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Abstract: Semi-dwarfism is a main agronomic trait in crop breeding. In this study, we performed
genome-wide association study (GWAS) and identified a new quantitative trait nucleotide (QTN)
for rice shoot length. The peak QTN (C/T) was located in the first coding region of a group III
WRKY transcription factor OsWRKY21 (LOC_Os01g60640). Interestingly, further haplotype analysis
showed that C/T difference only existed in the indica group but not in the japonica group, resulting
in significant differences in plant height among the different indica rice varieties. OsWRKY21 was
expressed in embryo, radicle, shoots, leaves, and stems. Most notably, overexpressing OsWRKY21
resulted in the semi-dwarf phenotype, early heading date and short internodes compared to the
wild type, while the knockout mutant plants by CRISPR/Cas9 technology yielded the opposite.
The overexpressing lines exhibited the decreased length of the cells near sclerenchyma epidermis,
accompanied with the lower levels of indole-3-acetic acid (IAA) and gibberellin 3 (GA3), but increased
levels of the abscisic acid (ABA) and salicylic acid (SA) in the internodes at heading stage. Moreover,
the semi-dwarf phenotype could be fully rescued by exogenous GA3 application at seedling stage. The
RNA-seq and qRT-PCR analysis confirmed the differential expression levels of genes in development
and the stress responses in rice, including GA metabolism (GA20ox2, GA2ox6, and YABY1) and cell
wall biosynthesis (CesA4, 7, and 9) and regulation (MYB103L). These data suggest the essential role
of OsWRKY21 in regulation of internode elongation and plant height in rice.

Keywords: OsWRKY21; rice; gibberellin; stem elongation; stress responses

1. Introduction

Rice (Oryza sativa L.) is a major staple crop worldwide that feeds more than half
of the global population [1]. Semi-dwarfism is one of the most attractive traits in cereal
crop breeding programs. Dwarf cultivars of many crop plants have been identified with
enhanced lodging resistance, improved harvest index, and being responsive to fertilizer
input [2]. The adoption of two well-known dwarf genes, semi-dwarf1 (sd1) in rice, and
reduced height1 (Rht1) in wheat (Triticum aestivum), to create semi-dwarf varieties has
significantly increased crop yields and initiated the “Green Revolution” [3]. At least
70 dwarf mutants have been discovered in rice, and some of them are involved in gibberellic
acid (GA) biosynthesis or in GA-based signal regulatory pathways [4–7]. Since the plant
height is typically quantitatively inherited, the genetic mapping and subsequent gene
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cloning by quantitative trait loci (QTLs) and/or genome-wide association study (GWAS)
are ongoing to uncover more genes associated with the trait, despite many dwarf or
semi-dwarf mutants and genes having been already reported.

The WRKYs is an important family of transcription factors that widely participate in
plant development and stress responses. WRKY proteins contain the conserved WRKYGQK
stretch in its N-terminus and a zinc-finger motif Cx4–5Cx22–23HxH or Cx7Cx23HxC in its
C-terminus [8]. WRKYs can be classified into three groups, (I, II, and III), according to their
structures. WRKY proteins regulate the transcription of the target genes by specific binding
to W-box motifs ((T)TGAC(C/T)) in their promoter regions [9].

The past two decades have witnessed the extensive progresses in revealing the func-
tions of plant WRKY transcription factors. The important roles of many WRKY genes in
plant disease resistance or stress tolerance have been inferred from their overexpression-
or knockdown- transgenic plants as well as their loss-of-function mutants [10–13]. Os-
WRKY30 has a role in drought response in rice [11,14]. WRKYs were also reported to play
diverse roles in plant growth and development [8,15]. For example, the OsWRKY42 has
a role in rice senescence [11,14]. In Arabidopsis, the disruption of AtWRKY12 represses
flowering, whereas loss of AtWRKY13 promotes flowering [16]. Transparent Testa Glabra2
(TGG2, a WRKY transcription factor) and AtWRKY10 were reported to be involved in the
regulation of seed grain size in Arabidopsis [17,18].

