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Abstract

Flow cytometry is a widely used technique for the analysis of cell populations in the study and diagnosis of human diseases.
It yields large amounts of high-dimensional data, the analysis of which would clearly benefit from efficient computational
approaches aiming at automated diagnosis and decision support. This article presents our analysis of flow cytometry data in
the framework of the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid Leukemia (AML) Challenge, 2011. In the
challenge, example data was provided for a set of 179 subjects, comprising healthy donors and 23 cases of AML. The
participants were asked to provide predictions with respect to the condition of 180 patients in a test set. We extracted
feature vectors from the data in terms of single marker statistics, including characteristic moments, median and interquartile
range of the observed values. Subsequently, we applied Generalized Matrix Relevance Learning Vector Quantization
(GMLVQ), a machine learning technique which extends standard LVQ by an adaptive distance measure. Our method
achieved the best possible performance with respect to the diagnoses of test set patients. The extraction of features from
the flow cytometry data is outlined in detail, the machine learning approach is discussed and classification results are
presented. In addition, we illustrate how GMLVQ can provide deeper insight into the problem by allowing to infer the
relevance of specific markers and features for the diagnosis.
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Introduction

We present in this article our main results obtained in the

context of the DREAM6/FlowCAP2 Molecular Classification of Acute

Myeloid Leukemia Challenge 2011 [1–3]. This challenge was

organized in a joint effort by the Dialogue for Reverse Engineering

Assessments and Methods (DREAM) project [3–6] and the Flow

Cytometry: Critical Assessment of Population Identification Methods (Flow-

CAP) initiative [2].

Flow cytometry constitutes a powerful technique which is widely

used in medical research and clinical practice for the study and

diagnosis of various diseases [7]. Flow cytometry measurements

typically yield a quantitative description of several tens or even

hundreds of thousands of cells in a given sample. Light scatter and

fluorescence properties are used to identify deviations from normal

cell size or structure and to quantify functional properties in terms

of, e.g., protein marker expressions [7,8]. The amount of available

data, its high dimension, and the complexity of the diagnosis tasks

trigger a significant interest in systems for automated analysis and

decision support.

Along these lines, the DREAM6/FlowCAP2 challenge ad-

dressed the analysis of given flow cytometry data, representing

peripheral blood and bone marrow samples of, in total, 359

subjects. Some of these corresponded to cases of Acute Myeloid

Leukemia (AML) and the ultimate goal was to predict the

condition of a number of patients whose diagnosis was unknown to

the participants. Hence, the goal of the challenge could be

formulated as a machine learning problem: From the given

example data with known diagnoses, criteria were to be inferred

which then allowed for the classification of the test samples.

We extracted feature vectors from the data in terms of a few

characteristic quantities, summarizing the statistics of the observed

marker values. Predictions were obtained by means of a specific

machine learning technique termed Generalized Matrix Rele-

vance Learning Vector Quantization (GMLVQ) [9–11]. This

prototype based method extends standard Learning Vector

Quantization [12,13] by using Adaptive Distance Measures in Relevance

LVQ, which motivated the acronym and team name Admire-LVQ.

In the challenge, our team achieved the best possible performance

with respect to the required test set prediction.

In the following section a description of the data set and our

analysis is given. Thereafter we present and discuss our main

results and the obtained prediction. We conclude with a brief

outlook on possible extensions and future work.

Data Set and Analysis

In this section we first describe the extraction of features from

the given data. The specific machine learning analysis based on

Generalized Matrix Relevance Learning Vector Quantization is

outlined. Furthermore, its validation in terms of the given data set

is discussed.
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The data set provided in the challenge comprised 359 subjects.

For each of these, a varying number of cells, on the order of a few

thousands, had been analysed by means of flow cytometry, see

[2,3] for details. The first 179 subjects served as the training data;

label information Sm [ f1,2g, m~1,2, . . . ,179 was provided,

specifying 23 subjects as AML patients (Sm~2). The remaining

156 subjects are referred to as healthy donors (Sm~1) throughout

this contribution. Note that the latter group of subjects includes

a number of patients with a diagnose different from AML [14].

