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Single neurons can dynamically change the gain of their spiking responses to take into

account shifts in stimulus variance. Moreover, gain adaptation can occur across multiple

timescales. Here, we examine the ability of a simple statistical model of spike trains,

the generalized linear model (GLM), to account for these adaptive effects. The GLM

describes spiking as a Poisson process whose rate depends on a linear combination

of the stimulus and recent spike history. The GLM successfully replicates gain scaling

observed in Hodgkin-Huxley simulations of cortical neurons that occurs when the ratio

of spike-generating potassium and sodium conductances approaches one. Gain scaling

in the GLM depends on the length and shape of the spike history filter. Additionally, the

GLM captures adaptation that occurs over multiple timescales as a fractional derivative of

the stimulus envelope, which has been observed in neurons that include long timescale

afterhyperpolarization conductances. Fractional differentiation in GLMs requires long

spike history that span several seconds. Together, these results demonstrate that the

GLM provides a tractable statistical approach for examining single-neuron adaptive

computations in response to changes in stimulus variance.

Keywords: adaptation, gain scaling, fractional differentiation, generalized linear model (GLM), Hodgkin and Huxley

model

1. INTRODUCTION

Neurons adapt their spiking responses in a number of ways to the statistics of their inputs (Fairhall,
2014; Weber and Fairhall, 2019). A particularly well-studied example is adaptation to the stimulus
variance, which can provide important computational properties. First, neurons can show gain
scaling, such that the input is scaled by the stimulus standard deviation (Fairhall et al., 2001a;
Mease et al., 2013). Scaling of the gain by the stimulus standard deviation implies that single
spikes maintain the same information about the stimulus independent of its overall amplitude. This
adaptation of the “input gain” with stimulus standard deviation can occur very rapidly. Second, the
mean firing rate can adapt to variations in the stimulus variance across multiple timescales (Fairhall
et al., 2001b; Wark et al., 2007). This form of spike frequency adaptation can in some cases have
power-law properties (Pozzorini et al., 2013) and serve to compute the fractional derivative of the
variance (Anastasio, 1998; Lundstrom et al., 2008).
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One approach to studying such adaptation is to use
Hodgkin-Huxley style (HH) conductance based models to
explore potential single-neuron mechanisms underlying these
computations (Lundstrom et al., 2008; Mease et al., 2013).
Although HH models can indeed capture such behavior, the
mechanistic HH framework is not ideally suited to reveal its
dynamical basis as HHmodel parameters are difficult to interpret
in terms of computation and coding. Moreover, fitting HH
models to intracellular data is difficult (Buhry et al., 2011;
Csercsik et al., 2012; Vavoulis et al., 2012; Lankarany et al., 2014),
and only recently methods that fit HH models to spike trains
alone have been gaining success (Meng et al., 2011, 2014).

In contrast, statistical point-process models based on the
generalized linear model (GLM) framework have provided a
tractable tool for modeling spiking responses of neurons in
sensory systems (Truccolo et al., 2005; Pillow et al., 2008).
Previous work has shown the utility of finding linear features that
can explain the spiking behavior of HH models (Agüera y Arcas
and Fairhall, 2003; Agüera y Arcas et al., 2003; Weber and Pillow,
2017). Unlike simple linear/non-linear models, GLMs also
incorporate a dependence on the history of activity, potentially
providing a helpful interpretative framework for adaptation
(Mease et al., 2014; Latimer et al., 2019a). We therefore fit GLMs
to spike trains generated from HH neurons. Here, we considered
gain scaling and fractional differentiation individually by using
one set of HH neurons that showed gain scaling and another
that produced fractional differentiation. Our goal here is not to
analyze the details of these models to explain the adaptation
phenomena, but to use thesemodels as a source of “experimental”
data with which to test the ability of the GLM to capture the
same phenomena. We found that the GLMs could reproduce the
single-neuron adaptive computations of gain scaling or fractional
differentiation. Capturing gain scaling across a range of HH
active conductance parameters depended both on the choice
of link function and spike history length. As the length of the
spike history filter increased, the stimulus dependency of neurons
changed from differentiating to integrating (Stevenson, 2018).
Capturing adaptation as a fractional derivative required a history
filter that could account for long timescale effects: on the order of
10 s. Together these results demonstrate that the GLM provides
a tractable statistical framework for modeling adaptation that
occurs at the single-neuron level.

2. MATERIALS AND METHODS

To generate spike train data that display the two types of
adaptation we study, we use Hodgkin-Huxley neuron models
with parameter choices and channel dynamics previously shown
to reproduce effects seen in experimental data. In principle we
could use a single model that incorporates both gain scaling and
fractional differentiation. While both types of adaptation have
been observed in fly neuron H1 (Fairhall et al., 2001b), they
have not been reported to occur in the same cortical cells. We
therefore choose here to separate the two effects by considering
two previously proposed HH models: one that has been applied
to model gain scaling (Mease et al., 2013) and a second which

exhibits fractional differentiation (Lundstrom et al., 2008). We
verified (data not shown) that both effects can be obtained within
the same model, but with slight quantitative differences.

