was used as an internal control. The
PCR reaction was performed using optimized PCR conditions
(PEPT1: denaturation, 94 °C for 30s; annealing, 55°C for 2s;
extension, 72 °C for 30s; PEPT2: denaturation, 94 °C for 30s;
annealing, 55 °C for 2 s; extension, 72 °C for 30 s; PHT1: denatur-
ation, 94 °C for 30 s; annealing, 58 °C for 2 s; extension, 72 °C for
30s; PHT2: denaturation, 94 °C for 30 s; annealing, 60 °C for 2 s;
extension, 72 °C for 30s; B-actin: denaturation, 94 °C for 30s;
annealing, 61 °C for 2 s; extension, 72 °C for 30 s). RT-PCR products
were separated by electrophoresis in a 1% agarose gel and stained
with ethidium bromide. Gel images were visualized using a Print-
graph gel imaging system (ATTO, Tokyo, Japan).

2.11. Statistical analysis

Data are expressed as mean + SEM. The differences between
control and WH groups in Table 2 (ATP, ADP, AMP and AMP/ATP
ratio), and mRNA levels of L6 myotubes treated with PHT1 siRNA
in Fig. 5A vs. negative control were compared by the Student’s t
test. In other cases, differences among means were analyzed by

Table 2
ATP, ADP, and AMP concentrations and the AMP:ATP ratio in L6 myotubes treated
with WH for 60 min.

ATP ADP AMP AMP:ATP ratio
(nmol/mg protein)
Control 3.84+0.11 0.20£0.01 0.05+0.01 0.013 +£0.001
WH 2.73 £0.09° 0.15+0.01 0.05 +0.01 0.017 £0.001

" Mean values are significantly different from those of the control (P < 0.05)
(n=6).

the Turkey-Kramer test. Differences with P values <0.05 were con-
sidered significant.

3. Results
3.1. WH activates AMPKa in L6 myotubes

First, we examined whether WH activates AMPKo.. WH signifi-
cantly increased phosphorylated AMPKa levels in a time- and
dose-dependent manner in L6 myotubes (Fig. 1A and B). Similarly,
the administration of HW also significantly induced phosphoryla-
tion of AMPKa (data not shown). To further elucidate the effects
of WH on AMPK, AMPK activity was examined in myotubes treated
with WH. AMPK activity was also significantly increased by WH in
a time- and dose-dependent manner (Fig. 1C and D).

3.2. WH promotes insulin-independent Glut4 translocation and
glucose uptake in L6 myotubes

Glut4 translocation to the PM and the subsequent increase in
glucose uptake into skeletal muscle are stimulated by activated
AMPK in an insulin-independent manner. To evaluate the effect of
WH on this pathway, we analyzed L6 myotube lysates and the PM
fraction for an increase in the relative proportion of Glut4 in the
PM by immunoblotting. Our results show that, similarly to insulin,
WH alone significantly stimulated Glut4 translocation to the PM;
pretreatment with the AMPK inhibitor compound C markedly inhib-
ited this WH-dependent translocation (Fig. 2A), and nullified the
WH-induced phosphorylation of AMPK (Fig. 2B). As expected, insu-
lin stimulated an increase in the phosphorylation of Akt (Ser473)
and IRS-1 (Tyr612), while WH had no discernible effect (Fig. 2C).

To further confirm the role of AMPK activation in the transloca-
tion of Glut4 to the PM, we tested whether WH stimulates the
uptake of 2DG in the presence or absence of compound C. Insulin
alone significantly increased the uptake of 2DG uptake, which
was not affected by compound C. WH also significantly increased
2DG uptake into cells (Fig. 2D); however, the effect of WH, unlike
that of insulin, was dependent on AMPK, as confirmed by the pre-
treatment with compound C, which markedly reversed the effect of
WH (Fig. 2D).