The task was to predict the diagnosis with respect to a test set of

180 subjects for which no label information was provided. The

total number of AML cases in the test set, 20, was also disclosed to

the participants. However, this information was not exploited in

our approach. We have analysed the transformed and compensated

flow cytometry data as provided by the organizers of the challenge

[2,3]. In our analysis we omitted the non-specific isotope control

data representing non-human binding antibodies, which corre-

sponds to tube 8 in the data set [3].

In clinical practice, a possible workflow is to sort cells according

to a small number of gating variables in a first step, identifying

potentially degenerate or immature cells. Subsequently, the

selected cells are analysed according to the remaining markers,

aiming at a reliable diagnosis and potential identification of the

AML subtype [7,8]. In our approach we follow a simpler, more

direct strategy in which we omit cell specific information. After

visual inspection in terms of histograms we decided to represent

the data by a limited number of statistical characteristics per

patient and marker. Moreover, we took into account all markers at

once in order to assign each subject to one of the two classes in

a single processing step.

Feature Extraction and Normalization
A key step in the design of a classifier in this challenge was the

extraction of appropriate features from the provided data. The

data corresponding to tubes 1–7 represents 31 characteristic

quantities per cell: the so-called Forward Scatter on linear scale

(FS Lin), the Sideward Scatter on logarithmic scale (SS Log), and 29

fluorescence intensities on logarithmic scale quantifying the

expression of various surface proteins. All of these quantities are

referred to as markers in the following. Table 1 lists the considered

markers and the index j~1,2 . . . 31 which we refer to in the

analysis.

Note that the potential gating markers FS Lin, SS Log, and

CD45-EDC were provided for all cells in the data set. The other

28 markers were measured in one tube only, representing a sub-

population of cells per subject. We rescaled all markers by the

respective largest possible value as to limit all observations to the

interval ½0,1�.

FS Lin can be interpreted as a measure of cell size, while SS Log

roughly quantifies intracellular granularity [7]. Note furthermore

that the expression of IgG1 was measured by means of four

different binding antigens. In our analysis, however, the

corresponding values were treated as four independent markers

(j~4,11,18,25), formally.

For the purpose of a first, visual inspection, we computed

histograms corresponding to the frequency of marker values in the

training set. Figures 1 and 2 display histograms of 4 example

markers: FS Lin (j~1), SS Log (j~2), CD45-EDC (j~3), and

CD10-PC7 (j~31) for one patient per class (m~100 and103). The

main purpose of Figures 1 and 2 is to illustrate the extraction of

feature vectors from the sample data which is described in the

following.

For each patient and marker a varying number M of cell

measurements, typically a few thousands, were made available. In

our analysis, we did not make use of cell specific information, as it

is done frequently in terms of a so-called gating procedure in

clinical practice [7,8]. We extracted information only on the level

of single marker statistics over the entire population of cells. A

direct classification of histograms using, for instance, entropic

distance measures or statistical divergences would be feasible here

[15,16]. We resorted, however, to reducing the information to

only six quantities per marker which summarize the characteristics

of the corresponding histogram. We denote by v
m
j (m) the value

measured for marker j (1ƒjƒ31) in individual cell

m (1ƒmƒMm) of patient m. From the available data we

determined the following quantities:

(a)mean mean
m
j ~

1

Mm

XMm

m~1

v
m
j (m)

(b)standard deviation

std
m
j ~

1

Mm{1

XMm

m~1

v
m
j (m){mean

m
j

� �2

" #1=2

(c)skewness skew
m
j ~

1

Mm

XMm

m~1

v
m
j (m){mean

m
j

� �3

(std
m
j )

3

Table 1. List of the 31 markers used in the analysis.