2.1. Gain Scaling
Gain scaling refers to the case when for an input-output function
of a neuron, the input gain is proportional to the standard
deviation (SD) of the stimulus (σ ). Thus, the gain depends on the
recent context. If a neuron achieves perfect gain scaling, the firing
rate R given a particular stimulus value, s, and input standard
deviation can be written as:

Rσ (s) = R̄σ R̂
( s

σ

)

(1)

where the normalized stimulus ŝ = s
σ
, and the output gain, R̄σ , is

constant in s.
To quantify the degree of gain scaling in a neuron’s spiking

output, we measure the firing rate function in response to a
white-noise input, x(t), at different SDs and constant mean
µ (Figure 1A). For each standard deviation, we compute the
normalized spike-triggered average (STA; Figure 1B) (Rieke
et al., 1999). We then compute the stimulus as the convolution
s(t) =

∫ t
0 STA(t

′)(x(t− t′)−µ)dt′. The spike rate function is then
defined probabilistically as

Rσ (s)1t = pσ (spk|ŝ) =
pσ (ŝ|spk)

pσ (ŝ)
pσ (spk) (2)

where the right side follows from Bayes’ rule. The average firing
rate in time bin of width 1t is pσ (spk). Thus, we get R̄σ 1t =

pσ (spk) and R̂
(

s
σ

)

=
pσ (ŝ|spk)
pσ (ŝ)

. The spike-triggered stimulus

distribution, pσ (ŝ|spk), is the probability of the stimulus given
that a spike occurred in the bin. By definition the marginal
stimulus distribution, pσ (ŝ), is a standard normal distribution
which does not depend on σ . Therefore, if pσ (ŝ|spk) is similar
across different values of σ , gain scaling is achieved because R̂(ŝ)
does not depend on σ .

We measure gain scaling in terms of the spike-triggered
distribution. We do so using the 1st Wasserstein, or
earth-mover’s metric (Rubner et al., 1998) (we obtained
qualitatively similar results using the symmetrized Kullback-
Leibler divergence and Jensen-Shannon divergence). The
Wasserstein metric is a distance function between two
probability distributions. Intuitively, it can be thought of as
the minimum work needed to transform one distribution into
the other by moving probability mass as if the distributions are
piles of sand (Supplementary Figure 1). Formally, it is defined as

W1(µ, ν) = inf
γ∈Ŵ(µ,ν)

∫

M×M
d(x, y) dγ (x, y) (3)

where ν and µ are probability measures on a metric space M
with metric d(·, ·). The infimum is taken over the collection of
measures,Ŵ(µ, ν), onM×M withµ and ν marginal distributions.
We compute the gain scaling score at σ as

Dσ = W1(p1(ŝ|spk), pσ (ŝ|spk)). (4)
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A distance close to 0 indicates that the spike-triggered
distributions are similar, and therefore the cell is gain scaling
its input (Figures 1C,D). Larger values of Dσ indicate that the
input-output function does not scale with σ (Figures 1E–G). We
computed the spike-triggered distribution using a histogramwith
bins of width 0.1.

2.1.1. Gain Scaling in Hodgkin-Huxley Neurons
A previous study by Mease et al. (2013) found that Hodgkin-
Huxley models could account for gain scaling observed in
pyramidal neurons. Thus we simulated spikes from single-
compartment Hodgkin-Huxley style models of pyramidal
neurons, providing a source of data with which to explore
the expression of this property using GLMs. In this model,
the membrane voltage depends on voltage-gated sodium and
potassium conductances (GNa and GK) and a passive leak
conductance (GL). The voltage and gating dynamics followed the
equations (Mainen et al., 1995)

C
dV

dt
= Istim(t)− GNam

3h(V − ENa)− GKn(V − EK)

− GL(V − EL) (5)

such that for each gate x ∈ {n,m, h}

τx(V)
dx

dt
= x∞(V)− x, τx(V) =

1

αx(V)+ βx(V)
(6)

n∞(V) = αn(V)τn(V), m∞(V) = αm(V)τn(m),

h∞(V) =
1

1+ exp
(

V+65
6.2

) (7)

αn(V) =
20(V − 20)

1− exp
(

−V−20
9

) βn(V) =
−2(V − 20)

1− exp
(

V−20
9

) (8)

αm(V) =
182(V + 35)

1− exp
(

−V+35
9

) βm(V) =
−124(V + 35)

1− exp
(

V+35
9

)

αh(V) =
24(V + 50)

1− exp
(

−V+50
5

) βh(V) =
−9.1(V + 75)

1− exp
(

V+75
5

) .

The parameters of the model were the same as in Mease et al.
(2013). The reversal potentials were ENa = 50, EK = −77, and
EL = −70mv and the capacitance was C = 1µF/cm2. The leak
conductance was set to 0.4pS/µm2 so that the resting membrane
had a time constant of ∼25ms. As in Mease et al. (2013), we
explored a range of values for the active conductances GNa and
GK : from 600 to 2,000 pS/µm2 in increments of 100pS/µm2.
Simulations were performed in MATLAB using a fourth-order
Runge-Kutta method with step size 0.01ms. Spike times were
defined as upward crossings of the voltage trace at -10mv
separated by at least 2ms.