The rice genome has been predicted to contain 102 WRKY (OsWRKY) genes [19]. The
WRKYs in rice are involved in regulating a range of biological processes involved in plant
growth, development, and stress responses [20]. Several WRKY genes are expressed in
response to the rice blast fungal elicitor1and the defense signal molecules salicylic acid
(SA) and jasmonic acid (JA) [21]; among them the OsWRKY13 and OsWRKY45 are involved
in SA-mediated defense signaling transduction in rice [22,23]. In addition, several stud-
ies have shown that WRKY proteins also participate in the regulation of plant growth
and development in rice. OsWRKY71 can block response to gibberellin (GA) signal in
aleurone cells by repressing Amy32b expression through specific binding to the W-box in
the promoter region of Amy32b [24]. Knock-down of OsWRKY78 results in a semi-dwarf
phenotype and small seed grain size due to reduced cell length, whereas the accumu-
lation of OsWRKY11 leads to semi-dwarf stature [25,26]. Recently, it was reported that
OsWRKY36 inhibits GA signaling pathway thus represses both plant height and grain
size [27]. Therefore, it can be concluded that the WRKY family members possess multiple
functions in rice. In addition, the interrelations of GA biosynthesis, signaling with the
WRKYs involved in regulating plant height and grain size remains to be elucidated.

In this study, to characterize the genetic basis of plant height, we firstly identified
a consistent quantitative trait nucleotides (QTNs) for both shoot length and culm length
with GWAS. The candidate gene encode a transcription factor belongs to group III WRKY
subfamily in rice (OsWRKY21). Moreover, we performed a phylogenetic and structural
analysis to predict its potential functions and explored its expression profile using multiple
tissue samples throughout the development of rice. In addition, overexpressing OsWRKY21
displayed a semi-dwarf and had a short cell near sclerenchyma epidermis in the internodes
of stem. The OE lines showed decreased levels of endogenous IAA and GA3, and increased
levels of ABA and JA in the stem internodes. These results, combined with the gene
expression alteration in the transgenic plants via RNA-seq analysis, suggest that OsWRKY21
is associated with the phytohormones metabolic pathway in the regulation of the plant
development and the stress responses.

2. Results
2.1. Genome-Wide Association Study (GWAS) Identified the OsWRKY21 as a Candidate Gene for
Plant Height in Rice

To identify the QTNs associated with the rice shoot length, we collected the phe-
notypic data from the seedling of 469 accessions (association panel) being cultivated
under normal conditions in a growth chamber. The association panel exhibits exten-
sive phenotypic variation in shoot length and the normal distribution of the trait, which
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are suitable for the GWAS analysis. Besides, QQ-plot indicated the accuracy of the
GWAS result. The genotypes of the 469 accessions were downloaded from the website
https://s3.amazonaws.com/3kricegenome/snpseek-dl/, accessed on 5 June 2021. Then,
the original single nucleotide polymorphisms (SNPs)were filtered and finally 406, 858 high
quality SNPs were obtained for genetic mapping. The average maker density was one SNP
per 917 bp which is high enough for the accurate mapping of QTNs.

As a result, 511 SNPs were detected of shoot length on chromosomes 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, and 12. Among them, one of the significant SNPs was found to be located at the region
of 35060000-35368000 on Chromosome1 (Figure 1A). We further explored the region (Locus
zoom in) and found that this top SNP was exactly located at the CDS coordinates (5′-3′):
35,062,734–35,064,940 on Chromosome 1, with the peak at chr1:35062897 (Figure 1B), which
was the new QTN, never reported for plant height in any previous studies. This peak QTN
located in the genic region of gene (LOC_Os01g60640), which encodes a protein annotated
as the WRKY transcription factor (Figure 1B). The haplotype analysis revealed that there
are two major haplotypes. The gene LOC_Os01g60640 (OsWRKY21) from the QTN in
this region contains mainly two synonymous variants (T/C) at the locus chr1:35062897
located in the coding region (the first exon). Accessions with the variant allele cytosine
(C) (haplotype C with mean value 28.18 cm) have higher shoot length than those with the
allele thymine (T) (haplotype T with mean value 21.57 cm) (Figure 1C,D). When further
investigated the haplotypes C and T in subpopulations ind1A and ind1B, we found that
the average value of shoot length of the ind1A in haplotype C and haplotype T were
30.05 cm and 22.52 cm, respectively. While the average value of culm length of the ind1B
in haplotype C and T were 23.28 cm and 21.12 cm, respectively.

Interestingly, when searching a QTN database at the website (https://snp-seek.irri.
org/index.zul;jsessionid=56FCC6570012BB87A79B6FBC2 May 29, 20210CD995B, accessed
on 29 May 2021), we found that a QTN for culm length at heading stage is in good agree-
ment with our GWAS result in seedling stage (haplotype C with mean value 115.69 cm;
haplotype T with mean value 74.35 cm) (Figure 1E,F). We further investigated the haplo-
types C and T in subpopulations ind1A and ind1B and found that the average value of
the culm length in haplotype C was 97.62 cm and that of the haplotype T was 65.12 cm in
ind1A, while the average value of the culm length in haplotype C was 82.68 cm and that of
the haplotype T was 73.11 cm in ind1B. Thus, this QTN within the OsWRKY21 is expected
to be associated with the plant height at both stages and worth being investigated further.