1 2 3 4 5 6 7 8

FS Lin SS Log CD45- EDC IgG1- FITC Kappa- FIT CD7- FITC CD15- FITC CD14- FITC

9 10 11 12 13 14 15 16

HLADR- FITC CD5- FITC IgG1- PE Lambda- PE CD4- PE CD13- PE CD11c- PE CD117- PE

17 18 19 20 21 22 23 24

CD19- PE IgG1- PC5 CD19- PC5 CD8- PC5 CD16- PC5 CD64- PC5 CD34- PC5 CD3- PC5

25 26 27 28 29 30 31

IgG1- PC7 CD20- PC7 CD2- PC7 CD56- PC7 CD33- PC7 CD38- PC7 CD10- PC7

doi:10.1371/journal.pone.0059401.t001
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(d)kurtosis

kurt
m
j ~

1

Mm

XMm

m~1

v
m
j (m){mean

m
j

� �4

(std
m
j )

4
{3:

ð1Þ

In addition we computed (e) median (med
m
j ) and (f) interquartile

range (iqr
m
j ) in the set of observed values v

m
j (m)

n o
. The skewness

is a measure of the asymmetry, with positive values indicating that

more weight is contained in the left side of the histogram. The kurtosis

quantifies how sharply peaked a histogram is. Note that in the

above defined kurt, sometimes termed excess kurtosis in the

literature, a constant 3 is subtracted yielding kurt~0 in case of

normal densities.

Hence we obtained, for each patient m, a set of 6 quantities per

marker. A particular subject was subsequently represented by the

concatenated vector xm [ RN of N~186 characteristic features.

As one example, the skewness of marker 17 (CD19-PE, see

Table 1) observed for patient 42 corresponds to component

skew42
17~x4299 of the feature vector x42 since (17{1):6z3~99.

The features representing markers 1–3 (FS Lin, SS Log, CD45-

EDC) and marker 31 (CD10-PC7) are shown for one example

subject from each class in Figures 1 and 2, together with the

corresponding histograms.

In the training processes described in the following, we applied

an additional z-score transformation: Given a (sub-)set of P

training examples we computed for i~1,2, . . . ,186 the quantities

�xxi~
1

P

XP
m~1

x
m
i andsi~

1

P{1

XP
m~1

x
m
i {�xxi

� �2" #1=2

and rescaled all features in training, validation or test data by

subtracting the mean �xxi and subsequently dividing by si.
Consequently, the transformed features display zero mean and

unit variance in the actual training set. While the transformation

did not affect the classification performance, it enhances the

interpretability of the results, in particular with respect to the

relevance matrix, see below.

Matrix Relevance Learning Vector Quantization
We employed Generalized Matrix Relevance Learning Vector

Quantization (GMLVQ) for the analysis of the obtained feature

vectors. This highly flexible and powerful variant of LVQ is

described in detail in [9–11]. Here we employed the algorithm in

its simplest setting with one prototype per class and a single, global

relevance matrix as defined below.

The two classes, i.e. healthy donors (class 1) and AML patients

(class 2), are represented by the prototype vectors w1,w2 [ RN ,

respectively. Given a particular z-score-transformed feature vector

x [ RN representing one of the patients, its distance from the

prototypes is determined as

Figure 1. Example histograms and extracted features: FS Lin and SS Log. Histograms and extracted features correspond to one healthy
donor (subject m~100, upper panels) and one AML patient (subject m~103, lower panels), respectively. Histograms display the frequency of
a particular marker value for visual inspection. Six features are extracted per patient and marker, corresponding to mean, standard deviation,
skewness, kurtosis, median, and interquartile range of the observed frequency of marker values, cf. Eq. (1). Here the first 12 components of the 186-
dim. feature vectors are displayed before z-score transformation.
doi:10.1371/journal.pone.0059401.g001
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d(x,wi)~
XN
j,k~1

xj{wi
j

� �
Ljk xk{wi

k

� �
~ (x{wi)TL(x{wi)

with L~VTV:

ð2Þ

Here L and V are N|N matrices and the specific parame-

terization of the distance guarantees non-negativity of the

measure:

d(x,wi)~ V(x{wi)
� �2

§0: ð3Þ

In a simple Nearest Prototype Classification (NPC) scheme, a feature

vector x is assigned to class 1 if d(x,w1)vd(x,w2) and to class 2,

else. While w1,2 serve as typical representatives of the classes,

elements Lij of the symmetric matrix L can be interpreted as to

quantify the relevance of a pair of feature dimensions i,j in the

classification scheme.

