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Previously learned reward values can have a pronounced impact, behaviorally and
neurophysiologically, on the allocation of selective attention. All else constant, stimuli
previously associated with a high value gain stronger attentional prioritization than stimuli
previously associated with a low value. The N2pc, an ERP component indicative of
attentional target selection, has been shown to reflect aspects of this prioritization, by
changes of mean amplitudes closely corresponding to selective enhancement of high
value target processing and suppression of high value distractor processing. What has
remained unclear so far is whether the N2pc also reflects the flexible and repeated
behavioral adjustments needed in a volatile task environment, in which the values of
stimuli are reversed often and unannounced. Using a value-based reversal learning
task, we found evidence that the N2pc amplitude flexibly and reversibly tracks value-
based choices during the learning of reward associated stimulus colors. Specifically,
successful learning of current value-contingencies was associated with reduced N2pc
amplitudes, and this effect was more apparent for distractor processing, compared
with target processing. In addition, following a value reversal the feedback related
negativity (FRN), an ERP component that reflects feedback processing, was amplified
and co-occurred with increased N2pc amplitudes in trials following low-value feedback.
Importantly, participants that showed the greatest adjustment in N2pc amplitudes based
on feedback were also the most efficient learners. These results allow further insight into
how changes in attentional prioritization in an uncertain and volatile environment support
flexible adjustments of behavior.

Keywords: visual selective attention, attentional learning, feedback, N2pc, reversal learning, EEG, reward, value
learning

INTRODUCTION

Visual selective attention allows the prioritization of task-relevant over irrelevant stimuli in the
visual field. Traditionally, selective attention has been dissociated into goal-directed ‘‘top-down’’
driven selective attention and salience-driven ‘‘bottom-up’’ selective attention (e.g., Posner and
Petersen, 1990; Kastner and Ungerleider, 2000; Corbetta and Shulman, 2002). However, in recent
years it has become evident that this dichotomy does not suffice to explain all instances in which a
stimulus, or a set of stimuli, become the target of attentional priority (Awh et al., 2012; Anderson,
2013; Womelsdorf and Everling, 2015). A third source of attentional control, referred to as
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‘‘experience-driven’’, includes an individual’s recent selection-
history and reward learning (Della Libera and Chelazzi, 2006;
Anderson et al., 2011a; Awh et al., 2012; Irons and Leber, 2016).
In particular, previously learned reward value has been shown
to be a strong modulator of attentional prioritization (e.g., Della
Libera and Chelazzi, 2009; Krebs et al., 2010; Anderson et al.,
2011b, 2013, 2014; Della Libera et al., 2011; Hickey et al., 2011,
2015; Sali et al., 2014; Bucker and Theeuwes, 2017). For example,
non-salient and task-irrelevant distractors that have previously
been associated with reward can capture attention involuntarily
and cause slower reaction times (RTs) in classical visual search
tasks, and this is modulated by reward level, such that the higher
the previously-associated reward, the greater the subsequent
capture (e.g., Anderson et al., 2011b, 2013; Munneke et al., 2015).

Neurophysiological evidence for this increased attentional
capture by high-valued stimuli has been found in the mean
amplitude of the N2pc (e.g., Kiss et al., 2009; Feldmann-
Wüstefeld et al., 2015, 2016; Sawaki et al., 2015). The N2pc
is an EEG component thought to reflect attentional target
selection processes (Luck and Hillyard, 1994a; Woodman and
Luck, 2003; Eimer and Grubert, 2014; Eimer, 2014), likely
generated in intermediate and high levels of the ventral
visual processing pathway (Hopf et al., 2000, 2006). It onsets
earlier and is more pronounced when search targets are
associated with a higher value (Kiss et al., 2009), and the
presence of higher value distractors causes a decrease in
target enhancement and an increase in distractor suppression
during visual search (Feldmann-Wüstefeld et al., 2016). Sawaki
et al. (2015) found that prior to visual search, a high value
cue elicited stronger distractor suppression than a low value
cue, and thereafter a smaller N2pc component was observed
during the visual search. The authors argue that increased
suppression to a high value but non-informative (to target
selection) cue may have allowed better performance in the
following visual search, which was supported by decreased RTs
as well as decreased alpha oscillation levels prior to the visual
search that indicated heightened visual readiness (Sawaki et al.,
2015).

We have thus already gained substantial insight into the
behavior and neurophysiological processes that underlie
the selective processing of high- or low-valued target
and distractor signals. However, the distinction between
targets and distractors is often much less clear outside the
classic experimental environment. Real life is substantially
more volatile, and therefore the stimuli that surround us
must continuously be reevaluated with regards to their
relevance to our current goals. A critical goal of attentional
prioritization is likely reward maximization and loss
minimization (e.g., Navalpakkam et al., 2010), meaning
that in a dynamic world we have to continuously learn and
update our choice criteria with regards to the stimuli we
attend.

We do not yet know how flexibly attentional target
selection, as tracked by the N2pc component, can change
in response to changes in reward values. In this study, we
therefore employed a value-based reversal learning task in
which stimulus reward values changed repeatedly and without

warning. Specifically, participants were asked to attend to
and choose one of two target stimuli that differed in color
and likelihood of leading to a high reward outcome. This
color-value association changed often and unannounced, such
that the previously high value stimulus became the low
value stimulus and vice versa. Participants therefore had to
continuously re-evaluate, based on trial and error, whether
they were choosing the currently high valued stimulus. This
allowed us to assess learning-related changes in behavior,
and to compare neural processing when subjects were in
the process of learning the current value contingency, with
processing when they had already successfully learned the
current value contingency. Using EEG recordings, we examined
learning- and choice-related differences to the N2pc. Since
participants used trial-by-trial feedback to evaluate choices, we
also examined feedback-related differences to the N2pc and
learning-related differences to frontal feedback related negativity
(FRN), which has previously been shown to change during
reversal learning and has been suggested to encode prediction
error signals and behavioral adjustments (e.g., Cohen and
Ranganath, 2007; Chase et al., 2011; Walsh and Anderson,
2011).