2.2. Bioinformatics and Expression Analysis of OsWRKY21 during the Development of Rice

A phylogenetic analysis of WRKY families among rice, Arabidopsis and Populus showed
most WRKY domains of the same type forming independent domains within their species,
OsWRKY21 proteins was most closely related to the other five OsWRKYs and thus they
were grouped in the same subclade (Figure 2A), suggesting a recent duplication within the
clade occurred after the divergence of the monocotyledons from dicotyledons as reported in
previous studies [28,29]. Based on amino acid sequence similarity, OsWRKY proteins were
divided into three classes. Of which, class II WRKYs were divided into 10 subclasses (IIa-IIj),
and class III WRKYs were divided into two subclasses (IIIa and IIIb). WRKY21 belongs to
type IIIb, which carries a putative sumoylation site at the C-terminus and a potential coiled-
coil domain at the N-terminus in addition to a conserved WRKY domain (WRKYGQ)
and a zinc-finger-like motif (CX6CX26HX1C) (Supplementary Figure S1). A schematic
representing the structure of OsWRKY group III proteins was constructed from the MEME
motif analysis results (Figure 2B). Other than motifs 1 and 2 which are the WRKY domains
widely distributed, OsWRKY members within the same clades were usually found to share
a similar motif composition. Subcellular locations, molecular weight, isoelectric point,
and transmembrane helices of OsWRKY group III proteins were seen in Supplementary
Table S1. The promoter region cis-elements determine the temporal and spatial expression
of the genes [30]. To understand the transcriptional regulation of the OsWRKY group
III genes, the cis-elements in the promoter regions of those genes were identified using
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the PlantCARE database. These elements could be categorized into three classes which
are hormone responsive, stress responsive, and tissue specific (Figure 2C; Supplementary
Table S2). Among them, the group of hormone-responsive elements is the largest one and
the group of stress-responsive elements the second. These results suggested that OsWRKY
group III genes could be regulated by both the environmental and developmental changes,
implying their roles in physiological processes and developmental events.

Figure 1. GWAS identification of candidate genes for shoot length at seedling stage (A–D) and culm length at heading
stage (E and F). (A) SNPs at the region of 35060000-35368000 on Chromosome1. (B) GWAS identification of OsWRKY21 as
a candidate gene for shoot length at seedling with the group of Manhattan plots, candidate gene structure, and putative
causal polymorphisms (C/T) (the position SNP C/T is indicated by an arrow). (C) Shoot length is significantly different
between two different haplotypes C and T at p < 0.01 (** indict p-value < 0.01, t-test, n ≥ 20). (D) Haplotype frequency of
C type and T type in the association panel. (E) Culm length is significantly different between two different haplotypes C
and T at p < 0.01 (** indict p-value < 0.01, t-test, n ≥ 20). (F) Haplotype frequency of C type and T type in the different
subpopulation of the association panel.

To observe the expression pattern of the OsWRKY21, microarray datasets from 33 tissues
across the whole life cycle of rice were downloaded from CREP database (Collections
of Rice Expression Profiling, http://crep.ncpgr.cn, accessed on 18 November 2020) [31].
Overall, OsWRKY21 was expressed widely in many different tissues examined during
plant growth and development, although the expression levels varied greatly (Figure 2D,E;
Supplementary Table S3). In detail, the OsWRKY21 was mainly expressed in the embryo
and radicle after germination, the plumules and radicles, the shoots at the seedling stage,
as well as the leaves and stems at the heading stage, with weak expression observed in
calli and younger endosperms (Figure 2D,E). Notably, the expression of the OsWRKY21
was dramatically enhanced in the embryo and radicle after germination compared to the
seeds 72 h after imbibition (before germination). Secondly, the OsWRKY21 is likely to be
inhibited by light as its expression was much lower in both plumules and radicles exposed

http://crep.ncpgr.cn
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to light than those in dark. Thirdly, the expression of OsWRKY21 was much stronger in
both leaves and stems at heading stage than those before the heading stage, indicating its
higher and preferred expression in the tissues undergoing secondary growth (elongation
of stems).
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2.3. OsWRKY21 Overexpression Resulted in Semi-Dwarf Phenotype While the Knockout Mutant
Plants by CRISPR/Cas9 Technology Yielded the Opposite, Which Confirms the GWAS Results

