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W N e

Abstract: Dermoscopy is the visual examination of the skin under a polarized or non-polarized light
source. By using dermoscopic equipment, many lesion patterns that are invisible under visible light
can be clearly distinguished. Thus, more accurate decisions can be made regarding the treatment
of skin lesions. The use of images collected from a dermoscope has both increased the performance
of human examiners and allowed the development of deep learning models. The availability of
large-scale dermoscopic datasets has allowed the development of deep learning models that can
classify skin lesions with high accuracy. However, most dermoscopic datasets contain images
that were collected from digital dermoscopic devices, as these devices are frequently used for
clinical examination. However, dermatologists also often use non-digital hand-held (optomechanical)
dermoscopes. This study presents a dataset consisting of dermoscopic images taken using a mobile
phone-attached hand-held dermoscope. Four deep learning models based on the MobileNetV1,
MobileNetV2, NASNetMobile, and Xception architectures have been developed to classify eight
different lesion types using this dataset. The number of images in the dataset was increased with
different data augmentation methods. The models were initialized with weights that were pre-trained
on the ImageNet dataset, and then they were further fine-tuned using the presented dataset. The most
successful models on the unseen test data, MobileNetV2 and Xception, had performances of 89.18%
and 89.64%. The results were evaluated with the 5-fold cross-validation method and compared. Our
method allows for automated examination of dermoscopic images taken with mobile phone-attached
hand-held dermoscopes.

Keywords: deep learning; hand-held dermoscope; lightweight architectures; mobile phone; skin cancer

1. Introduction

Skin cancer is one of the most frequent and dangerous diseases today and is often
caused by ultraviolet (UV) rays [1]. In the previous ten years, there has been a 44% increase
in skin cancer cases in the United States [2]. The sunlight, along with its benefits for human
skin, causes many diseases such as skin cancer in case of overexposure. The increased risk of
developing skin cancer makes early detection of the disease critical [3]. Melanocytes, which
are specific types of skin cells, begin to proliferate uncontrollably due to damage from UV
rays, which results in the formation of malignant tumors known as melanoma. Melanoma
is responsible for over 75% of skin cancer-related deaths [4]. However, with successful and
early diagnosis in skin lesions, metastasis can be prevented. As a result, early detection of
melanoma must be realized immediately to avoid metastasis [5].
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For skin cancer diagnosis, suspicious lesions are first visually examined with the
naked eye by dermatologists. In order to increase the diagnostic success, dermoscopes, also
known as epiluminescence microscopes, integrated with a magnification lens and polarized
or non-polarized light sources have been developed to make the superficial and deeper
patterns of the lesions more visible and to provide a clearer and artifact-free imaging [6].
Digital dermoscopes (such as Molemax (Derma Medical Systems, Vienna, Austria)) also
have an integrated digital camera and are usually connected to a computer. Since they are
connected to a computer, they are stationary, bulky, and occupy valuable space in the clinic.
Furthermore, due to their high-cost, many clinics around the world do not have access to a
digital dermoscope and cannot benefit from many up-to-date technologies such as modern
cameras. It has also been shown that the accuracy of visual examination of dermoscopic
pictures increases linearly with dermatologist’s experience [7].

Non-digital, hand-held dermoscopes, on the other hand, do not need to be connected
to a computer. They can be integrated to a mobile phone to utilize its digital camera. They
are commonly preferred in the clinic because they are small, portable, inexpensive and
compatible with almost every mobile phone. Thus, they allow the expert doctor to benefit
from current camera technology. However, since they are not integrated with a camera,
artifacts such as blurring due to vibration of the hand can be seen in dermoscopic images.

Lesions that cause skin cancer contain specific patterns and structures of their own.
With dermoscopic examination, patterns and structures can be distinguished better, and le-
sion diagnosis can be made through images with higher performance. Accuracy of lesion
diagnosis also depends on the experience of dermatologists, as it is based on visual in-
formation. Similarly, the performance of traditional machine learning studies to classify
skin lesions is dependent on numerous criteria, such as the technique for feature extrac-
tion. In addition, the workload for each lesion grows as the number of characteristics
increases. Therefore, its clinical application is not feasible. Numerous methods, such as
ABCD principles [8] and seven-point checklists [9], have been developed previously to
diagnose skin lesions in daily clinical practice. Diverse approaches have been developed
to classify the handcrafted features [10]. In addition, it has been demonstrated that ap-
proaches developed by merging multiple methodologies improve performance for different
aims [11,12]. However, handcrafted features do not reach deep learning performance and
are ineffective in daily clinical practice because of their complexity [13-15]. Due to the
success of deep learning on images, many segmentation and lesion classification studies
have been performed for skin cancer using dermoscopic and clinical images. Since clinical
images do not contain as much information about the lesion as dermoscopic images, clinical
image-based diagnosis is less reliable due to decreased accuracy. Despite this shortcoming,
the success of deep learning models on clinical images has reached the level of expert
dermatologists [16]. Deep learning studies have focused more on dermoscopic images due
to higher performance. One of the most significant steps in this regard is the International
Skin Imaging Collaboration (ISIC) competition [17]. From 2016 to 2020, a total of 11 differ-
ent challenges were held 5 times. According to the results of the ISIC competition, the most
successful deep learning models produced an accuracy score well above the average expert
dermatologist. In addition, studies were carried out to increase the success of the deep
learning models by determining the region of interest automatically [18].