Neural processing of the valued stimuli was isolated by
always placing one valued stimulus on the vertical midline,
thereby attributing the lateralized EEG activity to the second,
lateralized stimulus (e.g., Hickey et al., 2009; Feldmann-
Wüstefeld et al., 2016). Importantly, our task design did
not have a fixed dissociation into ‘‘target’’ and ‘‘distractor’’,
since either of the two stimuli could be selected for response
and the identity of the high and low value stimuli changed
frequently. Instead, we differentiated processing of the selected
(target) and the non-selected (distractor) stimulus on a trial-by-
trial basis dependent on participants’ choice performance. We
expected to observe learning-dependent changes in attentional
prioritization reflected in N2pc amplitudes, and in feedback-
processing reflected in FRN amplitudes (Figure 1). When
performing similar tasks (e.g., Cools et al., 2002; Chase et al.,
2011) participants generally show a low probability of choosing
the newly high-valued stimulus in the trials immediately
following a value reversal and therefore during learning of
the current value contingency, and a high probability of
choosing the currently high valued stimulus after successful
learning (Figure 1A). We hypothesized that changes in
N2pc and FRN amplitudes would parallel these changes in
learning behavior. Specifically, we hypothesized that with
successful learning of the current value contingency, the N2pc
elicited by the stimulus selected for response (and therefore
presumably actively attended), should increase, potentially
reflecting more precise attentional selection of the current
target stimulus (Figure 1B, left). We furthermore hypothesized
that the N2pc elicited by the stimulus that was not selected
for response (therefore presumably not actively attended)
should generally be smaller than that of the stimulus that
was selected for response, and it should further decrease
with successful learning, potentially reflecting more successful
avoidance of attentional capture by the current distractor
stimulus (Figure 1B, right). Alternatively, it is possible that
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FIGURE 1 | Hypotheses for learning-related changes in behavior, N2pc and feedback related negativity (FRN) amplitudes. (A) Successful learning (after learning) in
our value based reversal learning task is reflected in an increased probability of choosing the currently high valued target. (B,C) We expected N2pc and FRN
amplitudes to change in parallel with learning behavior. We hypothesized that N2pc amplitudes for the stimulus that was chosen for response, and therefore
presumably actively attended, would increase with learning, to potentially reflect more accurate attentional target selection with successful learning (B, left). In
contrast, we hypothesized that N2pc amplitudes for the stimulus that was not chosen for response, and therefore presumably not actively attended, would be
substantially smaller than that for the stimulus chosen for response, and would further decrease with learning, to potentially reflect more successful avoidance of
attentional capture by the distracting stimulus (B, right). (C) We hypothesized that FRN amplitudes would be greater during learning of the current value contingency
compared with after learning, potentially reflecting the greater propensity to actively assess feedback during periods that may require behavioral adjustment.

relatively fast learning during frequent value reversals is not
reflected in changes in early attentional stimulus selection
as measured with the N2pc, or that attentional processing
of only the current target or only the current distractor is
affected. Finally, we expected feedback processing reflected
in FRN amplitudes to be greater during learning of the
current value contingency compared with after learning,
potentially reflecting the greater propensity to keep track of
accumulated feedback when behavior needs to potentially be
adjusted following a value reversal (Figure 1C, Chase et al.,
2011).

MATERIALS AND METHODS

Participants
Twenty-six students of the Philipps-University Marburg
participated in the experiment for payment (8e/h) or course
credit. Contingent on performance, participants could collect
an additional monetary bonus of up to 6e. Three participants
were rejected from analysis because too many trials (>40%) were
lost due to EEG artifacts and non-learning (see ‘‘Data Analysis’’
section). Two participants had to be rejected due to technical
issues. Analyses are shown for the remaining 21 participants
(15 females, 6 males, mean age = 21.4). Three out of those 21
participants were left-handed. All participants were naïve to
the purpose of the experiment and had normal or corrected-
to-normal visual acuity and normal color vision. Visual acuity
and color vision were tested with an OCULUS Binoptometer 3
(OCULUS Optikgeräte GmbH, Wetzlar, Germany). This study
was carried out in accordance with the recommendations of
the Ethics Committee of the Department of Psychology at the
Philipps University Marburg with written informed consent

from all participants, in accordance with the Declaration of
Helsinki.

Apparatus and Stimuli
Participants were seated in a comfortable chair in a dimly lit
and electrically shielded room, facing a monitor placed at a
distance of approximately 100 cm from their eyes. Stimuli were
presented on a 22′′ screen (1680 × 1050 px) using Unity3D
5.3.5 (Unity Technologies, San Francisco, CA, USA). The display
showed eight stimuli (diameter of 2.7◦) arranged equidistantly
on an imaginary circle with an eccentricity of 5.5◦ of visual
angle (Figure 2A). All stimuli were presented against a gray
background. Six of the stimuli were dark gray circles (RGB 24,
24, 24); the remaining two stimuli were one of two different
target colors. Half the participants were presented with one pink
(RGB 237, 83, 255) and one green (RGB 29, 181, 13) circle, half
with one orange (RGB 217, 148, 14) and one blue (RGB 44, 168,
255) circle. All four possible stimulus colors were approximately
isoluminant with the gray background (45.8–55.65 cd/m2,
luminance background: 51.12 cd/m2). Each stimulus contained
a black line. Lines inside black stimuli were tilted 30◦ to the left
or the right, alternating around the circle. Lines inside colored
target stimuli were always tilted in opposite directions, by 45◦ to
the left or 45◦ to the right. The two colored stimuli were always
separated by one dark gray stimulus, such that one stimulus
was always presented on the vertical midline either below or
above the fixation cross, while the other was presented laterally
to the left or right of the fixation cross. This experimental design
was chosen because it allows isolating the processing related to
the color stimulus presented laterally from processing of the
color stimulus presented vertically. Traditionally, this design is
used to isolate target-related from distractor-related processing
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FIGURE 2 | Value-based reversal learning task and example block performance computed with Expectation Maximization (EM) algorithm. (A) The task started with a
central fixation cross, followed by the appearance of eight black circles. For the target display, lines with different orientation appeared in all circles and two circles
changed color to pink and green (or blue and orange). Participants had 1500 ms to report the line orientation (+45◦ or −45◦ tilt) inside one of the two colored stimuli.
Selecting the high value stimulus would lead to a high value feedback (+8) in 70% of the trials and to a low value feedback (+2) in 30% of the trials. This was reversed
for the low value stimulus. Feedback was presented for 600 ms. If an incorrect color-line orientation combination was reported, a +0 was shown in red font for
1200 ms. After 1000–1300 ms, a new trial was initiated. The response pad used by participants is illustrated below the task. (B) Top: schematic illustration of the
value reversals applied to the colored stimuli in consecutive blocks. Bottom: displayed is the probability of a high value choice across trials for 9 example blocks
performed by one representative participant. The probability of a high value choice was computed using an EM algorithm (see “Materials and Methods” section and
Smith et al., 2004). Dotted gray lines represent 95% confidence intervals. Dotted blue lines indicate the trial at which learning has occurred (TLearn) according to the
ideal observer confidence interval. Trials are split into during learning and after learning trials according to TLearn. Black and gray boxes above plots indicate high
value and low value choice trials, respectively.
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(e.g., Hickey et al., 2009). However, we do not have a pre-defined
target and distractor, rather the same color stimulus changes
roles several times throughout the experiment and participants
are free to decide which color stimulus they select in a trial (Irons
and Leber, 2016; see ‘‘Procedure’’ section below). Thus, we are
interested in how observers process stimuli which are associated
with different reward values that change roles throughout the
experiment.