Both, prototypes and relevances, are determined in the same

supervised training process. Given a set of P examples xm,Smf gPm~1

with class labels Sm [ 1,2f g, training is guided by the minimization

of the cost function [9,17,18]

E(w1,w2,V)~
XP
m~1

em(w1,w2,V),

with em~
d(xm,wJ ){d(xm,wK )

d(xm,wJ )zd(xm,wK )

ð4Þ

where the index J corresponds to the correct prototype with J~Sm

while K=Sm identifies the wrong prototype. In general, the

objective of training can be further specified by introducing

a function W(em) in the cost function, e.g. a sigmoidal [17]. Here, we

resorted to the simple case W(x)~x. Note that the contribution em

of a single example to the cost function satisfies {1vemv1. It is

negative if xm is classified correctly and its absolute value relates to

the margin of the classification.

Alternatively we refer to the closely related score s which is

computed as

s(x)~
1

2
1z

d(x,w1){d(x,w2)

d(x,w1)zd(x,w2)

� �
with0ƒsƒ1: ð5Þ

A value s(x)&0 indicates that feature vector x is assigned to

class 1, healthy donors, with high certainty. Large values close to

s~1 signal confident classification as an AML patient (class 2).

The NPC scheme can be reformulated as assigning vector x to

class 1 if s(x)ƒ1=2 and to class 2 else. While the score may serve

as a relative measure of certainty in GMLVQ, it should not be

Figure 2. Example histograms and extracted features: CD45-EDC and CD10-PC7. For further description see Figure 1. The quantities
displayed here correspond to features 13–18 and 181–186 of the 186-dim. vectors before z-score transformation.
doi:10.1371/journal.pone.0059401.g002
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interpreted directly as a probability for AML. Note that any

monotonically increasing function f : ½0,1�?½0,1� could be used to

transform s without modifying the actual ordering of patients

according to s.

We implemented the iterative optimization of E, cf. Eq. (4), by

means of a gradient descent procedure with respect to the adaptive

quantities w1,w2, and V. At iteration step t, updates along the

normalized gradients and subsequent normalization of V were

performed:

wi(tz1)~wi(t){aw(t)
LE
Lwi

=D
LE
Lwi

D

V(tz1)~
eVV(tz1)P
i,j

eVV2
ij

" #1=2
where

eVV(tz1)~V(t){aV(t)
LE
LV

=D
LE
LV

D ð6Þ

with the time-dependent step sizes aw(t) and aV(t). The full form

of the gradient terms is given in [9,11,19], for instance. We

employed gradient descent with waypoint averaging and step size control,

which has been introduced and described in greater detail in [19]:

After a gradient step, Eq. (6), the achieved value of the cost

function E(tz1)~E(w1(tz1),w2(tz1),V(tz1)) is compared

with E
^
(tz1)~E(�ww1(t),�ww2(t),�VV(t)) where

�wwi(t)~
1

T

XT
t~1

wi(t{t) and �VV(t)~
1

T

XT
t~1

V(t{t)

corresponds to the position in search space, on average over the

last T updates. The observation of E
^
(tz1)vE(tz1) signals

oscillatory behavior of the iteration. In this case, we set

wi(tz1)~�wwi(t) and V(tz1)~�VV(t) and reduced the step sizes

by a factor av1 : aw,V(tz1)~a:aw,V(t). All results presented

here were obtained with parameters T~3 and a~2=3 in the

waypoint averaging scheme. Initial step sizes were aw(0)~10=N
for prototypes and aV(0)~100=N for matrix updates, respectively.

In the problem at hand, the obtained classification scheme and

error rates turned out very robust with respect to the choice of

these parameters.

For a given training set, we initialized prototypes w1,2 close to

the corresponding class conditional means with small random

deviations; similarly we chose the initial V close to the (N|N)
identity matrix:

wi(0)~

PP
m~1 diSm x

mPP
m~1 diSm

zr, V(0)~
IN|NzCP

i,j (dijzC ij)
2

h i1=2 ð7Þ

where the Kronecker–Delta dmn~1 if m~n and dmn~0 if m=n.