The input was constructed as independent Gaussian draws
every 1 ms with parameters N

(

µ, (4µσ )2
)

where σ was set to
1.0, 1.3, 1.6, or 2.0. The mean was constrained to be proportional
to the standard deviation similarly the current-clamp protocol
used to study gain scaling in Mease et al. (2013). For each value
of GNa and GK , the mean input, µ, was tuned so that at baseline,

where σ = 1, each simulation produced ∼10spk/s using a 100s
simulation.We did not consider values ofGNa andGK that spiked
spontaneously (i.e., spiked when µ = 0). We simulated 2,000 s of
spiking activity at each stimulus level (generating∼20,000 spikes
at σ = 1).

2.2. Fractional Differentiation
We next looked at periodic modulations of the stimulus standard
deviation to model long timescale adaptive effects. We applied
stimuli consisting of Gaussian noise with sinusoidal or square
wave modulation of the variance between 1 and σ with σ

again taking values of 1.3, 1.6, or 2.0, at a number of different
frequencies. We analyzed simulated spike trains across seven
noise modulations periods: 1, 2, 4, 8, 16, 32, and 64s. The
simulations were 3,200 s for each period, giving a minimum of
50 cycles per period.

Lundstrom et al. (2008) found that pyramidal neurons can act
as fractional differentiators of the stimulus amplitude envelope
for this type of input. Fractional derivatives generalize the
derivative operator such that, analogous to taking the first
derivative of a function twice to obtain the second derivative,
taking the fractional derivative of order α = 1/2 twice results
in the first derivative (Oldham and Spanier, 1974). Fractional
differential filters respond to a square stimulus as an exponential-
like decay with a time constant that depends on α (Figures 2A,B).
Fractionally differentiating a sinusoidal stimulus produces a
frequency dependent gain change (Figure 2C)

gain ∝ f α (9)

where f is the frequency. Additionally, fractionally differentiating
the sine function gives a frequency independent phase shift, φ, of
the stimulus (Figure 2D):

φ = α
π

2
. (10)

These three measures can be combined to estimate approximate
fractional differentiation by neurons.

To compute the fractional derivative order, we computed
cycle-averaged responses obtained using 30 bins per cycle at
each stimulus amplitude modulation frequency. We fit the
cycle-averaged square-wave responses across all modulation
frequencies as the best fitting fractional derivative of the stimulus
amplitude (plus a baseline rate) using least-squares. To fit α to
the phase lead of the sine-wave responses, we computed mean
phase lead (φ) across frequencies and applied Equation (10). To
fit α to the gain of the sine-wave responses, we applied Equation
(9) by fitting a least-squares regression between the frequency of
modulation and the logarithm of the gain.

2.2.1. Fractional Differentiation by Hodgkin-Huxley

Neurons
We simulated neurons from the standard HH model with
three additional afterhyperpolarization (AHP) currents with time
constants ranging from 0.3 to 6s as was done by Lundstrom et al.
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FIGURE 1 | (A) The voltage (V ), stimulus current (Istim), and stimulus filtered by the STA (s) for Hodgkin-Huxley simulations of a neuron stimulated with white noise at

two different standard deviation levels (black σ = 1; red σ = 2). In this simulation, the total sodium and potassium conductances were equal

(GNa = GK = 1, 000pS/µm2 ). (B) The STAs measured at the two stimulus standard deviations. (C) Left shows the spike-triggered distributions of the STA filtered

input (s) and right shows the distributions over the STA filtered input scaled by the standard deviation (ŝ). The shaded areas show the prior stimulus distributions,

which are Gaussian distributed with standard deviation σ . (D) The input-output functions of the stimulation at each stimulus level. Scaling the input by the standard

deviation shows that the simulated neuron scales the gain of the input by the stimulus standard deviation (right). (E) The STAs measured at two standard deviations

from a Hodgkin-Huxley simulation with high potassium and low sodium total conductances (GNa = 600 and GK = 2, 000pS/µm2 ). The spike-triggered stimulus

distribution (F) and scaled input-output function (G) for this simulation does not show gain scaling.

(2008). The equations for the HH neurons were

C
dV

dt
= Istim(t)− GNam

3h(V − ENa)− GKn
4(V − EK)

− GL(V − EL)−

3
∑

i=1

GAHP,iai(V − EAHP)

(11)

The gates x ∈ n,m, h follow the dynamics

τx(V)
dn

dt
= x∞(V)− x, τx(V) =

1

αx(V)+ βx(V)
,

x∞(V) = αx(V)τx(V) (12)

αn(V) =
0.01(V + 55)

1− exp(−0.1(V + 55))
,

βn(V) = 0.125 exp (−(V + 65)/80) (13)

αm(V) =
0.1(V + 40)

1− exp(−0.1(V + 40))
,

βm(V) = 4 exp (−(V + 65)/18)

αh(V) = 0.07 exp (−(V + 65)/20),

βh(V) =
1

1+ exp(−0.1(V + 35))
.

The AHP currents have linear dynamics and are incremented by
1 at spike times (tspk,i):

dai

dt
= −

ai

τi
+

∑

i

δ(t − tspk,i) (14)
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FIGURE 2 | Example of a fractional derivative of several orders. Each row shows a different fractional order (α) of the function in the top row. (A) The fractional

derivatives of a step function with three different periods (colors) shows exponential filtering with an α dependent timescale. (B) The fractional derivatives in A scaled

by period. (C) The fractional derivatives of a sine function for three different periods. As α increases, the fractional derivative shows greater frequency-dependent gain.