Four response buttons were arranged on an Ergodex
DX1 response pad, such that participants could comfortably
place the middle and index fingers of both hands on the
buttons. Each participant was randomly assigned to respond
to a given stimulus color with the left or right hand, e.g.,
participants with green and pink stimuli were randomly assigned
to respond to pink stimuli with their right hand and green
stimuli with their left hand, or vice versa. In either case,
the left-most finger of each hand (middle finger left hand
and index finger right hand) was used to respond to a 45◦

tilt to the left (assuming a vertical line) and the right-most
finger of each hand (index finger left hand and middle
finger right hand) was used to respond to a 45◦ tilt to the
right.

Procedure
The task is illustrated in Figure 2. Participants were instructed
to keep their eyes on the center of the screen throughout
a trial. Each trial started with the appearance of a central
fixation cross for 500 ms, followed by eight dark gray
circles without lines, presented for 400–700 ms. Two circles,
one on the vertical midline and one on the horizontal
midline, then changed colors, and the lines appeared in
all stimuli. Since lines inside colored stimuli were always
tilted in opposite directions and participants were free to
respond to either color stimulus, two ‘‘correct’’ (high and
low value) choices were possible in any given trial (e.g.,
pink—rightward orientation and green—leftward orientation;
trial example from Figure 2A). An incorrect response was
recorded when a color/line-orientation pair was reported
that was not presented in the display (e.g., pink—leftward
orientation and green—rightward orientation). This stimulus
display was presented for 200 ms, after which participants
had 1500 ms to respond, followed by a delay of 600 ms
after which feedback was shown for another 600 ms. Feedback
had three possible values: a high-value ‘‘+8’’, a low-value
‘‘+2’’, or a ‘‘+0’’ for incorrect responses, the latter shown
in red font for 1200 ms. If no response was made within
1500 ms, participants were asked to respond faster in the next
trial via a written visual display. The inter-trial interval was
1000–1300 ms.

Each stimulus display always contained the two colored
stimuli (e.g., pink and green) and participants freely chose to
report the line orientation of either of the two stimuli. At
a given time, one color stimulus (e.g., pink) was associated
with a 70% probability (high value) of leading to the outcome
‘‘+8’’ and a 30% probability of leading to the outcome ‘‘+2’’.
The second color stimulus (e.g., green) was simultaneously
associated with a 30% probability (low value) of leading to

an outcome of ‘‘+8’’ and a 70% probability of leading to
an outcome of ‘‘+2’’. Across trials of a block, the color-
outcome probability association remained constant for 25 to
a maximum of 50 trials (e.g., color 1 high valued). After
trial 25, a running average of 80% high value choices over
the last 12 trials triggered a block change (e.g., now color
2 high valued), and if this did not occur by trial 50, the block
change happened automatically. The reversal was unannounced,
requiring the participant to use performance feedback to detect
reversals.

Participants were instructed to collect as many points as
possible and to respond as fast as possible without jeopardizing
response accuracy. They were explicitly informed of the
70%–30% reward outcome distribution and understood that
they should optimally always try to choose the color stimulus
with the 70% high value outcome probability. Participants
were also informed that the color-value associations would
change within the experiment. Participants performed a
total of 1200 trials, where stimulus positions and target
line orientations were pseudo-randomly chosen on each
trial. The color that was first associated with a high value
was randomly chosen in each experimental session. Each
experimental session (1200 trials) lasted approximately
100 min including a 10-min break after 50–60 min. Each
participant took part in one experimental session. After
the experiment, participants filled in a questionnaire to
assess strategies and other factors that may have influenced
performance.

EEG Recording
The EEG was recorded continuously using BrainAmp amplifiers
(Brain Products, Munich, Germany) from 64 Ag/AgCl electrodes
(actiCAP) positioned according to the international modified
10-20 system. Vertical (vEOG) and horizontal electrooculograms
(hEOG) were recorded as voltage difference between electrodes
positioned above and below the left eye, and to the left
and right canthi of the eyes, respectively. All channels were
initially referenced to FCz and re-referenced offline to the
average of all electrodes. Electrode impedances were kept
below 5 kΩ. The sampling rate was 1000 Hz with a high
cut-off filter of 250 Hz (half-amplitude cut-off, 30 dB/oct)
and a low cut-off filter of 0.016 Hz (half-amplitude cut-off,
6 dB/oct).

Data Analysis
Analysis was performed with custom MATLAB code
(Mathworks, Natick, MA, USA), utilizing functions from
the open-source Fieldtrip toolbox1.