3.3. AMPKu activation induced by WH depends on LKB1 as well as the
ratio of AMP to ATP

A key factor in the regulation of AMPK is the phosphorylation of
Thr172 of AMPKa by upstream kinases, resulting in the activation of

Table 1

Primer sequences of SLC15 transporters and B-actin.
Gene name Sense primer 5-3' Antisense primer 5'-3’ PCR product size (bp) Ref. No.
PEPT1 (Slc15a1) ATCTACCATACGTTTGTTGC CTGGGGCTGAAACTTCTT 523 [21]
PEPT2 (Slc15a2) GCTGCCTACTGAAGCCAAATGCTTG AGAGGCTGCTGAAGGCATGGT 341 [22]
PHT2 (Slc15a3) GAGTCTGGGTCACGGAGAC GAGGCCCACGATGCTG 739 [23]
PHT1 (Slc15a4) GAGGGCCGTTCACAGAGGA TGAGGCCTTATAGTCTGCAG 859 [23]
B-Actin CGTGACATCAAGGAGAAGCT ATCCACATCTGCTGGAAGGT 444 [23]




M. Soga et al./FEBS Open Bio 4 (2014) 898-904 901

A (min)

0 5 15 30 60 120 (kDa)

p-AMPKa
(T172)

AMPKa

YE e ee g0 OB o0y €62

— e en oo oo oo (¢ 62

Cc

3.0 a

2.0

1.0

Relative AMPK activity
(Fold of Control)
[¢]
[¢]

0 30 60 120
(min)

B WH (mM)
Control AICAR 0.1 0.3 1 (kDa)
p-AMPKa -
(T172) — a2
ANPKQ | = e came e o Qsz
D
3.0 2
2
2=
=
S5 40 b
¢E =
S be
25 d ed
52 10
g€
@
4
0

Control AICAR 0.1 0.3 1
WH (mM)

Fig. 1. Immunoblot analysis of the effect of WH duration (A) and dose (B) on total and phosphorylated AMPKa and the effect of WH time (C) and dose (D) on AMPK activity.
The cells were treated with 0.3 mM WH for various durations (A) and (C), or with vehicle (0.1% DMSO), AICAR (1 mM), or WH for 60 min (B) and (D). AMPK activity (C and D)
was expressed relative to the control (=1.0). Values are means + SEM; n = 4-8. Mean values without a common letter are significantly different at P < 0.05.

A WH - - + - +
Insulin = + - = =
CompoundC = = = + + (kDa)
PMGIutd |~ == — | <50

PM Glut1

Whole cell | PR -—Jqso
lysate Glut4 -

C
WH - - + - +

Insulin = 4+ - - -

CompoundC - = = <+ <+ (kDa)
p-Akt e o
(Sera73) - <60
Akt | GED GID G @B @ | <60
(PT)','}GS&) od bl oa <180
IRS-1 | GHD €N B9 0@ & | <180

B WH - - + - +
Insulin . % - - 4

CompoundC = = = + <+ (kDa)
p-AMPKa [ —
(T172) <62
AMPKo, | ™ s e e o= | 452

pB-actin ’----- <45

B 2
[J CompoundC (-)
@ Compound C (+)
= a a
2
C
£8 bb b
=S L
o061
Q3
N ©
L
Control Insulin WH

Fig. 2. Immunoblot analysis of Glut4 and Glut1 (A), AMPKo and B-actin (B), and insulin signaling proteins (C) in L6 myotubes. Cells were treated with insulin (100 nM) or WH
(0.3 mM) for 60 min in the presence or absence of compound C (20 nM), prior to isolation of the PM fraction or the whole-cell lysate of treated cells. Panel D shows the uptake
of 2DG in L6 myotubes. Cells were treated with vehicle (0.1% DMSO), insulin (100 nM), or WH (0.3 mM) for 60 min in the presence or absence of compound C (20 uM). Values
are means = SEM; n = 3-9. Mean values without a common letter are significantly different at P < 0.05.

AMPK [24]. Interestingly, increasing the ratio of AMP to ATP, which
reduces inactivation by dephosphorylation, results in the activation
of AMPK [25]. AMP regulates AMPK activation at the initial phos-
phorylation step, and myristoylation of the B-subunit of AMPK is
required for initiation of the signaling cascade as this lipid modifica-
tion allows the upstream kinase LKB1 to phosphorylate AMPK [26].