(D) The same function as in (B) with the sine functions scaled by period. At higher orders, the phase lead of the fractional derivative relative to the signal increases

equally over frequencies.

where δ is the Dirac delta function. The parameters standard
were: GNa = 120, GK = 36, GL = 0.3mS/cm2; ENa = 50, EK =

−77, EL = −54.4mv; andC = 1µF/cm2. The AHP conductances
were set relative to the leak conductance: GAHP,· = (0.05, 0.006
and 0.004)GL. The AHP reversal potential was EAHP = −100mv
and the AHP timescales were set to τi = (0.3, 1, and 6)s.

Similarly to the gain scaling simulations, the stimulus
was sampled independently in each 1ms bin from a normal
distribution with mean µ. The time-dependent variance given σ

and the period p was 4µfp(t, σ ). The time-dependent modulation
function for the square-wave stimulus was

fp(t, σ ) = 1+ (σ − 1)

⌊

1

2
sin

(

2tπ

p

)

+ 1

⌋

(15)

where ⌊·⌋ denotes the floor operator, and the function for the
sine-wave stimulus was similarly defined as

fp(t, σ ) = 1+ (σ − 1)

(

1

2
sin

(

2tπ

p

)

+
1

2

)

. (16)

The parameter µ was calibrated so that with no variance
modulation (i.e., σ = 1), the simulated cells produced∼ 10spk/s.

2.3. Generalized Linear Models
TheGLMdefines the spiking activity as an autoregressive Poisson
process with (Figure 3A). The spike rate at time t is given as a
linear–nonlinear function of the stimulus and the spike history

λt = f
(

k⊤stimxt + h⊤spkyhist,t + b
)

(17)

where xt is the stimulus vector preceding time t (the values of
Istim), and yhist is the spike history vector. The parameters of the
GLM are the stimulus filter (kstim), the spike history filter (hspk),
and baseline rate (b). For the inverse-link function, f , we used the
canonical exponential function except where otherwise noted.

The log-likelihood of a binned spike train, y, given the model
parameters is then

log p(y|kstim, hspk, b) =

T
∑

t=1

−λt1t + yt log(λt)+ const. (18)

For all model fits and simulations, we set 1t = 1 ms.
We numerically maximized the log-likelihood using conjugate-
gradient methods.

To reduce the number of model parameters, we parameterized
the filters using smooth basis functions (Figure 3B). The stimulus
filter was parameterized using 15 raised cosine basis functions:

kstim(t) =

15
∑

j=1

zjgj(t),

gj(t) =

{

1
2 cos

(

log[t+c]−φj

a

)

+ 1
2 for

log[t+c]−φj

a ∈ [−π ,π]

0 otherwise

(19)

where t is in seconds. To fit kstim, we optimized the weights zj.We
set c = 0.02 and a = 2(φ2 − φ1)/π . The φj were evenly spaced
from φ1 = log(T0/1000+c), φ15 = log(Tend/1000+c) where the
peaks of the filters are in the range T0 = 0 and Tend = 100 ms.
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FIGURE 3 | (A) Diagram of the neural GLM that describes spiking as an autoregressive Poisson process. (B) The basis functions used to parameterize the GLM

filters. (top) The stimulus basis used for all GLMs. (middle) The spike history basis used for the gain scaling simulations. (bottom) The spike history basis used for the

fractional differentiation simulations. Due to the length of the spike history filters needed to capture fractional differentiation, the time axis is shown in log scale.

FIGURE 4 | (A) Example filters from GLM fits to HH simulations with three different spiking conductance levels (rows). Large negative values driving the refractory

period in the spike history filter (right) have been truncated. (B) The spike-triggered averages (left), scaled spike-triggered stimulus distributions (right), and scaled

input-output functions (right) for the GLM fits in A for all four stimulus SDs. (C) Same as B for the HH simulations. (D) Gain scaling (D2 from Equation (4), Wasserstein

distance between the spike-triggered distributions at σ = 1 and σ = 2) at all the spiking conductance levels explored for the GLM simulations (top) and the

Hodgkin-Huxley simulations (bottom). Lower values of D2 correspond to stronger gain scaling. The three black circles indicate the conductance levels for the GLM

examples in A and B. Gain scaling was not computed for values of GNa and GK that resulted in spontaneous spiking in the Hodgkin-Huxley simulations.

The spike history filter bases were constructed in two parts.
To account for the absolute refractory period, we used 5 box
car filters of width 2 ms for the first 10 ms of the spike history.
The remaining spike history filter was parameterized using raised
cosine basis functions with the parameter c = 0.05. For the gain
scaling simulations, N = 15 cosine basis functions were used
with spacing T0 = 10 and Tend = 150 ms. For the fractional
differentiation simulations, N = 25 cosine basis functions were

used with spacing T0 = 10 and Tend = 16, 000 ms. To explore
how the timescale of spike history affected adaptation in the
GLM, for each model we fit the GLM using only the first i cosine
basis functions for each i = 0 (using only the refractory box-car
functions) to i = N. Thus, we obtained N + 1 nested model fits
across a range of spike history lengths. When stated, the length of
the spike history filter, Thist , denotes the time of the peak of the
ith basis function.