Another factor in skin cancer is skin type. Different parts of the world have different
skin types. As the skin type changes, the characteristics such as the color structures
and backgrounds of the lesions also change. Therefore, datasets such as HAM10000 or
BCN20000 that contain different skin types were created [19,20]. Another contribution
of the BCN20000 dataset is that it also includes artifactual images such as nails, mucosa,
hypopigmented images, and lesions that do not fit into the image area. The HAM10000 and
BCN20000 datasets provide more detailed information since the images are labeled with
subtypes of lesions rather than only as malignant or benign. In clinical practice, the critical
task is to classify the lesion as either benign or malignant since this is the deciding factor that
determines whether to perform a biopsy or not. In order to provide this decision support
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mechanism, a patient-oriented, only binary-labeled dataset for melanoma diagnosis was
also created [17].

Dermoscopic image datasets usually include metadata such as age, gender, and lesion
area for each image. Multiple model studies were also carried out by including these
metadata. Along with dermoscopic images, models in which clinical images were used
together have also been developed. These studies have shown that accuracy increases with
the use of additional data (e.g., metadata, clinical images) [21].

Recently, deep learning systems that will work as a decision support mechanism for
the diagnosis of skin diseases have begun to be developed for people such as inexperienced
dermatologists, nurses, and primary care doctors who are not experts in the field of der-
matology [22,23]. Teledermoscopy was studied based on feature extraction with a small
binary dataset [24]. In addition, feasibility of online teledermoscopy through a mobile
application was also studied [25]. Similarly, they also provide preliminary information
about the disease using a mobile phone at home. According to these studies, the per-
formance in preliminary diagnosis can be increased with inexpensive and fast methods
without the need for dermatologist examination. As can be seen, the number of studies
on decision support mechanisms and prediagnosis on mobile and embedded devices has
started to increase. There are many studies that use lightweight deep neural networks
(DNN) for mobile devices, but dermoscopic images collected from digital dermoscopic
datasets have mostly been used [26-29]. Due to the scarcity of doctors and the conversion
of clinics such as dermatology to pandemic services, in the pandemic period, applications
to guide the patient with mobile systems are being studied. There is a need for a cheap
and practical decision support mechanism that can be used by non-dermatology specialists
and can provide higher performance on skin lesions by using a camera integrated with
hand-held dermoscope.

In this study, we collected a dermoscopic image dataset of skin lesions taken using a
mobile phone-attached hand-held dermoscope. Each image was labeled as actinic keratosis
(ak), seborrheic keratosis (sk), vascular lesion (vasc), dermatofibroma (df), basal cell carci-
noma (bcc), squamous cell carcinoma (scc), nevus (nv), or melanoma (mel). Afterwards,
a multi-class classification study was conducted on four DNN architectures. Each model
was initialized with weights that were pre-trained on the ImageNet dataset. Then, transfer
learning of the fully connected layer and fine-tuning of the convolutional layers were
conducted. Performance metrics based on the 5-fold cross-validation results are presented
for each model.

To summarize our main contributions: (1) For the first time, a dermoscopic dataset
where each image was collected using a mobile phone attached hand-held dermoscope is
presented. (2) The presented dataset was used to train four state-of-the-art deep learning
models for the purpose of multi-class classification without the use of metadata and clinical
images. (3) Performance metrics obtained from the trained models are presented and
compared with each other in order to create a benchmark for the dataset.

2. Materials and Methods

The presented method includes training with 5-fold cross validation and testing
phases for the development of a deep learning model to classify skin lesions. Firstly, data
preprocessing was applied to the dataset. For the training phase, four DNN architectures
were initialized with weights that were pre-trained on the ImageNet dataset, and the
fully connected layer was retrained using transfer learning [30]. Afterwards, fine-tuning
was carried out by retraining the convolutional layers. Validation data were used in the
training stage to obtain feedback about the performance of the model. In the testing phase,
preprocessed test images were given to the deep learning models. A summary of the
process is shown in Figure 1.
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Train Data —
Data Preprocessing —| ------------------
Test Data

Data Collection with Hand-Held
Dermoscopes and Mobile Phone Dataset

Convolutional Neural
Prediction Result |<——| Post Aggregation |+—— Network & <——| Transfer Learning |4
Fine Tuning

Figure 1. Main scheme of work, starting from data gathering to prediction results.