As clearly showed by the GWAS result and the expression analysis, the OsWRKY21
was expected to be involved in rice plant growth. To validate this expectation and to
further study the function of OsWRKY21, the CDS of the gene was cloned from the cDNA
of the japonica rice cultivar Zhonghua 11 (ZH11) and inserted into the destination binary
vector pTCK303. The construct carrying the CDS of OsWRKY21 (OE-pTCK303-WRKY21)
was generated and was introduced into the ZH11 via Agrobacterium-mediated transfor-
mation. The positive transgenic lines were selected based on both RT-PCR and GUS
staining (Figure 3A), and further confirmed by sequencing analysis (data not shown).
After three generations, three independent homozygous rice transgenic lines (T3 plants
named 425, 427, and 429, respectively) were selected. The qRT-PCR results clearly indicated
that the expression levels of WRKY21 were increased significantly at level of 0.01 in both
culms and leaves in all three OE lines compared with wild-type ZH11 plants (Figure 3B).
Thus, these independently transgenic plants overexpressing OsWRKY21 were used for
further investigation.

When grown in the field, all plants of OE lines showed a semi-dwarf phenotype, with
plant height about three-quarters of that of the wild-type ZH11 (Figure 3C). Compared to
the wild-type, the lengths of the internodes of the OE plants were significantly reduced
(Figure 3D, E). To investigate whether the reduced length of panicles and internodes in
the OE lines is due to the defects in cell elongation or cell proliferation, we compared
the longitudinal sections of the elongated zone of the uppermost internodes from OE
and wild-type plants. Microscopic observation showed that the length of the cells near
sclerenchyma epidermis in the longitudinal direction was shorter in OE line 425 than that
in wild-type ZH11 (Figure 3F,G), indicating that overexpression of OsWRKY21 mainly
impaired the elongation of the internode. That is the same in OE line 427 and 429 (data
not shown). It is worth mentioned that the length of the leaves also decreased, whereas
the width of leaves remains unaffected, again illustrating that the gene mainly affect the
elongation of cells.

2.4. OsWRKY21 Suppressed IAA and GA Levels and the Dwarf Phenotype Could Be Rescued by
Exogenous GA Treatment

The growth-promoting hormones such as IAA and GA regulate diverse developmental
processes throughout the life cycle of the plants. To our knowledge, low levels of the
hormones or the disruption of the hormone signaling pathways can cause the dwarf of the
plant. Thus, we investigated the levels of the two kinds of phytohormones in the OE line 425
and found that the levels of endogenous GA3 and IAA were significantly decreased in the
OE plants compared to that of the wild-type ZH11, respectively (Figure 4A). Interestingly,
we also found that the levels of stress-related hormones abscisic acid (ABA) and salicylic
acid (SA) were increased in the stem internodes.

To confirm whether the semi-dwarf phenotype of OsWRKY21-OE plants is caused by
GA deficiency, we investigated the response of OE plants to exogenous GA at seedling
stage. We found that without the GA3 treatment, all plants of the three OE lines exhibit
obviously shorter shoots than the wild type ZH11 at early seedling stage (Figure 4B;
Supplementary Figure S2). While continually treated with GA3 from the germination stage,
all OE plants showed normal elongation but slightly slender (Figure 4B; Supplementary
Figure S2). Exogenous application of GA3 had obvious effects on promoting the growth
of all OE lines seedlings but had no obvious impact on the growth of the wild-type ZH11.
Thus, it was evident that the semi-dwarf phenotype of OsWRKY21 OE lines is associated
with the decreased endogenous GA3 level, which could be fully rescued by exogenous
GA3 application.
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to select positive transgenic lines (425, 427 and 429). The positive OsWRKY21 OE lines were in blue with the GUS staining.
Gene Ubiqutin was used as the internal control in RT-PCR analysis. (B) Relative expression of OsWRKY21 in the wild-type
ZH11 and the OE plants using qRT-PCR. (C) Phenotypes of the wild-type ZH11 and three OE lines (425, 427 and 429) at
heading stage, scale bar = 10 cm. (D) and (E) Lengths of the panicles and internodes of wild-type ZH11 and OE plants at
maturity stage. P, panicle; I, the uppermost internode; II, III, IV, the second, third, and fourth internodes counted from the
up to bottom, respectively. (* and ** indict p-value < 0.05 and 0.01, respectively, t-test, n = 15). (F) and (G) Comparison of
the longitudinal sections of the second uppermost internodes of WT and line 425, scale bar = 200 µm. Values of the ratios of
cell length to width of WT and 425 line, values are means ± SD of 20 cells (* p < 0.05, ** p < 0.01, t-test, n = 20).
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Figure 4. The hormones changes in OE plants and semi-dwarf phenotype could be Rescued by
Exogenous GA3 Treatment. (A) Contents of endogenous hormones GA3, IAA, ZT, ABA, and SA
in the stems from the wild-type ZH11 and OE line plants (* p < 0.05, ** p < 0.01, t-test, n = 15).
(B) wild-type ZH11 and three OE lines (425, 427, and 429) treated without or with 1 µmol/L GA3