Frontiers in Systems Neuroscience | www.frontiersin.org 6 September 2020 | Volume 14 | Article 60

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Latimer and Fairhall Capturing Adaptation With GLMs

FIGURE 5 | (A) The pseudo-R2 of the GLM fits at the four different stimulus

SDs averaged over all GNa and GK as a function of spike history length. The

GLMs were trained at all stimulus conditions. (B) Gain scaling in the

Hodgkin-Huxley simulations (blue) measured as a function of the

sodium-potassium conductance ratio (GNa/GK ). The gray traces show gain

scaling measured in the GLMs fit to the HH simulations for four different spike

history filter length. The GLMs were trained using HH simulations with the

stimulus at the baseline SD (σ = 1.0). (C) The average pseudo-R2 measured

for each σ for the GLMs given each training stimulus condition. (D) Same as B

for the GLMs fit only using all four values of σ .

2.3.1. Evaluating Model Performance
We evaluated the GLM performance by assessing the ability of
the GLM to predict the HH model response to a 32 s novel
stimulus. For the gain scaling simulations, we tested the response
to the test stimulus at each stimulus SD (σ ). For the fractional
differentiation simulations, the stimulus SD was modulated by
a sine or square wave with a 4 s period and a modulation
height of σ = 2.0. Predictive performance was evaluated using
the pseudo-R2 score (Cameron and Windmeijer, 1997). We
selected this measure because it can be applied to Poisson process
observations instead of trial-averaged firing rates as is required
by the standard R2 measure of explained variance (Benjamin
et al., 2018). Thus, it is especially appropriate for comparing the
stochastic GLM to a spike train simulated by the deterministic
HH model. The pseudo-R2 is written as the ratio of deviances:

pseudo− R2 = 1−
D(y∗, GLM)

D(y∗, null)

= 1−
log

(

pGLM(y∗|kstim, hspk, b)
)

− log
(

psatur.(y
∗)

)

log
(

pnull(y∗|y∗)
)

− log
(

psatur.(y∗)
)

(20)

where y∗ is the test spike train. The GLM likelihood is
pGLM(Yy∗|kstim, hspk, b) and the likelihood of the null model

(pnull(y
∗|y∗)) is the probability of the spike train given only the

mean firing rate, y∗. The saturated model likelihood (psatur.(y
∗))

is the probability of observing y∗ given one parameter per bin:

that is, the Poisson probability of observing y∗ given amodel with
rate λ = 1 in each bin in which the HH model spiked and rate
λ = 0 in each bin that the HH did not spike. Thus, the pseudo-R2

measures the fraction of explainable log-likelihood captured by
the GLM.

3. RESULTS

3.1. GLMs Capture Gain Scaling Behavior
To investigate how GLMs can capture biophysically realistic
gain scaling, we fit the Hodgkin-Huxley simulations with GLMs
(Figure 4A). We fit a unique GLM for each value of GNa and
GK in the HH model, and the GLMs were fit using the entire
range of stimulus SDs (σ = 1.0, 1.3, 1.6, and 2.0). Applying
the STA analysis at the four stimulus SDs, we quantified gain
scaling in GLM fits and compared the gain scaling in the GLM
simulations to the HH neurons (Figures 4B,C). Across the range
of spiking conductance values, we found that the GLM fits
consistently showed gain scaling (Figure 4D). The HH neurons
showed the greatest degree of gain scaling when the GNa/GK

ratio was close to one, with the lowest D2 score occurring at a
ratio of 1.17 (Mease et al., 2013). We observed the same pattern
in the GLM simulations, but the GLM fits generally exhibited
stronger gain scaling when GNa/GK < 1 than the HH neurons.
We note that in general the optimal GNa/GK ratio depends on
the leak conductance; however, here we assumed a fixed leak
for simplicity.

The GLM’s characterization of the HH neurons depended
on the spike history filter. This is revealed by comparing the
stimulus filters (Figure 4A) to the stimulus features extracted by
spike-triggered averaging (Figure 4B): While the STA showed
multiphasic responses, the GLM stimulus filter was consistent
with a simple, monophasic integration. This demonstrates that
the STA reflects the combination of stimulus and spike history
effects (Agüera y Arcas and Fairhall, 2003; Stevenson, 2018). A
spike history filter of sufficient length was necessary to achieve
accurate model fits across all stimulus SDs (Figures 5A,B). A
possible interpretation of this finding is that the spike history
is acting as a measure of the “context” that serves to normalize
the stimulus response, and that a sufficiently long sampling
of the spiking output is needed in order to perform this
normalization appropriately.