Behavioral Data
Incorrect choices, defined as the reporting of a color/line-
orientation pair not present in the display (see ‘‘Procedure’’
section), were discarded from all further analyses (5.3 ± 0.12%).
To identify at which trial during a block a participant showed
statistically reliable learning of the current value rule, we

1http://www.ru.nl/fcdonders/fieldtrip/
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FIGURE 3 | Behavioral performance of the reversal learning task. (A) shows performance across all participants with the mean proportion of high value choices
across trials (Ai) and a histogram of the length of blocks (Aii) as well as numbers of blocks per session across all participants (Aii, inset). Length of blocks can
occasionally be shorter than the minimum of 25 trials because incorrect or late responses were not counted towards block lengths. (B) shows performance as
measured using the EM algorithm. The mean probability of a high value choice with the average trial at which learning has occurred across participants is shown in
(Bi), and the distribution of learning trials across all blocks of all participants is shown in (Bii) (mean learning trial: 12.51; median learning trial: 11). (C) displays the
effect of learning on reaction time (RT) across participants. Two asterisks indicate p < 0.01 (t-test on RT difference (during-after learning) across participants).

analyzed the trial-by-trial choice dynamics using the state-space
framework introduced by Smith and Brown (2003), and
implemented by Smith et al. (2004). This framework entails
a state equation that describes the internal learning process
as a hidden Markov or latent process and is updated with
each trial. The learning state process estimates the probability
of a high value choice in each trial and thus provides the
learning curve of participants (Figures 2B, 3B). The algorithm
estimates learning from the perspective of an ideal observer
that takes into account all trial outcomes of participants’
choices in a block of trials to estimate the probability that
the outcome in a single trial is a high value response or a

low value response. This probability is then used to calculate
the confidence range of observing a high value response. We
defined the learning trial (TLearn) as the earliest trial in a
block at which the lower confidence bound of the probability
for a high value response exceeded the p = 0.5 chance
level. This corresponds to a 0.95 confidence level for an
ideal observer to identify learning. The very first block of
an experimental session and blocks in which no learning
was identified were removed from further analyses. For most
analyses, trials were split based on their occurrence prior to TLearn
and after, into during learning trials and after learning trials,
respectively.
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RTs during and after learning were compared by computing
the difference between during and after learning trials per
participant and comparing these differences across participants
against a distribution with a mean of zero (t-test, α = 0.05). We
tested whether RT and the probability to switch between colors
were dependent on the previous trials’ feedback. For the first
analysis, we simply compared RT in trial n for trials in which
trial n-1 ended with a high value feedback and trials in which
trial n-1 ended with a low value feedback. This comparison was
made within participants as well as between participants (t-test,
α = 0.05). For the latter analysis, we extracted trials in which a
switch of choice was made from stimulus 1 (color 1) to stimulus
2 (color 2) or vice versa. We then computed a ratio of switch
trials that followed a low value feedback vs. switch trials that
followed a high value feedback. This ratio was then compared
across participants against a distribution with a mean of one
(t-test, α = 0.05).

EEG Data
For the N2pc analysis the EEG data was segmented into epochs
of 700 ms, starting 200 ms prior to stimulus display onset
and ending 500 ms after stimulus display onset. The time
period from −200 ms to 0 ms was used as baseline. Trials
with blinks (vEOG >80 µV) or horizontal eye movements
(hEOG >40 µV) were excluded from all analyses (across
participants: 78 ± 17 trials). The total trial number available for
analysis following artifact removal and removal of non-learned
blocks (see ‘‘Materials and Methods’’ section above) was
1047 ± 25 trials across participants. The N2pc was measured
at parieto-occipital electrode sites (PO3/4, PO7/8) as lateralized
response to the laterally presented colored stimulus. The choice
of electrode locations was based on the previously shown
topography of N2pc subcomponents (Hickey et al., 2009)
and equivalent to earlier studies (Feldmann-Wüstefeld and
Schubö, 2013; Feldmann-Wüstefeld et al., 2015). Difference
waves were calculated by subtracting activity ipsilateral from
activity contralateral to the lateral stimulus, and averaged
separately for chosen and non-chosen stimuli to isolate choice-
related N2pc differences during and after learning. In line
with previous studies, mean amplitudes for the N2pc were
computed for the time interval from 200 ms to 300 ms after
stimulus display onset (Luck and Hillyard, 1994b; Woodman
and Luck, 1999; Kiss et al., 2008; Hickey et al., 2010). Initial
comparisons were made using a two-way repeated-measures
analysis of variance (ANOVA) with the factors selection (chosen
vs. non-chosen) and learning (during vs. after), and followed
up by one-way repeated-measures ANOVAs (α = 0.05) with the
factor learning conducted separately for chosen and non-chosen
stimuli.

To investigate whether feedback in trial n-1 had an impact
on the mean amplitude of the N2pc component in trial n,
we isolated trials in which a choice to a lateralized color
target followed a choice to the same color target presented
lateralized, to verify that any effect was solely due to feedback.
Specifically, a trial combination (trial n and n-1) was only
selected for analysis if, e.g., a response was made to color
1 in trial n-1 and in trial n, and stimulus color 1 was

presented at a lateralized position (left or right) in both
trials. Following this restriction, total trial numbers available
for this analysis across participants were 212 ± 7. These
trials were then sorted based on the feedback (high or low)
received in trial n-1 and the mean amplitude of the N2pc
component in trial n was compared in these two groups
of trials. Comparisons were made using two-way repeated-
measures ANOVAwith the factors feedback value in trial n-1 and
learning.

For FRN component analyses we extracted the data into
800 ms epochs, lasting from −200 ms to 600 ms around
the feedback event. Similar to previous studies (e.g., Hajcak
et al., 2006; Cohen et al., 2007), the FRN component was
isolated at the Fz electrode, and as a control additionally at
the FCz electrode (see ‘‘Results’’ section, data not shown).
Difference waves were calculated by subtracting activity for
high value feedback from activity for low value feedback in the
250–325 ms following feedback onset, which generally fell within
the time range investigated in previous studies (for review see
Walsh and Anderson, 2012). The comparison of FRN mean
amplitude during vs. after learning was computed using two-way
repeated measures ANOVA, with the factors feedback value and
learning.

To assess a more general effect of learning on feedback
processing independent of valence (FRN), we performed a
three-way ANOVA with the factors learning, feedback value
and time window (12 non-overlapping 50-ms windows ranging
from 0 ms to 600 ms post feedback). Follow-up tests of simple
main effects were done using one-way ANOVA’s in each time
window with p-values corrected for multiple comparisons using
the Bonferroni-Holm method.

For visualization purposes only, the N2pc and FRN displayed
in Figures 4–6 were smoothed with a moving average filter of
25 ms (40 Hz).