and 5 µmol/L at seedling stage (Values are means ± SD, * p < 0.05, ** p < 0.01, t-test, n = 15).

2.5. Overexpression of OsWRKY21 Altered the Expression Levels of the Genes for Phytohormones
Metabolic Pathway and Secondary Cell Wall Biosynthesis

To confirm the involvement of WRKY21 as a negative regulator in the level of GA and
stem elongation in secondary tissue growth stages, we examined the global gene expression
in the second internode of the OE line 425 and of the wild-type ZH11 via RNA-seq analysis.
The genes with two-folds changes in expression and with the significant p-value were
subjected to GO enrichment analysis (Figure 5A,B). The expression of the gene involving
in the cellular biosynthetic and cell cycle were up-regulated, while the gene of secondary
metabolism and response to stress were down-regulated. As expected, the expression of
the OsWRKY21 was dramatically increased in the OE plants, six-fold more than that of the
wild-type ZH11, consisting with the qRT-PCR result (Figures 2B and 5C). Altered expres-
sion of the genes involved in phytohormones metabolic pathways such as those for the
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biosynthesis of GA and SA was observed. The genes for gibberellin 2-beta-dioxygenase 7
(LOC_Os04g44150) and YABBY1 (LOC_Os07g06620) were decreased, whereas the genes
for gibberellin 20 oxidase 2 (LOC_Os05g34854) were increased (Figure 5C). It was reported
that either overexpression or co-suppression of OsYABBY1 impaired GA-mediated repres-
sion of GA3ox2 [32]. The overexpression of the rice YABBY4 gene (OsYABBY4) leads to
a semi-dwarf phenotype, abnormal development in the uppermost internode [33]. In addi-
tion, the expression levels of many genes for development were decreased (Figure 5B,C).
Notably, the expression of the genes that encode three cellulose synthases OsCESA4, -7
and -9 (LOC_Os01g54620, LOC_Os10g32980 and LOC_Os09g25490), all of which being
organized as rosette complex to biosynthesize the cellulose during the secondary cell wall
formation were jointly decreased [34]. Interestingly, we also found that the expression
of several transcriptional factors involved in the cell wall regulatory network, such as
MYB103L (LOC_Os08g05520) were also decreased. Therefore, it was concluded that the
overexpression of the WRKY21 disturbed many aspects of plant growth and development.
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3. Discussion

Phenotype–genotype association analysis has become a critical tool for identifying
alleles and loci responsible for the agronomically important traits [35]. In the current
study, the selection of rice accessions from diverse origins, with sufficient genetic variation
and favorable population structure, is advantageous for GWAS implementation [36,37].
We identified a region harboring a gene which was never reported for plant height pre-
viously. Although the QTN effect of the QsWRKY21 is not large, it can be consistently
detected as significant at two different stages (seedling and heading). Thus, it strengthened
our expectation that the OsWRKY21 is the candidate gene for plant height. Firstly, we
overexpressed the OsWRKY21 in same genetic background Zhonghua 11 and the results
clearly showed the semi-dwarf phenotype of the transgenic plants. However, considering
that the early flowering and dwarf might be caused by the side effects of possible over-
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expression of transgene, we further created the knockout mutant plants by CRISPR/Cas9
editing which yielded the significantly increased plant height. Using CRISPR/Cas9 editing
technology, this study selected two specific regions in exon 1 of the OsWRKY21, with
the 20-bp target site for the design of a sgRNA using CRISPR-P program (Supplemen-
tary Figure S3A). The binary constructs carrying the sgRNA within target regions with
Cas9p driven by UBIp were generated (UBIp: Cas9-OsWRKY21) and transformed into the
rice Zhonghua 11 via agrobacterium-mediated transformation and two independent lines
were further sequenced to verify gene editing occurrence in this study (Supplementary
Figure S3B). Interestingly, compared to the wild-type, the lengths of the internodes of the
editing plants were significantly increased and obviously in the uppermost internodes
(Supplementary Figure S3C). Thus, the overexpression of the OsWRKY21 resulted in semi-
dwarf phenotype while the knockout mutant plants by CRISPR/Cas9 editing yielded the
opposite. The results of transgenic experiments strongly confirm the GWAS results and
the roles OsWRKY21 in plant growth. Our results indicated that the GWAS based on SNP
marker density for agronomic traits in 469 rice lines was very efficient for the identification
of new genes in plant height in rice.