We also explored how the stimulus conditions used to fit
the GLM determined the model’s ability to capture gain scaling.
Remarkably, we found that the GLM fit only to the baseline
stimulus SD (σ = 1.0) captured the gain scaling pattern seen
in the HH neuron (Figure 5B). The gain scaling observed in
the GLMs required a sufficiently long spike history filter, on the
order of at least 50 ms. With shorter spike history, the GLM
did not obtain the same level of gain scaling at the optimal
GNa/GK ratio. However, these GLMfits failed to generalize across
stimulus SDs. The GLM trained only at σ = 1.0 explained less
variance in the spiking responses to a stimulus at σ = 2.0 than
a model capturing only the mean firing rate for all values of
GNa and GK (predictive pseudo-R2 <0; Figure 5C). Therefore,
the GLM trained at σ = 1.0 does not accurately characterize
the HH responses despite accurately predicting gain scaling in

Frontiers in Systems Neuroscience | www.frontiersin.org 7 September 2020 | Volume 14 | Article 60

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Latimer and Fairhall Capturing Adaptation With GLMs

FIGURE 6 | Principal component analysis of the GLM stimulus and spike history filters trained across all values of GNa and GK . The GLMs were trained on all σ values

with a spike history length of 150 ms. (A) The first two PCs (blue and red) of the stimulus filter. The normalized mean filter is given in black. (B) The projections of the

stimulus filters onto the first two PCs. The shade of the points corresponds to GNa/GK where lighter indicates a higher ratio. The black points in (B,C,E,F) indicates

GLM fit to the HH model with the best gain scaling (i.e., lowest D2). (C) The stimulus filter PC weights (same as in B) as a function of the GNa/GK ratio. (D) The

stimulus filter PC weights as a function of the gain scaling factor (D2) observed in the HH simulation fit by the GLM. (E–H) Same as (A–D) for the GLMs’ spike history

filters. The first 20 ms of the spike history filters were excluded from analysis to avoid effects from the strong refractory period.

FIGURE 7 | (A) The five inverse-link functions tested in the GLM. The red trace shows the canonical exponential inverse-link function used in Figures 4, 5. The gray

traces show the soft-power function for different exponents, p. (B) The difference in predictive performance (measured as pseudo-R2) between the exponential GLMs

and the power-law GLMs for p ∈ {2, 3, 4, 5} for a test stimulus of σ = 1.0 (left) and σ = 2.0 (right). Positive values indicate the GLM with a power-law non-linearity had

greater predictive performance than the exponential GLM. The GLMs were fit to all σ . (C) Gain scaling predicted by the power-law GLMs (gray traces) compared to

the exponential GLMs (red) and the HH simulations (blue).

those cells. In contrast, GLMs trained at all four σ values failed
to capture the lack of gain scaling at low GNa/GK values despite
showing improved model fit across all σ (Figure 5D; a detailed
example is provided in Supplementary Figure 2A). Because the
GLM trained on all σ showed both consistent generalization
performance and strong gain scaling behavior, the remaining
analyses considered only that training condition.

We next considered how the GLM parameters related to
the gain scaling computation and the space of GNa and
GK in the HH models. To visualize the geometry of the
model parameters, we performed PCA on the stimulus and

spike history filters (Figures 6A,E). The filters produced across
the two HH parameters spanned a two-dimensional subspace
(variance explained: stimulus 98.8%, spike history 97.3%). The
PCA reconstructions for example stimulus filters are given
in Supplementary Figure 3. This decomposition of the stimulus
filter shows that the first mode is primarily an integrator, while
the second acts as a derivative, and will serve to adjust the
timescale of the filter’s integration window. The inflection point
for the second mode suggests that there may be an optimal
time constant of stimulus and spike history integration needed
to support the gain scaling property (Figures 6B,F). The first
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component for both filters correlated with the GNa/GK ratio
(Figures 6C,G; stimulus PC1 r = −0.97, p < 10−4; spike history
PC2 r = 0.97, p < 10−4). The second PC correlates with the
gain scaling value observed in the corresponding HH model
(Figures 6D,H; stimulus PC2 r = −0.89, p < 10−4; spike history
PC2 r = 0.90, p < 10−4).

3.1.1. Power-Law Firing Rate Nonlinearities
The GLMs we considered used the canonical inverse-link
function, the exponential nonlinearity (McCullagh and Nelder,
1989), to transform the filtered stimulus plus spike history into
a firing rate. However, it is known that firing rate nonlinearities
that instead have a power-law relationship of the input produce
gain scaling (Miller and Troyer, 2002; Murphy and Miller, 2003).
We therefore considered a range of soft-power nonlinearities
over a range of exponents for the GLM firing rate (Figure 7A;
Equation 17):

f (x) = log(1+ exp(x))p (21)

for p ∈ {2, 3, 4, 5} (for p = 1, the model performed poorly
for all HH simulations and the results are not shown). We
found that the power-law nonlinearity produced better predictive
fit than the exponential for HH simulations with low GNa/GK

ratios (Figure 7B). For those ratios, the exponential GLM in fact
predicted greater gain scaling than the HH simulation actually
showed (Figure 5A and Supplementary Figure 2A). We found
the power-law nonlinearities showed less gain scaling in the
low GNa/GK regime, which was more consistent with the HH
simulations (Figure 7C). This perhaps counter-intuitive result
is likely due to the temporal processing of the GLM: the spike
history filter shapes the effective stimulus-response function over
longer timescales. Thus, the instantaneous spike rate function
need not be a power law to produce gain scaling and an
instantaneous power-law function may not result in strong gain
scaling in the presence of spike history dependencies.