The components of r [ RN and all elements of C [ RN|N were

generated independently according to a uniform density

U({0:1,0:1). Results were found to depend only very weakly

on details of the initialization.

Validation
In order to evaluate the performance of the GMLVQ classifier

before applying it to the test set, we employed a validation scheme

based on randomized subsets of the available training data. In

every run we selected ca. 3=4 of the data from each class

randomly, i.e. 17 of the 23 AML examples and 117 of the 156

healthy donors. These P~134 example data were used for

training the GMLVQ system while the remaining 45 served as

a validation set. The random split of the data was repeated 50

times and, if not stated otherwise, results presented in this section

were obtained on average over the validation runs.

Figure 3 displays the averaged error rates of naı̈ve Nearest

Prototype Classification in the course of gradient based training.

Note that an over-fitting effect was observed: Performing more

than ca. 60 training steps decreased the error rates with respect to

training examples to very low values. At the same time, however,

validation set performance deteriorated. Closer inspection re-

vealed that this effect was essentially due to patient m~116, listed

as a case of AML in the training set. If contained in the validation

set, this patient was consistently misclassified by the NPC scheme.

On the contrary - if employed for training - the system achieved

agreement with the label, eventually, but at the expense of an

increased error rate in the validation set.

Based on this observation, we employed an early stopping strategy,

terminating the training process after 40 gradient steps. When

omitting patient m~116 from the training set or re-labeling the

subject as healthy donor, the learning curves converged smoothly

and overfitting was not observed anymore. Moreover, we obtained

virtually the same classification, i.e. the same order of scores with

respect to the test set patients in all these scenarios. The precise

numerical results reported in the following section were obtained

by means of the early stopping strategy including subject m~116

labelled as an AML case (S116~2).
In addition to the error rates of the naı̈ve NPC scheme we also

evaluated the validation set performance in terms of the Receiver

Operating Characteristics (ROC) [20]. By introducing a threshold

H, the GMLVQ scheme can be biased with respect to one of the

two classes:

assign vectorx to class
1 if sƒ1=2{H

2 else,

	
ð8Þ

with the score s defined in Eq. (5) For thresholds in the range

{1=2ƒHƒ1=2 we computed the corresponding class-wise error

rates with respect to the validation set on average over the 50

training runs, yielding the threshold-averaged ROC curves [20]

displayed in Figure 4.

The ROC analysis revealed very high sensitivity (true positive

rate) and specificity (1 - false positive rate) with respect to the

validation set performance, the corresponding Area Under Curve

being AUC~0:9935 [20]. In addition, removal of patient m~116
from the data set resulted in an almost perfect ROC with

AUC~0:9996. Given the close to error–free classification we

refrained from employing complementary performance measures

such as precision/recall or other characteristics [20]. For the same

reason, we did not compare the validation performance of the

simple GMLVQ scheme with more sophisticated settings or

alternative classifiers.

Results and Discussion

Final results, including the test set scores, were obtained using

all 179 training samples for training. In addition, we performed an

average over 50 randomized intializations in order to rule out an

Analysis of Flow Cytometry Data by Relevance LVQ
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influence of the initial configuration of the GMLVQ system. In

each run, 40 gradient steps were performed with waypoint

averaging and step size control as described above. The final test

set scores were obtained on average over the 50 randomized

training runs.

Before discussing the outcome of the GMLVQ training in terms

of prototypes and relevances we present the actual test set

predictions.

Test Set Prediction
Figure 5 displays the GMLVQ based scores s, cf. Eq. 5, with

respect to the 180 test set patients. Values close to s~1 correspond

to patients that are identified as AML patients with high certainty,

while small s&0 correspond to a classification as healthy donor. It

would be very interesting to study potential correlations of the

scores s with additional information about the patients, e.g.

measures of the severity of the AML cases. Unfortunately such

information was not disclosed and is not available for the given

data set.

Although it was known to the participants that the test set

contained 20 AML cases, we did not make explicit use of this

information. In the GMLVQ training, a threshold value does not

have to be specified. The result in terms of scores s and the

corresponding ranking of test set patients is independent of the

actual number of AML cases. In a practical context, and if a crisp

classification is the goal, the actual value of H should be set

according to domain expert (user) preferences concerning the

compromise between sensitivity and specificity. The example

threshold value marked in the right panel of Figure 5 was chosen

a posteriori for illustration purposes only and is neither a result nor

a parameter of the training process. With respect to performance

in the challenge it is irrelevant.