3.1. OsWRKY21 Shows Multiple Functions in Growth/Development and Stress Responses in Rice

This study focused on the stem phenotype; however, the seed-setting rate of the OE
lines were also found to be affected (data not shown). The changes in grain development
and in seed germination warrant further investigations. OsWRKY21 could have effects
as early as the germination stage as the dwarf phenotype could be observed from the
germination to the seedling stage. Since the GA is a kind of major hormone at germination
stage, the dynamic changes in hormone contents and the gene expression of the OsWRKY21
OE plants during the germination should be further investigated to elucidate the regulatory
pathway of the OsWRKY21. In addition, we observed that large amounts of the genes
involved stress response were up-regulated in OsWRKY21 OE plants and found that
the elements relevant to stress response were enriched in the promoter region of the
OsWRKY21 (Figures 2C and 5A). Furthermore, we found that the stress-related hormones
ABA and SA in the stem internodes were increased in OsWRKY21 OE plants. The RNA-
seq analysis support that the OsWRKY21 functions in the regulation of the metabolic
pathways of these phytohormones for their homeostasis. More recently, it was reported that
OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation
through maintaining the constitutive expression of OsPHT1 [38–42]. Collectively, these
results suggest that the OsWRKY21 probably is a master regulator of physiological process
in development and stress responses. Therefore, the elaborate illustration of OsWRKY21
will be expected to regulate growth/development and environmental stresses in the future.

3.2. Semi-Dwarf Phenotype of OsWRKY21 Overexpression Is Attributed to the Integral Effects of
Phytohormones in Rice

The WRKY transcription factor family genes were investigated to function in develop-
mental processes and stress responses in plants; however, the function of the WRKY21 is
not well understood in monocotyledon. In this study, we showed that the OsWRKY21 is
a transcriptional repressor of plant stem development. OsWRKY21 is expressed in almost
all tissues of rice plants, and highly expressed in shoots and young stems. Overexpression
of OsWRKY21 resulted in the semi-dwarf phenotype, accompanied by the decrease of
the phytohormones IAA and GA, which can be rescued by exogenous GA3 application.
The subsequent RNA-seq analysis indicated the role of OsWRKY21 in phytohormones
metabolism including the negative regulation of the GA biosynthesis. However, further
studies will clarify whether the OsWRKY21 has the negative regulation effect on the endoge-
nous hormones. Interestingly, the expression levels of those genes involved in secondary
cell wall cellulose biosynthesis and regulation were significantly decreased in WRKY21
OE lines. Interestingly, previous researches showed that the disruptions of these genes
caused the semi-dwarf phenotype in plants [38–41]. Taken together, the semi-dwarf phe-
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notype of the overexpression of OsWRKY21 may be attribute to the integrated effects of
the phytohormones.

4. Materials and Methods
4.1. Population Structure and GWAS

Genetic variation (single nucleotide polymorphism (SNP)) data for the 469 acces-
sions were downloaded from (https://s3.amazonaws.com/3kricegenome/snpseek-dl/,
accessed on 5 June 2021) [43]. We identified 406,858 SNPs after removing SNPs with minor
allele frequencies 0.05, missingness per marker 0.02, and missingness per individual 0.01
by Plink [44]. The general linear model (GLM), mixed linear model (MLM), and com-
pressed MLM model (CMLM) were used to analyze the genotyping data by rMVP and
GAPIT [45,46].