We examined whether WH could regulate LKB1 as well as the
AMP:ATP ratio to shed light on the mechanism of the activation
of AMPK by WH. We first measured the intracellular concentra-
tions of ATP, ADP, and AMP in L6 myotubes, and found that
WH significantly decreased intracellular ATP concentrations and
resulted in an increased AMP:ATP ratio in (Table 2). Next, we

knocked down the expression of LKB1 in L6 myotubes with siR-
NA to examine whether LKB1 is required for the WH-induced
activation of AMPK. In these cells, we found that the WH-depen-
dent phosphorylation of AMPKo was significantly reduced
(Fig. 3A).

3.4. Intracellular Ca®* response of L6 myotube cells to WH

Thr172 of AMPKa is also phosphorylated by Ca?*/calmodulin-
dependent kinase kinase (CaMKK) or CaMKII and activates AMPK
in intact cells [24,27,28]. Activation of CaMKK and CaMKII requires
calcium ions, which can be provided by influx of extracellular Ca®*
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via calcium channels or mobilization of intracellular stores of Ca*.
To investigate whether WH affected intracellular Ca®* levels, cells
were loaded with Fluo4-AM and the fluorescence was followed
during the application of WH. The administration of WH
(0.3 mM) did not alter the fluorescence from that of the basal level
(Fig. 3B). CaMKII is activated by Ca%* by binding Ca?" and calmod-
ulin and increases Glut4 translocation and glucose uptake [28-30].
In this study, the treatment of L6 myotube cells with WH did not
affect CaMKII activation (Fig. 3C and D).

3.5. WH is incorporated into cells via PHT1 and activates AMPK

Transport of WH into cells may be mediated by members of the
SLC15 H*/oligopeptide cotransporter family [31]. To date, four pep-
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Fig. 4. Detection of PEPT1, PEPT2, PHT1, and PHT2 mRNAs by RT-PCR in various rat
tissues and L6 myotube cells. RT-PCR was performed using specific primers for
PEPT1 (A), PEPT2 (B), PHT1 (C), and PHT2 (D). The primer sequences are shown in
Table 1. Total RNAs from rat small intestine, kidney, skeletal muscle, and spleen
were used as positive controls for PEPT1, PEPT2, PHT1, and PHT2, respectively.
Specific primers for rat p-actin were used to generate an internal control in each
sample.

tide transporters have been cloned in mammals, namely PEPT1,
PEPT2, PHT1, and PHT2. However, the tissue distribution and sub-
cellular localization of these transporters are limited and there are
no reports on what oligopeptide transporters are expressed in L6
myotubes. Therefore, we first determined which oligopeptide
transporters are expressed in L6 myotubes. RT-PCR analysis using
specific primers demonstrated that L6 myotubes express only
PHT1 (Fig. 4). These results suggest that WH can be incorporated
into cells via PHT1, to activate AMPK and increase insulin-indepen-
dent Glut4 translocation and glucose uptake. To confirm whether
PHT1 is required for WH-induced AMPK activation, L6 myotubes
with siRNA knockdown of PHT1 were treated with WH, and phos-
phorylated AMPKa protein levels were determined. To date, there
is no credible specific antibody for PHT1. Therefore, the efficiency
of siRNA-mediated PHT1 knockdown was evaluated by mRNA
level. In this study, the knockdown efficiency of PHT1 siRNA was
80.1 +£2.9% (Fig. 5A). WH-induced phosphorylation of AMPKao
was significantly reduced by PHT1 knockdown (Fig. 5B).
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Fig. 5. Level of PHT1 gene expression in L6 myotubes treated with negative control
siRNA or PHT1 siRNA (A) and immunoblot analysis of AMPKa and B-actin in L6
myotubes treated with WH (0.3 mM) for 60 min in the presence or absence of PHT1
siRNA (B). The gene expression level was expressed relative to the negative control
siRNA (=1.0) after normalization using the 18s rRNA gene expression level. Values
are means + SEM; n=3. *Significantly different from negative control siRNA
(P<0.05).
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4. Discussion

In our previous study, WH was demonstrated to exhibit potent
vasorelaxant and antiproliferative effects in vascular smooth mus-
cle cells [32]. Moreover, WH reduced elevated intracellular Ca®*
levels by binding to an extracellular site of the voltage-dependent
calcium channel (VDCC) and inhibiting VDCC phosphorylation by
blocking CaMKII activity [33]. A recent report showed that nifedi-
pine, a dihydropyridine-type VDCC blocker, activated AMPK in vas-
cular smooth muscle cells via LKB1; this activation did not require
calcium-related upstream kinases [34]. In addition, a branched-
chain amino acid-containing di-peptide enhanced glucose uptake
in skeletal muscle cells [35].