The comparison with the unknown test set labels after

submission of the predictions [3] revealed that the 20 patients

with highest GMLVQ score s corresponded precisely to the 20

Figure 3. Learning curves in the validation procedure. Class specific and total error rates of Nearest Prototype Classification, corresponding to
H~0 in Eq. (8), on average over 50 randomized validation runs. The upper panel corresponds to the performance in the respective training set, the
lower panel displays error rates with respect to the validation set. The curves correspond to including patient m~116 in training or validation set.
doi:10.1371/journal.pone.0059401.g003

Figure 4. Validation set performance. Threshold-averaged ROC as
obtained in the validation runs using labeled data. The curves
correspond to using the data set including patient m~116 (lower, blue
line) and excluding patient m~116 from the analysis completely (upper,
red line), respectively.
doi:10.1371/journal.pone.0059401.g004

Analysis of Flow Cytometry Data by Relevance LVQ
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AML patients in the test set. Hence, we achieved the best possible

prediction according to Receiver Operator Characteristics or

other evaluation methods like Precision/Recall, which only

depend on the order of scores and the corresponding ranking of

patients.

The obtained classifier can be illustrated in terms of a two-

dimensional visualization: Figure 6 displays the training and test

data in terms of projections on the leading eigenvectors of the

relevance matrix L [21]. Two rather well separated clusters can be

identified which reflect the assignment of classes. Note that the

training set subject (patient 116) that was consistently misclassified

by the NPC scheme is, indeed, located in the cluster representing

healthy donors. This relates to the overfitting behavior discussed in

greater detail in the previous section.

It is remarkable that error-free classification of the test set data

was obtained by a number of teams who extracted different

features from the data and used a variety of classification

approaches [1]. For example, Vilar et al. employed a histogram

based classifier in connection with the Kullback-Leibler divergence

used as an entropic distance measure [16]. Amar et al. also

extracted statistical moments from the data, but applied Support

Vector Machine Regression, subsequently [22]. Logistic Re-

gression was applied successfully by Manninen et al. [23]. Strickert

and Seifert based their predictions on a method termed

Correlative Matrix Mapping [24]. Using their software library

Jstacs [25], Keilwagen and Grau built a weighted ensemble of

classifiers which also achieved perfect classification.

An additional ranking of the best performing teams was

suggested by the organizers in retrospect [1,3,26]. It hinges on

interpreting the submitted scores as probabilistic assignments and

on the reliability of the test set labels. In our opinion, the suggested

posterior ranking according to, e.g., the Pearson correlation

between scores s and the test set class labels is questionable, see

also the DREAM6 discussion forum at [3].

Characteristics of the GMLVQ Classifier
Apart from yielding the actual classification scheme, the

GMLVQ analysis provides insights into the structure of the data

which become available by inspection of the prototypes and

relevance matrix. The interpretability of the classifier has proven

useful in several applications and facilitates discussions with the

respective domain experts [27,28].

Figure 5. Test set predictions. GMLVQ based score s vs. patient number m in the test set (left panel) and ordered according to s (right panel). The
dotted line marks an example posterior choice of the threshold H, cf. Eq. (5), for crisp classification yielding correct prediction of 20 AML patients in
the test set.
doi:10.1371/journal.pone.0059401.g005

Figure 6. Visualization of the data set as obtained by GMLVQ.
Projections of normalized feature vectors on the leading eigenvectors
of L are displayed. Green circles correspond to healthy donors, red
symbols mark AML patients in the training set, while blue dots
represent test set data. Stars indicate the positions of the prototypes.
The red arrow marks patient m~116 in the training set, who is labeled
as AML but is misclassified persistently for a large range of thresholdsH,
cf. Eq. (5).
doi:10.1371/journal.pone.0059401.g006

Analysis of Flow Cytometry Data by Relevance LVQ
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Figure 7 visualizes the difference vector (w2{w1) of prototypes

representing healthy donors (1) and AML patients (2), respectively.