4.2. Bioinformatics Analysis

The full-length protein sequences of WRKY group III in Oryza sativa, Arabidopsis
thaliana, and Populus L were aligned by ClustalW. The unrooted phylogenetic trees were
constructed using the Neighbor Joining (NJ) method with the following parameters:
p-distance model, pairwise deletion and 1000 bootstrap replicates by MEGA7 software
(http://www.megasoftware.net/, accessed on 10 November 2020) with 1000 bootstrap
replicates [47]. The conserved motifs in the OSWRKY group III protein sequences were
found using Multiple Expectation Maximization for Motif Elicitation (MEME) program
version 4.0 (http://meme-suite.org/tools/meme, accessed on 20 November 2020) with the
following parameters: number of repetitions, any; maximum number of motifs, 25; opti-
mum motif width set to >6 and <200 [48]. Then conserved domains were analyzed by using
Conserved Domains Database (CDD) (http://www.ncbi.nlm.nih.gov/cdd/, accessed on
20 November 2020). The protein of OSWRKY group III transmembrane helices were pre-
dicted using TMHMM2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0/, accessed on
20 November 2020) [49]. The subcellular locations were analyzed using WoLF PSORT
(http://psort.nibb.ac.jp/, accessed on 5 November 2020) [50]. Prediction of molecular
weight, isoelectric point was conducted using (http://cn.expasy.org/tools/pi_tool.html, ac-
cessed on 15 November 2020). The Plant CARE online software (http://bioinformatics.psb.
ugent.be/webtools/plantcare/html/, accessed on 16 November 2020) was used to predict
the promoter element and function of the OSWRKY group III gene [51]. Three-dimension
structure of OsWRKY21 was performed using SWISS-MODEL online prediction software
(http://swissmodel.expasy.org/, accessed on 16 November 2020).

4.3. Expression Analysis of OsWRKY21 in Rice

The expression profile data of OsWRKY21 in 33 tissue examples (Supplementary
Table S3) of Zhenshan 97 (ZS97) and Minghui 63 (MH63) were obtained from the CREP
database (http://crep.ncpgr.cn, accessed on 18 November 2020) generated by a rice tran-
scriptome project using the Affymetrix Rice GeneChip microarray [31].

4.4. Plasmid Vector Construction and Rice Transformation

The entire coding sequence (CDS) region (834 bp) of OsWRKY21 was amplified use
the cDNA extracted from the Zhonghua 11 (ZH11) as the template. The forward primer is
CGGGATCCTCCCAAGCTGAGAGTTGTCG (with BamH I site) and the reversed primer is
GACTAGTCGTGCGATTATCT GACGAACT (with Spe I site). The fragment was first cloned
into TA clones and sequenced to confirm its right sequence of the CDS. Then the CDS of the
OsWRKY21 was cloned into the destination vector pTCK303 to generate the overexpress
construct OX-pTCK303-WRKY21. The construct carrying the CDS of the OsWRKY21 was
introduced into Agrobacterium tumefaciens strain EHA105 and transformed into the wild-
type Zhonghua 11 as described previously [52]. The positive transgenic lines were selected
based on PCR, GUS staining, and sequencing analysis.

https://s3.amazonaws.com/3kricegenome/snpseek-dl/
http://www.megasoftware.net/
http://meme-suite.org/tools/meme
http://www.ncbi.nlm.nih.gov/cdd/
http://www.cbs.dtu.dk/services/TMHMM-2.0/
http://psort.nibb.ac.jp/
http://cn.expasy.org/tools/pi_tool.html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://swissmodel.expasy.org/
http://crep.ncpgr.cn
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The CRISPR plasmid vector pRGEB32 was used to transiently express U3p:sgRNA
along with UBIp:Cas9 in rice. The construct carrying the U3p:sgRNA and UBIp:Cas9 was
transformed into the Agrobacterium strain (EHA105) as described by Xie et al. [53]. The pos-
itive transgenic lines were selected based on PCR and sequencing analysis. The sequences
of sgRNA (OsWRKY21) and the primers used in this study were listed in Table S4.

4.5. Plant Materials, Growth Conditions, and GA3 Treatment

Rice (Oryza sativa L.) Zhonghua 11 (japonica cv. ZH11) plants were grown in an
experimental field at Huazhong Agricultural University (Wuhan, China) during the rice
growing summer season Year 2020. All harvested seeds were dried at 40 ◦C for three days
to break possible dormancy first. Then 15 seeds from each type of OE, and ZH11 plant
were placed into beakers and soaked with tap water at room temperature at 25 ◦C for three
days to ensure the complete absorption of the water, then subjected for GA3 treatment at
levels of 0 µM and 1 µM, respectively throughout the stages of germination and seedling.
After germination, seeds were placed on double sheets of filter paper in a 9 cm diameter
Petri dish, moistened with water, and maintained at 30 ◦C and 60% relative humidity
for 3 days seedlings were grown in the same conditions for another 7 d, and pictures of
the representative plants were taken before and after the treatment using a Nikon D7000
camera. The lengths of seedlings were measured both before and after GA treatment. The
experiments were carried out in three biological repeats.