Correlations
We compared mean differences in N2pc amplitudes following
low vs. high value feedback with mean behavioral measures
on an individual participant level using Pearson correlation
(α = 0.05). The three behavioral measures tested included:
(i) the proportion of blocks successfully learned; (ii) the
mean trial at which learning was deemed successful across
blocks (i.e., TLearn); and (iii) mean RT. These three behavioral
measures were not correlated across participants (Pearson
correlation, all p > 0.05). We compared correlation coefficients
obtained e.g., during learning vs. after learning by using a z-
test to assess differences between two dependent correlations
(Steiger, 1980). When the observed z-value was greater than
|1.96|, we considered the correlation coefficients significantly
different.

RESULTS

Reversal Learning
Behavioral results are plotted in Figure 3. Participants performed
the task very well and generally showed quick increases in
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FIGURE 4 | Lateralized N2pc components. (A,B) Contra- and ipsi-lateral mean amplitudes from pooled left (PO3, PO7) and right (PO4, PO8) parieto-occipital
electrodes are shown aligned to target display onset for lateralized chosen (A) and non-chosen (B) stimuli during (Ai,Bi) and after (Aii,Bii) learning. The gray bars
highlight the N2pc time window of analysis (200–300 ms). N2pc difference waves contrasted during (Ci) and after (Cii) learning. Example trials are illustrated in the
top left corners. The topography of the N2pc (200–300 ms) for non-chosen stimuli is shown below (Cii).

the proportion of high value choices following a value reversal
(Figures 2B, 3Ai,Bi), in line with the behavioral assumptions
(Figure 1A). This is further shown in the distribution of

block lengths observed across all participants, whereby the
majority of blocks had a length of approximately 25 trials,
indicating a performance of 80% high value choices around
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FIGURE 5 | Effect of previous trial feedback on N2pc amplitude. (A) Illustration of example trial sequences for “previous feedback high” and “previous feedback low”
trials. Trials for analysis were chosen based on the previous trial feedback (n-1), the N2pc analysis was done on trial n. (B) N2pc difference wave in trial n following
high value (blue line) or low value (red line) feedback in the previous trial. Gray shaded area highlight the N2pc analysis window (200–300 ms after stimulus display
onset). Asterisk indicates p ≤ 0.05 (one-way ANOVA). (C) Mean difference in N2pc amplitude following high vs. low value feedback during learning and after learning.
(D) Correlation between individual participants’ TLearn and N2pc amplitude differences between feedback (previous high-value feedback − previous low-value
feedback) during learning (left) and after learning (right). Blue lines represent least square fit. Note that large positive differences indicate a large N2pc difference for
high vs. low-value feedback in trial n-1.

the time trial 25 was reached (Figure 3Aii, note that blocks
shorter than 25 trials were possible following the rejection
of incorrect responses, see ‘‘Materials and Methods’’ section).
Participants performed a mean of 41.1 blocks per experimental
session. 86% out of all blocks were successfully learned

(across participants: 86 ± 1.6%). Learning of the current
value rule across blocks and participants occurred within a
mean of 12.5 ± 0.5 trials as identified using the Expectation
Maximization algorithm by Smith et al. (2004; Figure 3B,
median: 11).
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FIGURE 6 | FRN amplitudes. (A) Aligned to feedback presentation onset,
mean activity at Fz electrode is shown for high and low value feedback during
and after learning trials. (B) The mean difference (low value feedback − high
value feedback) for the FRN wave is shown during and after learning. The gray
bar indicates the analysis time window for the FRN (250–325 ms after
feedback onset). For visualization purposes only, the FRN wave was
smoothed with a moving average filter of 5 ms. (C) Topography of the FRN
(difference elicited by low vs. high value feedback) during and after learning.
Red circles identify Fz electrodes. (D) Mean activity from (A) is shown
collapsed across feedback valence to illustrate the time span of the simple
main effect of learning on feedback processing (gray bar).

RT significantly decreased with learning of the current value
rule. Participants showed on average 13.2 ms shorter RTs in trials
after acquiring the current rule (after learning, 609 ± 10 ms)
as opposed to trials beforehand (during learning, 622 ± 12 ms;
t(20) = 3.31, p = 0.004, Figure 3C).

Attention Deployment Changes with
Learning
Mean amplitudes for the N2pc were computed for the time
interval from 200 ms to 300 ms after stimulus display onset
(Figure 4). An initial two-way repeated-measures ANOVA
tested the effects of the factors selection and learning on
N2pc amplitudes. A main effect of selection (F(1,20) = 44.04,
p < 0.001) showed that a pronounced N2pc was elicited
when the chosen stimulus was presented at a lateralized
position (∆(contra-ipsi) = −1.901 ± 0.29 µV), which was
substantially reduced when the non-chosen stimulus was
presented laterally and the chosen stimulus on the vertical
midline (∆(contra-ipsi) = −0.271 ± 0.16 µV). A main effect
of learning additionally suggested that N2pc amplitudes
differed during learning and after learning (F(1,20) = 10.79,
p = 0.004). The post hoc comparison showed that N2pc
amplitudes were significantly larger (more negative) during
learning (∆(contra-ipsi) = −1.155 ± 0.20 µV) than after learning
(∆(contra-ipsi) = −1.016 ± 0.20 µV). Therefore, as initially
predicted (Figure 1B) we found main effects of both learning
and selection on the N2pc. However, contrary to our expectation
(Figure 1B), we did not find a significant interaction between
the two (F(1,20) = 1.04, p = 0.319). While the absolute
magnitude of the N2pc for the non-chosen stimulus was
higher during learning than after learning (Figure 4Cii), and
this was significant as a main effect of a one-way ANOVA
(F(1,20) = 5.36, p = 0.031) as predicted (Figure 1B, right),
the magnitude for the chosen stimulus was virtually identical
during and after learning (F(1,20) = 1.41, p = 0.249, Figure 4Ci),
which does not match our prediction (Figure 1B, left). Thus,
our results suggest that the primary effect of learning on
the N2pc amplitude in our task is to suppress attention
to non-chosen distractors, rather than to enhance attention
to chosen targets. The lack of apparent target enhancement
might explain why the two-way interaction was not significant,
despite the apparent effect of learning on the non-chosen
stimulus. Given this lack of a significant interaction, the
differential results should be treated as suggestive, rather than
definitive.