3.2. GLMs Capture Fractional
Differentiation With Long Timescales of
Adaptation
In this section, we address adaptive computations occurring
over multiple timescales spanning tens of seconds, instead
of instantaneous gain. We consider adaptation to changes in
stimulus variance in the responses of HH simulations with
three AHP currents (Lundstrom et al., 2008). The neurons were
injected with noise stimuli with a periodically modulated SD. The
stimulus SD followed either a sine or square wave. We focused
our analyses on the cycle-averaged firing rate to see how the
neural responses reflect fractional differentiation of the stimulus
SD envelope in the cycle-averages.

We fit GLMs to HH simulations in response to either
sine- or square-wave SD modulation. The training data
included simulations with noise modulation periods of 1–64s.
We considered GLMs with different lengths of spike history
filters. Cycle-averaged responses of HH and GLM simulations
appear qualitatively similar (Figure 8), and thus we aimed to
characterize how well the GLM fits captured the fractional

FIGURE 8 | (A) The cycle-averaged response of the simulated

Hodgkin-Huxley neurons with three AHP currents to sine wave modulated

noise. Each trace shows the average response for a different period of noise

modulation. The columns show the responses to different strengths of

stimulus noise modulation (σ ). (B) The cycle-averaged response of a GLM fit

to the HH simulations in (A). The GLM used a 16s spike history filter. (C) The

cycle-averaged response of the HH neurons to square-wave modulated noise.

(D) The cycle-averaged response of a GLM fit to the HH simulations in (C).

The cycle averages can be compared to the exact fractional derivatives in

Figures 2B,D.

differentiation properties of the HH neuron. Although the AHP
conductances act to provide a simple linear filtering of the spike
train similar to the GLM’s spike history filter, the GLM effectively
assumes that the spike history is instead a current such that the
total conductance of the cell remains constant (Latimer et al.,
2019b). Therefore, it is not given that the GLM can replicate the
computational effects of the AHP conductances.

The sinusoidal noise simulations show two properties of
fractional differentiation. First, we estimated response gain (i.e.,
the strength of the sinusoidal modulation in the cycle-averaged
response as a function of stimulus period; Figure 9A). In an
ideal fractional differentiator, the log gain is proportional to
the log of the stimulus period. The HH neuron shows a near
linear response (r2 = 0.99, p < 10−4). Although the GLM
with short history shows an almost flat relationship, increasing
the spike history length shows similar slope to the HH neuron.
The second property was the phase lead of the cycle-averaged
response relative to the stimulus (Figure 9B). The phase lead
should be constant under perfect fractional differentiation. The
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FIGURE 9 | (A) The gain of the average responses to sine-wave modulated noise as a function of stimulus period for the HH and GLMs (Figures 8A,B right). The

GLM fit with a 0.17s spike history filter (gray) is compared to the GLM with the full 16s spike history (black). The HH simulation is given in blue. The noise stimulus was

modulated with σ = 2. (B) The phase lead of the average responses to sine-wave modulated noise as a function of stimulus period for the HH and GLMs. The fraction

of variance explained in the HH phase lead curve by the GLM with 16s spike history was R2 = 0.61. (C) The time constant of an exponential function fit to the

cycle-averaged response to square wave noise for each stimulus period (Figures 8C,D right). The markers denote time constants estimated for steps from low to

high variance or step from high to low variance. The fraction of variance explained of the log time constants of the HH simulation by the GLM with 16s spike history

was R2 = 0.80. (D) The fractional differentiation order (α) of the GLM estimated by the slope of gain as a function of the log stimulus period in (B). The value is

estimated for each spike history lengths (black) and compared to α estimated from the HH simulation (blue). The red trace shows α estimated from the GLM fit only to

unmodulated noise. (E) α estimated by the average phase lead across stimulus periods. (F) α estimated by fitting a the square-wave responses with a fractional

differentiating filter. (G–I) α estimated at different noise modulation strengths for the 16s spike history GLM and HH simulation.

phase lead declines with longer period, but the HH simulation
still shows strong phase lead in a 64s period. Short spike history
filter GLMs exhibit a phase lead that tends to zero with long SD
periods. However, the GLM fit with a long spike history filter
closely tracks the HH neuron’s phase lead.

The final signature of fractional differentiation was the
exponential decay of the cycle-averaged response under square-
wave noise simulation (Figure 9C). We estimate the time
constant of the decay on the square noise cycle average for
both steps up and steps down in stimulus SD. The time
constant increases approximately linearly with the SD period,
and GLMs with long spike history showed time constants closely
approximated the HH neuron.

From each signature, we estimated the order of the fractional
differentiation (α) in both the HH neurons and the GLM fits.
We estimated the order using the slope of log-period compared

to log-gain and mean phase lead across all stimulus periods for
the sine-wave SD simulations (Figures 9D,E). A least-squares
fit of FD filter of order α was applied to the square noise
stimuli (Figure 9F). We considered α for the GLM fits as a
function of the spike history length. The order estimates for the
HH neuron, although slightly different for each signature, were
approximately α = 0.2. The GLM’s FD order tends toward that
of the HH neuron as the spike history length increases from
below. Surprisingly, when we considered a GLM trained only
to a flat noise stimulus (no sine or square modulation; stimulus
SD σ = 1.0) showed similar estimates of α (Figures 9D–F, red
traces). Thus, the response properties giving rise to fractional
differentiation of the noise envelope could be detected by the
GLM even without driving with long timescale noise modulation.