4.6. RNA Extraction and qRT-PCR

Total RNAs were isolated from different tissues as indicated using a Hipure plant
RNA Mini Kit, and the first-strand cDNA was synthesized from 2 µg of total RNAs
using a PrimeScript™ RT reagent Kit from TaKaRa (code: RR047A, Beijing, China). The
experiments were performed following the manufacturer’s instructions. SYBR-based
qPCR (GoTaq® qPCR Master Mix Kit, Promega code: A6002, California, United States)
was set up in a reaction volume of 10 µL, and run with three replicates on a LightCycler
480 system (Roche, Basel, Switzerland) using the following reaction conditions: 95 ◦C for
1 min followed by 50 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. The rice ubiquitin gene
was used as the internal control, and relative expression levels of genes were calculated
using the 2–∆∆Ct method [54]. Primers used in quantitative real-time PCR (qRT-PCR) are
listed in Supplementary Table S4. Three biological replications were performed.

4.7. Measurement of Endogenous Phytohormones IAA and GA3

At the plant heading stage, the 2nd internodes from the plants of OE lines and wild
type ZH11 were chosen for measurement of plant hormones IAA and GA3. A sample
amount of 0.2 g was ground in liquid nitrogen with a mortar and pestle, then added
with 1 mL of precooling 70–80% methanol solution (pH = 3.5), kept at 4 ◦C for overnight,
then was centrifuged at 4 ◦C 12,000× g for 10 min and the supernatants were collected.
The remaining residue soaked in 0.5 mL 70–80% methanol solution for 2 h at 4 ◦C then
centrifugated as before and the supernatants were collected. The supernatants were
combined and dried under vacuum at 40 ◦C to remove the organic solvents (the volume
is 1/3 of the original). The equal volume petroleum ether was added and mixing, the
samples were stood for a while for phase separation. The separation process of extracting
and decoloring was repeated 2–5 times. Then, the triethylamine was added and the pH
value was adjusted to 8.0, followed by the addition of PVPP (polyvinylpyrrolidone), and
shaken while incubated for 20 min. The samples were centrifuged and the supernatants
collected, then the hydrochloric acid was added to adjust the pH to 3.0. Extracting was
performed by a separation process with ethyl acetate 3 times. The organic portions in the
ester phase were combined and dried under vacuum at 40 ◦C, then were dissolved by
adding the mobile phase solution and vortex blending and were filtered through a needle
filter prior to chromatographic analysis.
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HPLC analysis was performed in a LC-20AT (Shimadzu, Japan) equipped with
an ultraviolet detector SPD-20A and a column temperature chamber CTO-20AC. The
operating conditions were as follows: a C18 reversed-phase column (150 mm × 4.6 mm,
5 µm), mobile phase A: 100% methanol; B: Aqueous 0.1% acetic acid solution, A: B = 55:45;
the injection volume 20 µL; the flow rate 0.8 mL/min; the column temperature 30 ◦C;
detection was performed at 254 nm.

4.8. Histological Analysis

For microscopic observation, sections of the 2nd internode of plants at the heading
stage were fixed in formaldehyde:glacial acetic acid:70% ethanol (1:1:19 v/v/v), softened by
15% hydrofluoric acid for 2 weeks, and then dehydrated in a graded ethanol series. The
samples were embedded in paraffin wax (melting point: 56–58 ◦C). Microtome sections
of 15 µm thicknesses were stained with toluidine blue and paraffin was removed using
xylene before observation. Then imaged using a light microscope (BX-61, Olympus).
The lengths and widths of cells (n ≥ 50) were measured using the ImageJ 1.32j software
(https://imagej.nih.gov/ij/, accessed on 30 November 2020)

4.9. Analysis of the Sequencing Data

The raw sequencing data in the format of FastQ were quality-controlled using the
FastQC (version 0.11.5, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/,
accessed on 1 November 2020) by removing the low quality reads and adaptor reads.
Then, the remaining clean reads were mapped to the MSU7 version of the rice reference
genome (http://rice.plantbiology.msu.edu, accessed on 5 November 2020) using hisat2
(version 2.1.0) [55]. Gene expression levels were quantified by FeatureCounts [56]. The
DESeq (http://bioconductor.org/packages/release/bioc/html/DESeq.html, accessed on
7 November 2020) was used to identify the DEGs by pairwise comparison [57]. DEGs were
identified using the Negative binomial distribution test with the criteria of p value < 0.05
and log2(Fold Change, FC) ≥ 1. Up-and down-regulated DEGs were identified as log2FC > 1
and log2FC < −1, respectively. The DEGs were further annotated with GO functional and
KEGG pathway analyses using the software TBtools [58].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22158192/s1.
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