In summary, N2pc results showed that attention was mainly
deployed to the chosen stimulus compared with the non-chosen
stimulus, and that attention deployment was generally more
pronounced during learning compared with after learning. In
contrast to our hypotheses (Figure 1B), the direction of the
effects of learning were not opposing for chosen and non-chosen
stimuli. Thus, even though we did not observe an interaction
between learning and selection, we nevertheless found evidence
suggestive of successful learning mainly leading to a decrease in
processing of the non-chosen compared with the chosen stimulus
(Figure 4C). We therefore found partial evidence in line with
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our hypothesis for the effect of learning on non-chosen stimuli
(Figure 1B, right).

Low Value Feedback Is Followed by
Increased Attentional Target Selection
To investigate the impact of low or high value feedback
on behavioral or electrophysiological measures, we assessed
whether RT, probability to switch color choices, and N2pc
mean amplitudes were affected by the previous trial’s feedback.
Whether the feedback in trial n-1 was of high or low value
had no impact on RT in the following trial n (across all trials:
t(12,470) = −0.36, p = 0.719). It did, however, have an impact on
the likelihood to switch choices from stimulus color 1 to stimulus
color 2 or vice versa. Across participants, a choice switch was
more likely to occur following a low value feedback compared
with a high value feedback (t(20) = 5.10, p = 5.4× 10−5).

Feedback in trial n-1 also had an impact on N2pc mean
amplitude in trial n. Overall, if a choice was made to the same
target in trials n-1 and n (Figure 5A), the N2pc amplitude in
trial n was larger following a low value feedback in trial n-1
(∆(contra-ipsi) = −2.041 ± 0.30 µV), compared with following a
high value feedback in trial n-1 (∆(contra-ipsi) =−1.671± 0.33µV;
F(1,20) = 4.52, p = 0.046; Figure 5B). This was also the case when
we did not explicitly control for the choice in trial n (i.e., a
choice switch could occur from trial n-1 to trial n, F(1,20) = 5.51,
p = 0.029, data not shown). We were interested in whether
feedback had a differential effect on N2pc amplitudes depending
on the current state of learning, and therefore separated trials
into during learning and after learning trials. We did not find a
significant interaction between the factors feedback and learning
in a two-way ANOVA (F(1,20) = 0.82, p = 0.375). Nevertheless,
the difference in N2pc amplitudes following high vs. low value
feedback tended to be greater during learning than after learning
(Figure 5C). As previously, this should be treated as suggestive
rather than definitive.

Across individual participants, this difference in N2pc
amplitude following high vs. low value feedback was
significantly correlated with learning performance during
learning (Figure 5D, left), but not after learning (Figure 5D,
right). Specifically, the greater the individual difference in N2pc
amplitude following high vs. low value feedback during learning,
the faster the individual learned, i.e., TLearn was smaller (Pearson
correlation, R = −0.545, p = 0.011; Figure 5D, left). However,
the difference in N2pc amplitudes following high vs. low value
feedback after learning was not related to learning performance
(Pearson correlation, R = 0.058, p = 0.803; Figure 5D, right). This
difference in correlation coefficients between during learning
and after learning was significant (z-test to compare R-values,
z = 2.12, p = 0.034). The difference in N2pc amplitude following
high vs. low value feedback was not correlated with average RT
or the proportion of blocks learned (all p > 0.05).

Feedback Processing Is Increased during
Learning
Considering the finding that feedback has a differential effect on
N2pc amplitudes, and that this effect specifically during learning
correlates with successful learning behavior, we asked whether

feedback processing was affected by learning. We therefore
computed the mean amplitude of the FRN as a proxy for negative
feedback processing (Miltner et al., 1997). The FRN, computed as
the difference between low and high value feedback presentation,
was measured at the Fz electrode, since the amplitude difference
between low and high value feedback was largest at this electrode.
The qualitative and quantitative pattern of results did not change
when the FRN was measured at the FCz electrode instead (data
not shown). The analysis was done within the 250–325 ms
after feedback presentation, since the difference between low
and high value was largest in this window (see below) and it
generally fell within the range used in the literature (for review
see Walsh and Anderson, 2012). We found that processing
of feedback (low and high value) was generally increased
during learning compared with after learning (Figure 6A), and
the difference between low and high value feedback (FRN)
was more pronounced during learning compared with after
learning (during: ∆(lowFB-highFB) = −0.791 ± 0.17 µV; after:
∆(lowFB-highFB) = −0.426 ± 0.18 µV). The resulting FRN was
therefore substantially larger during learning as compared with
after learning (Figure 6B). This was confirmed with a two-way
ANOVA that showed a significant main effect of feedback value
(F(1,20) = 14.70, p = 0.001), a significant main effect of learning
(F(1,20) = 37.18, p < 0.001), and a significant interaction between
the two parameters (F(1,20) = 6.04, p = 0.023). Topographical
maps of the amplitude difference between low and high value
feedback during and after learning are shown in Figure 6C.

In addition to the change in FRN amplitude with learning,
visual inspection of the plots (Figure 6A), revealed amuch longer
effect of learning that was distinct from the effect of feedback
value and the interaction of feedback value and learning. To tease
apart these effects and to determine the time range of the effect
of learning, we ran a three-way ANOVAwith the factors learning
(during learning, after learning), feedback value (high, low), and
time window, where we defined 12 50 ms non-overlapping time
windows running from 0 ms to 600 ms following feedback onset.
We found interactions between the factors learning and time
window (F(11,220) = 7.13, p < 0.001), and feedback value and
time window (F(11,220) = 3.88, p < 001). Follow-up simple main
effects across time windows showed that feedback processing
per se differed with learning in all time windows from 150 ms
to 400 ms following feedback onset (F-values between 18.07 and
47.29, all p < 0.005, p-values in all other time windows >0.05,
Bonferroni-Holm multiple comparison corrected). A simple
main effect of feedback was only found in the 250–300 ms
time window (F(1,20) = 16.39, p = 0.008, all other p > 0.05,
Bonferroni-Holm multiple comparison corrected), confirming
the initial FRN analysis above. The previous suggests that
feedback processing independent of valence was increased during
learning in the time window from 150 ms to 400 ms following
feedback onset (Figure 6D).