We then considered how the estimated fractional
differentiation order depended on the strength of the SD
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FIGURE 10 | (A) Comparing simulations of the HH model to sine wave modulated (left) and square wave modulated (right) noise. The black traces show the stimulus

and the blue traces show the standard deviation envelope. The red raster denotes the HH spike response. Several repeated simulations of the GLM are shown for a

GLM trained with only a 10ms spike history (gray raster) and a GLM trained with the full 16s spike history (black raster). (B) Assessing the model fitness for GLMs fit to

sine wave modulated noise (left), square wave noise (middle), and unmodulated noise (right). The pseudo-R2 measured on a withheld training set simulated from the

HH model as a function of spike history length. The stimulus was sine (solid lines) or square (dashed lines) modulated noise with a 4s period and a modulation strength

of σ = 2. (C) The integral over time (i.e., cumulative sums) of each spike history filter. (D) The stimulus filters for all GLM fits.

modulation. We found a slightly higher α for lower stimulus
SDs (note that σ = 2.0 was used to fit the GLMs) for the gain
and timescale estimates (Figures 9G–I). However, the phase lead
estimate was fairly stable across SDs.

Next, we quantified how well the GLM predicted the HH
responses to new stimuli (Figure 10A). Spike history filters with
timescales of several seconds improved the GLM’s ability to
predict spike trains, and the improvement continued for spike
histories of several seconds (Figure 10B). However, training only
on unmodulated noise did not result in a good GLM fit despite
predicting α (Figure 10B).

We examined the parameter estimates in the GLM as a
function of spike history length. We plotted the integral of

the spike history filter to show how the filter integrates spikes
over time. The integrals show long timescales for the GLM
fit to either sine- or square- wave noise (Figure 10C). The
GLM fit to either type of noise predicted over 60% of the
variance in the HH responses to both sine- and square-wave
noise. The flat noise GLM also showed long timescales, but
the integral changed substantially with changes in the length of
spike history. This indicates that the combination of spike-history
dependent timescales is not well-constrained in the flat noise
condition despite predicting α, perhaps due to biases present in
the data without modulations (Stevenson, 2018). The stimulus
filters are short timescale and showed little dependence on spike
history length (Figure 10D). Thus, the GLM captured fractional
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differentiation in theHHneuron by linearizing the long timescale
AHP currents.

4. DISCUSSION

Individual neurons can adapt their responses to changes in input
statistics. Here, we studied two adaptive computations to changes
in the stimulus variance that are captured by biophysically
realistic neurons. First, we examined gain scaling of the inputs
so that the spike-triggered stimulus distribution was independent
of the stimulus variance. The ability of the neuron to gain scale
depended on the ratio of the spike-generating potassium and
sodium conductances. Second, we considered spiking responses
that approximate a fractional derivative of the stimulus standard
deviation, which can be produced by a set of AHP currents with
different timescales. Although HH neurons can produce these
adaptive effects, it is difficult to fit the HH to data.
Our results demonstrate that the GLM provides a tractable
statistical framework for modeling adaptation to stimulus
variance in single-neurons. The GLM provides an alternative
representation of the spiking responses as two linear filters
(stimulus and spike history filters) with a fixed spiking
non-linearity instead of a multidimensional (and potentially
stochastic) dynamical system (Meng et al., 2011, 2014).
Importantly, a single GLM could accurately approximate the
responses of HH neurons across multiple levels of input variance
or across multiple timescales of variance modulation. The GLM
accomplished this by linearizing the effect of recent spiking
into a non-linear and stochastic spiking mechanism to adjust
for the current stimulus statistics, which can act as a measure
of the current stimulus context. To reproduce gain scaling,
around 150ms of spike history is required, in line with the
rapid expression of the gain scaling property with changes in
stimulus statistics (Fairhall et al., 2001a; Mease et al., 2013). In
the fractional derivative case, the GLM summarized the multiple
AHP currents of the HH models as a single linear autoregressive
function with multiple timescale effects.
This approach shows that at least part of the spectrum of adaptive
behaviors to stimuli with time-varying characteristics can be
captured through a single linear spike history feedback. Effective
alternative approaches have captured time-varying context with a
multiplicity of filters acting on different timescales of the stimulus
alone (Kass and Ventura, 2001; McFarland et al., 2013; Qian et al.,
2018; Latimer et al., 2019a).

The simulations explored here assumed the input to a cell was
an injected current generated from a Gaussian distribution.
However, neurons receive input as excitatory and inhibitory
conductances, which can be integrated across complex dendritic
processes (Ozuysal et al., 2018; Latimer et al., 2019b).
Additionally, realistic input statistics may not follow a Gaussian
distribution (Heitman et al., 2016;Maheswaranathan et al., 2018).
Further work toward understanding the adaptive computations
performed by single neurons should consider the inputs the
neuron receives within a broader network and should consider
non-linear stimulus processing (McFarland et al., 2013; Benjamin
et al., 2018).
Neural coding and computations that occur across a wide range
of input levels depend heavily on adaptation to the stimulus
variance (Wark et al., 2007). The GLM, despite being a simple
approximation, can provide a good representation of adaptive
computations in biophysically realistic neurons.
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