We hypothesized that WH has multiple biological functions,
including activation of AMPK and increasing the translocation of
Glut4 to the PM with subsequent glucose uptake in skeletal muscle
cells. However, to our knowledge there have been no reports of
changes in glucose metabolism directly resulting from vasorelax-
ant di-peptide-induced activation of AMPK. The present study
demonstrated that WH has a significant effect on AMPK activation,
which at least partly explains its capacity for regulating insulin-
independent glucose uptake.

The results of the present study show that activation of AMPKo
by WH resulted in elevated glucose uptake via an increase in Glut4
translocation to the PM, both of which were via mechanisms that
do not rely on insulin signaling pathways. These findings led us
to speculate on the mechanisms by which WH might activate
AMPK. There are at least two possible molecular mechanisms
involved: (1) WH modulates intracellular energy charge, resulting
in phosphorylation of Thr172 in the o-subunit via LKB1, which is
one of the upstream AMPK kinases [25], or (2) WH increases the
concentration of free intracellular Ca?* with subsequent activation
of CaMKK or CaMKII, which in turn phosphorylates AMPKa via an
LKB1-independent pathway [24,27,28]. In this study, the adminis-
tration of WH induced the activation of AMPK in skeletal muscle
cells and led to a decrease in cellular ATP levels. The mechanism
by which WH produces a drop in cellular ATP levels is currently
unknown. However, it is known that metformin, a potent anti-
hyperglycemic agent, inhibits mitochondrial respiratory chain
complex I, resulting in AMPK activation [36]. Therefore, one plau-
sible mechanism is that WH suppresses ATP production via inhibi-
tion of mitochondrial respiratory chain complex I, and then LKB1
phosphorylates AMPKo.. Administration of WH affected neither
the level of free intracellular Ca%* nor CaMKII activation, indicating
that the significant AMPK activation induced by WH was not due to
calcium-dependent signaling pathway.

These findings led us to ask how WH can be incorporated into
cells and impact AMPK activation and subsequent insulin-indepen-
dent glucose uptake. Some di-peptides can be incorporated into
cells via peptide transporters [37,38]. However, reports on the
identities of oligopeptide transporters that are expressed in L6
myotubes have thus far been lacking. Therefore, we first identified
which oligopeptide transporters are expressed in L6 myotubes, and
found only PHT1. In addition, WH-stimulated phosphorylation of
AMPKa was significantly reduced in PHT1-knockdown L6 myotu-
bes. Thus, it is likely that WH is transported into cells via PHT1
to modulate AMPK signaling.

Two open questions are whether WH would be a significant
activator of AMPK in vivo, and how the WH dose in our experi-
ments relates to bioavailability in in vivo systems. Small peptides
are not completely hydrolyzed by intestinal peptidases to be
absorbed as free amino acids but are transported by peptide trans-
porters in the brush border of the small intestine [39]. Carnosine
(B-Ala-His) and anserine (B-Ala-m-methyl-His) are two bioactive
di-peptides that are absorbed intact into human plasma [38,40].

In our previous study, long-term oral administration of WH to apo-
lipoprotein E-deficient mice significantly reduced atherosclerotic
lesion formation [41]. These results indicate that WH can be
directly absorbed and distributed to various tissues via the blood
and are therefore expected to modulate whole-body metabolism.

5. Conclusion

WH, a vasorelaxant and anti-atherosclerotic di-peptide, acti-
vates AMPK, and insulin independently enhances glucose uptake
following translocation of Glut4 to the PM in L6 myotubes. These
actions involve the LKB1 pathway, not calcium-dependent signal-
ing pathway. This study also demonstrated that L6 myotubes
express only one type of oligopeptide transporter (PHT1), which
transports WH into cells, allowing WH to induce activation of
AMPK. Our findings provide a new insight into the biochemical
basis of the effects of this vasorelaxant di-peptide and also have
important implications for the prevention and treatment of type
2 diabetes.
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