DISCUSSION

In this study, we implemented a value-based reversal learning
task to explore in more detail how attentional target selection
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and feedback processing is realized in a highly volatile task
environment. We measured the N2pc, an EEG component
thought to reflect attentional target selection, and the FRN,
an EEG component thought to reflect negative feedback
processing or prediction error encoding, while participants
performed a value-based reversal learning task with probabilistic
feedback. Participants were required to frequently adjust their
color-based stimulus choice using recent reward feedback.
We found that: (i) participants used feedback efficiently to
reverse back and forth between the two stimulus choices
in accordance with the reversal of their respective values
(Figures 1A, 2, 3); (ii) successful learning of the current
value-contingency led to a decrease in N2pc amplitudes, which
was particularly evident for non-chosen (distractor) stimuli
compare with chosen (target) stimuli (Figure 4); (iii) negative
feedback in the previous trial was associated with an increase
in N2pc mean amplitude, which was selectively correlated
with an enhanced learning rate during learning (Figure 5);
and (iv) FRN amplitudes were increased during learning of
the current value contingencies, which co-occurred with a
more general increase of feedback processing during learning
(Figure 6).

We live in an environment that is usually much more
uncertain and volatile than a classical experimental setting, in
which objects or actions need to be continuously evaluated for
their relevance to our current goal.We attempted to imitate some
of this volatility by employing a value-based reversal learning
task, albeit one that is clearly more restrictive than the world
outside the laboratory.

To the best of our knowledge this is the first study that
investigated learned value-dependent changes of the N2pc
amplitude elicited by chosen (i.e., selected) and non-chosen
(non-selected) stimuli in a task in which participants were
free to select a stimulus for response. Most studies that have
investigated the effects of value or reward on attentional stimulus
selection in behavior, have used tasks with a predefined, fixed
target and distractor-assignment, and in which the trial-by-trial
association between the specific stimulus features and reward
were in fact irrelevant to solving the task (Della Libera and
Chelazzi, 2009; Hickey et al., 2010, 2015; Anderson et al., 2011a,
2013; Itthipuripat et al., 2015; Sawaki et al., 2015; Feldmann-
Wüstefeld et al., 2016), often to dissociate reward-related
processes from goal-related processes of attentional selection.
Or they have used tasks in which value associations of targets
or cues were kept constant (Kiss et al., 2009; Raymond and
O’Brien, 2009; Krebs et al., 2010; Le Pelley et al., 2013; San
Martín et al., 2016), or if they changed, were specifically trained
(Navalpakkam et al., 2010). None of these studies allowed insight
into how attentional selection changes when the values of target
stimuli change unannounced and require repeated adjustment of
behavior.

We used probabilistic feedback so that subjects needed
to keep track of feedback over multiple trials to determine
the current high-value stimulus. Following an unannounced
value reversal, participants tended to continue to choose
the low value (previously high value) stimulus for response
for multiple trials, before switching their choice behavior

to the current high value stimulus. RTs were longer
during learning than after learning (Figure 3C), suggesting
that participants optimized their attention allocation
to stimulus features with learning of the current value
contingencies.

Since both stimuli were repeatedly associated with a high
and a low value, both were frequently selected for a response.
Thus, the dissociation between target and distractor is not
as clear on a trial by trial basis as in previous literature
(see above). For this reason, it was initially unclear to what
extent processing of the chosen (that is, the selected target)
stimulus would be enhanced throughout learning and how
efficiently the brain could evade attentional capture by the
non-chosen (non-selected distractor) stimulus, which always
posed a distraction to solving the task quickly and accurately. We
initially predicted that as attentional prioritization shifts towards
the chosen stimulus with learning, this would concomitantly
be reflected by an N2pc increase for the chosen stimulus
(Figure 1B, left) and an N2pc decrease for the non-chosen
stimulus (Figure 1B, right). Instead we found that N2pc
amplitudes decreased with learning in general, which was true
on average for both chosen and non-chosen stimuli. However,
this decrease in amplitude with learning seemed more apparent
for the non-chosen stimulus (Figure 4C). This suggests that
the primary effect of learning in this task was a decrease
in attention to the non-chosen lateralized stimulus, which
potentially indicates suppression (Figure 4Cii). In contrast,
the amplitude of the N2pc that reflected processing of the
chosen lateralized stimulus did not seem to substantially
change with learning (Figure 4Ci). Thus, we find some
evidence for our initial hypothesis of how learning affects
processing of non-chosen stimuli (Figure 1B, right), but not
for our hypothesis of how learning affects processing of
chosen stimuli (Figure 1B, left). These results suggest that
following a value reversal, when participants needed to actively
re-evaluate their current choices, distraction by the non-chosen
stimulus was not as effectively evaded as after learning, when
participants often showed plateau-performance with a high
probability of choosing the currently high-valued stimulus
(Figures 2, 3).

These results suggest that efficient attention allocation in
this highly volatile task design was more likely observed for
processing of the non-chosen stimulus in the form of a reduced
or suppressed N2pc, and not as an N2pc enhancement of
the chosen stimulus. We should note however that although
we observed suppression for lateralized non-chosen stimuli,
independent of learning, the amplitude elicited in this time
interval was still negative, and not positive as has been
observed previously (e.g., Hickey et al., 2009; Feldmann-
Wüstefeld et al., 2015, 2016; Sawaki et al., 2015). It is therefore
difficult to decide whether value learning has led to a reduced
capture by the non-chosen (i.e., non-selected) stimulus or
an actual suppression, as both interpretations would account
for a reduction in N2pc amplitude. Similarly, it is possible
that in a less volatile task design in which learning takes
place over a much longer time window (e.g., days), an effect
of learning on attentional processing would predominantly
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be observed for the chosen (target) stimulus, as has been
shown previously (Clark et al., 2015; Itthipuripat et al.,
2017). We should therefore be careful of over-interpreting the
absence of a strong effect of learning on N2pc amplitudes
of the chosen stimulus in this task, as such an effect could
have been revealed with a larger number of after-learning
trials.