For the sake of clarity, we have shown only the 31 components

which correspond to the features meanj , cf. Eq. ( a). A positive

difference corresponds to markers which display a greater value in

the AML prototype compared to the typical healthy donor in the

data set, examples being HLA-DR-FITC (j~9), CD117-PE

(j~16), and CD34-PC5 (j~23). Example markers which display

reduced values meanj in AML patients are CD15-FITC (j~7),

CD16-PC5 (j~21), and CD10-PC7 (j~31).

In addition we analysed the resulting relevance matrix

L~VTV [ R186|186. We focused on the diagonal elements

Lii~
P

j V
2
ij which formally accumulate the importance of feature

i for the resulting classification.

The direct interpretation of L is simplified if all features assume

values on the same order of magnitude. This condition was

realized here by the explicit z-score transformation mentioned

above. Moreover, it is important to note that, given a particular set

of feature vectors xm and prototypes wj , a continuum of matrices V

may exist which yield the same distances d(xm,wj), cf. Eq. (3) and,

hence, the same classification scheme with respect to the training

data. This ambiguity problem is particularly pronounced for inter-

dependent or highly correlated features in high dimension.

Resulting difficulties concerning the interpretation of L in terms

of feature relevances are discussed in depth in [28]. There,

schemes are suggested for posterior regularization which provide

unique, interpretable V and L which we also applied here: Note

that arbitrary vectors from the null-space or kernel ker(C) of the

matrix.

C~
X
m

xmxmTz
X
j

wjwjT

can be added to the rows of a given Vraw without changing the

GMVLQ cost function (4) and the actual classification of training

data. In [28] a column space projection is suggested in order to

remove contributions from ker(C) [28]:

V~VrawY where Y~I{
X

um[ker(C)

umumT ð9Þ

is constructed from the eigenvectors um of C with eigenvalues zero.

Zero eigenvalues of C reflect the presence of linear dependent

or strongly correlated features and the corresponding eigenvectors

mark directions in input space in which training samples and

prototypes do not vary. In the data considered here, one clearly

expects dependencies between related markers, the four versions of

IgG1 being an obvious example. In addition, extracted features

like stdj and iqrj or meanj and medj should be strongly correlated.

For the following discussion we determined V by means of

a posterior column space projection (9) with Y retaining only the

leading eigendirections of C with eigenvalues §10{12. Thereaf-

ter, the matrix was normalized again to satisfy
P

ij V
2
ij~1 and we

computed the regularized L~VTV.

It is remarkable that, in the given problem, this posterior

regularization has very little influence on the test set classification.

In particular, the ordering of test set scores obtained with the

regularized system is the same as the one presented in the previous

section. This suggests that the correlations and dependencies

observed in the training set are already representative for the

entire data. In [28] example problems are presented where the

posterior regularization has a non-trivial effect also on test set

performance.

Figure 8 displays the diagonal entries of L for all 186 features.

After regularization, the heuristic interpretation of Lii as the

relevance or significance of feature xj in the classification is

justified [28]. The figure displays the features in groups of six,

corresponding to the 31 markers, cf. Table 1.

A relatively small number of markers appears to contribute the

most significant features: FS-Lin (1), SS-Log (2), CD15-FITC (7),

CD117-PE (16), CD16-PC5 (21), CD34-PC5 (23), and CD10-PC7

(31). A more detailed discussion of the obtained Lii provides

further, valuable information: For instance, the histogram shape as

measured by skewness and kurtosis appears to be of minor

importance with respect to marker 16 (CD117-PE), while

measures of the corresponding histogram width (std, iqr) seem to

Figure 7. GMVLQ prototypes. Components of the difference vector (w2{w1) corresponding to the feature meanj , cf. Eq. (1), as represented by the
AML prototype w2 and healthy donor prototype w1 . Positive bars indicate that meanj is typically greater in AML patients than in healthy donors.
doi:10.1371/journal.pone.0059401.g007
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represent significant differences between AML patients and

healthy donors. On the contrary, for CD10-PC7 (marker 31)

skewness and kurtosis carry most discriminative power.