That attention and learning are closely intertwined concepts
has been the subject of attentional learning theories for some
time (Mackintosh, 1975; Pearce and Hall, 1980; Le Pelley, 2004).
The Mackintosh and the Pearce and Hall models of attentional
learning predict contradicting relationships between attention
and learning. According to Mackintosh (1975), attention is
biased towards stimuli that have a higher predictive value, as they
are more likely to yield a rewarding outcome (e.g., Mackintosh
and Little, 1969; Le Pelley et al., 2013). The Pearce and Hall
model on the contrary predicts that unexpected and surprising
outcomes that lead to a prediction error are associated with
an increase in attention (e.g., Wilson et al., 1992; Anderson
et al., 2013). Both theories have received extensive empirical
support (Pearce and Mackintosh, 2010) and there have been
efforts to reconcile their findings (Holland and Gallagher, 1999;
Dayan et al., 2000; Le Pelley, 2004; Hogarth et al., 2010). One
possible solution suggests that there is a distinction between
two aspects of attention in associative learning: attention that
is concerned with action, and attention that is concerned
with learning. It suggests that one should attend to the most
reward-predicting stimuli or features when making a choice,
but should attend to the most uncertain stimuli or features
when learning from prediction errors (Holland and Gallagher,
1999; Dayan et al., 2000; Hogarth et al., 2010; Gottlieb,
2012).

Even though our task was not designed to address this
debate explicitly, we found evidence that in a highly volatile
environment that encourages continuous learning, attention is
increased during periods of uncertainty in line with Pearce
and Hall (1980). In particular, we tested whether feedback
itself could influence the allocation of attention to target
stimuli and found that low-value feedback was followed
by a larger N2pc amplitude on the next trial than was
high-value feedback (Figure 5B), when the only difference
between two consecutive trials was the feedback received
after the first trial (Figure 5A). Importantly, only during
learning did this difference in N2pc amplitude following low
vs. high value feedback correlate with individual participants’
learning rates—participants in which the difference in feedback-
dependent N2pc amplitude was particularly large learned faster
(Figure 5D, left). This suggests that during learning, when
participants needed to actively reevaluate their stimulus choices
and relearn the current value contingency, allocating more
attention to the choice stimulus after experiencing a negative
outcome compared with a positive outcome, led to faster
and more successful adjustment of behavior according to the
current value contingency. In addition, this suggests that in
a highly volatile task environment that requires continuous
learning and value updating, with sources of uncertainty found
in the inherent reward probability distributions (70%–30%)

and in the sudden value reversals (Yu and Dayan, 2005;
Payzan-LeNestour and Bossaerts, 2011), participants allocate
more attention to an uncertain compared with a more certain
choice stimulus, in line with Pearce and Hall (1980). It
is possible that in a less volatile environment in which
participants have much longer periods of consistent choices,
i.e., periods in which participants know the current value
contingency with high certainty and learning presumably no
longer takes place, we could have observed an increase in
attention during target selection, which would be in line
with Mackintosh (1975). Although we are using the N2pc
amplitude as a proxy for selective attention, which may
limit the implications to be drawn, our results are consistent
with the idea that when tasks demand states of active
learning, attention is increased following uncertain choice
outcomes or events, and this correlates with enhanced learning
performance.

Another prominent EEG component that has been shown
to change during reversal learning is the FRN (e.g., Chase
et al., 2011; von Borries et al., 2013; Donaldson et al., 2016).
The FRN has been thought to encode negative feedback,
prediction error signals, outcome valence and behavioral
adjustment (Holroyd and Coles, 2002; Cohen and Ranganath,
2007; Bellebaum and Daum, 2008; Chase et al., 2011; Walsh
and Anderson, 2011; von Borries et al., 2013; Donaldson
et al., 2016). Using a probabilistic reversal learning paradigm
similar to ours, Chase et al. (2011) have shown that the
FRN amplitude scales with a negative prediction error signal
obtained with a reinforcement learning model, whereby
the FRN amplitude was largest following a reversal and
diminished as a behavioral adjustment approached. Recent
evidence using a reversal learning task, in which positive as
well as negative outcomes could signal a need for behavioral
adjustment and could be equally unexpected, suggests that
the FRN may be more related to outcome valence (positive
vs. negative) than to expectancy or behavioral adjustment
(von Borries et al., 2013; Donaldson et al., 2016). We
computed the FRN as the difference wave between the
presentation of low-value and high-value feedback, and then
compared the difference during learning with after learning
(Figure 6B). We found that the FRN was substantially larger
during learning than after learning. Although we should
be careful of over-interpreting, since our task confounds
the accumulation of negative outcomes with the need for
behavioral adjustment, these results suggest that low-value
as well as high-value feedback are processed differently
during periods of uncertainty (during learning) when
stimulus-value associations need to be updated (Figure 6A),
which cannot be solely explained by differences in outcome
valence.

In addition to the effect of learning on the FRN amplitudes, we
also observed a more general and longer lasting effect of learning
on feedback processing that was independent of feedback valence
(Figure 6D). Feedback processing differed between 150 ms and
400 ms following feedback onset during learning of current
value contingencies compared with after learning, which could
indicate an increase in feedback processing per se. The FRN
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is thought to originate in anterior cingulate cortex (ACC;
Hickey et al., 2010), and this prolonged window of differential
feedback processing matches the time-resolved activity level of
ACC during reward presentation observed previously (Hickey
et al., 2010). In our task, enhanced ACC activity, during
periods in which participants experience increased levels of
uncertainty that potentially require a behavioral adjustment,
could potentially reflect the necessity of increased levels of
cognitive control (Shenhav et al., 2013, 2016), or increased
activity related to the decision of moving from a state of
exploitation to a state of exploration (Kolling et al., 2016).
Together with increased attention during learning and following
negative feedback, these signals may be part of the underlying
neural network that drives behavioral adjustment during periods
of increased uncertainty that concludes in the switch of stimulus
choice.

Overall, we found evidence that during periods of active
behavioral adjustment in a changing and volatile task
environment, feedback processing of recent choices and
attentional processing is amplified and co-occurs with increases
in attentional allocation following low-value feedback compared
with high-value feedback that possibly promotes increased
learning speed. Following successful learning of current value

contingencies, during periods of stable behavior, attentional
allocation then becomes potentiallymore efficient by suppressing
non-relevant distractor processing. These results provide insight
into how changes in attentional prioritization and feedback
processing may support flexible and repeated behavioral
adjustments in humans.
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