While several of the above mentioned markers have been

discussed as relevant in the context of AML in the literature, see

e.g. [7,28,29,30], their expression characteristics can vary a lot

with the actual AML variant. For instance, both, HLA-DR

positive and HLA-DR negative types of AML exist [31], the same

applies to several other markers.

Due to the limited size of the data set and because information

about AML subtypes was not disclosed, one should not over-

interpret the results presented above. It is very likely that our

findings in terms of relevances and prototypes are highly specific

for the provided data set which seems to represent particular types

of AML only. Nevertheless, our results demonstrate the in-

terpretability of the GMLVQ approach and illustrate how the

method could be used for efficient biomarker selection in

collaboration with domain experts.

Obviously, the outcome and interpretation of relevance

parameters depends on the precise form of the distance measure,

Eq. (3), or more generally, on the parameterization of the classifier.

For instance, systems with diagonal matrix L could only take into

account single features and would disregard the discriminative

power of particular pairs of features. Accordingly, featurs which

display low relevance in our scheme might become significant in

more complex classifiers. Nevertheless we believe that our method

provides valuable insight into the discriminative power of features

and pairs of features. The following simple experiment further

illustrates this claim: We ranked features according to the

corresponding Lii and restricted the obtained GMLVQ classifier

to the use of only 18 features for classification. All other features

were omitted when evaluating distances and scores, cf. Eqs. (3,5),

no re-training of the system was performed. The restricted

classifier was evaluated in terms of its test set ROC. Close to

perfect test set classification with an AUC&1 was retained when

using only the leading 18 features which all are derived from the

above mentioned 7 markers. It is interesting to note that also the

following two subsets of 18 features, i.e. with relevance ranks 19–

36 and 37–54, yielded excellent test set performance. Figure 9

shows how the resulting AUC decreases for subsequent subsets of

18 features with decreasing relevance. Performance deteriorated

when subsets of features with very low relevance were used,

resulting in essentially random class assignments with AUC&0:5.

A more reliable determination of discriminative markers, and

even more so, the selection of a minimal set of features for correct

classification would require systematic validation studies including

the re-training of the GMLVQ system on the respective feature

sets. Due to the limitations of the data provided in the challenge

we postponed this line of research to forthcoming studies.

Outlook
More challenging data sets will have to be inspected to further

demonstrate the usefulness of the approach in the analysis of flow

cytometry data. This should, of course, include the systematic

comparison with other methods. A comparison of various

classifiers in the context of the FlowCAP2/DREAM6 challenge

can be found in [1].

The identification of leukemia subtypes in a larger study

population requires the introduction of several prototypes

representing the class of AML patients. The extension of GMLVQ

Figure 8. Relevance profile. Diagonal relevances Lii of features i~1,2, . . . ,186: Vertical grid lines separate the groups of 6 quantities
corresponding to each of the 31 markers, cf. Table 1. Marker numbers are given explicitly for 7 highly relevant ones.
doi:10.1371/journal.pone.0059401.g008
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in terms of localized distance measures [9,11] appears also

promising in this context.

The reliable identification of feature relevances for marker

selection should also be based on larger, more representative data

sets. For a successful application of GMLVQ for bio-marker

selection in the context of tumor classification see [27]. The

application of multi-class, potentially localized, GMLVQ will open

new routes to the identification of discriminative markers in the

differential diagnosis of AML subtypes. In forthcoming studies, the

consideration of histogram specific distance measures will also be

studied along the lines of [15].

The analysis presented here was based on the entire cell

population of a given subject. More general problems, including

the above mentioned identification of AML subtypes, might

require an analysis on the level of individual cells. We intend to

consider the development of prototype based automated gating

procedures in forthcoming projects.

Available Software
The specific Matlab code used to generate our contribution to

the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid

Leukemia Challenge 2011 is publicly available at http://www.the-

dream-project.org/story/code [3].

A Matlab toolbox Relevance and Matrix adaptation in Learning Vector

Quantization, including GMLVQ and important variants, is made

available at http://matlabserver.cs.rug.nl/gmlvqweb/web/[32].
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