2.1. Mobile Dermoscopy Dataset
2.1.1. Data Collection

Skin lesions can be divided into two classes: melanocytic and non-melanocytic. Both
classes contain subtypes that are considered to be malignant lesions and classified as skin
cancer. The proposed dataset includes the subtypes mel, the malignant form of melanocytic
lesions and nv, the benign form of melanocytic lesions. Among the non-melanocytic lesions,
six classes are included: ak, sk, df, and vasc lesions from the benign form and bcc and scc
lesions from the malignant form of non-melanocytic lesions. The hierarchical structure
of the dataset and example images of these classes are shown in Figure 2. Images were
collected using a mobile phone-attached hand-held dermoscope from patients who came
to the clinic with lesion complaints. All images were taken in JPEG image format with a
3gen Dermlite DL4 hand-held dermoscope and connection kit for iPhone 7. A standardized
imaging process was followed using a similar illumination angle and intensity for each
image. In order for the images to be artifact-free and in focus, the dermoscopic images
were taken under appropriate and sufficient light. The manual focus feature was used to
focus the camera and enough time was allowed for it to focus. The 1644 high-quality and
artifact-free dermoscopic images were chosen from 1688 dermoscopic lesion images, which
were collected from 2017 to 2021. Ethical approval of images is based on ethics review
board protocols 21-82 (Istinye University, 1 November 2021). The dataset does not include
metadata information such as gender or age. Image labeling was performed by reading the
class of dermoscopic images collected from the patient reports. The dermoscopic images
were collected by an expert dermatologist with 20+ years experience in dermatology.
All melanoma cases are biopsy-proven. Most other lesion types are follow-up lesions.
The dataset includes dermoscopic images and the type of lesion for each image. While
the dataset was being created, a considerable attention was paid into keeping it balanced.
A common problem for imbalanced datasets is that models tend to memorize classes with a
large number of images and miss classes with a small number of images. In order to create
a balanced dataset, images with excessive disturbances (e.g., blurry images) and artifacts
that doctors have difficulty in diagnosing are not included in the dataset. However, images
that do not affect the doctor’s diagnosis despite the presence of artifacts were included
in the dataset. Furthermore, images of the same lesion taken from different angles and
distances were also included. The lesion types, lesion names, class numbers, and training,
testing and total sample sizes for each class of Mobile Dermoscopy Dataset are shown in
Table 1.



J. Clin. Med. 2022, 11, 5102

50f16

LESION

¢

Melanocytic

Nevus

N

Non-Melanocytic

Melanoma

Vascular Lesion

Dermatofibroma

benign lesions, and red background represents malignant lesions.

Table 1. The lesion types, names, class number and dataset size.

Malignant

Basel Cell
Carcinoma

Squamos Cell
Carcinoma

Figure 2. Classification of skin cancer lesions by groups and subgroups. Green background represents

Training-Testing-Total

Type Lesion Name Class Number Class Size
Non-Melanocytic Actinic
Benign Keratosis (ak) 1 38-10-48
Non-Mel.anocytlc Yascular 5 160-40-200
Benign Lesion (vasc)
Non-Melanocytic Seborrheic
Benign Keratosis (sk) 3 143-36-179
Non-Mel.anocytlc Dermatofibroma (df) 4 29-7-36
Benign
Non-Melanocytic Basel Cell
Malignant Carcinoma (bcc) 5 188-47-235
Non-Mglanocytlc Squgmous Cell 6 141-35-176
Malignant Carcinoma (scc)
Melanocytic Melanoma (mel) 7 124-31-155
Malignant
Melanocytic Nevus (nv) 8 492-123-615
Benign

Total

1315-329-1644
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2.1.2. Data Augmentation

Data augmentation techniques reduce overfitting and increase the performance of
the models [31]. In order to increase the number of images in the dataset, the lesion area
was cropped manually, and the images that contain the lesion were added to the dataset.
In order to increase the training data, an image generator was created. The image generator
for augmentation accepts a batch of images, applies augmentation techniques on each
image, and replaces the original images with augmented images. Since the lesions are
invariant when rotated and moved at any angle, six different augmentation methods were
applied to the images: rotation, zoom, width and height shift, vertical and horizontal flip. It
has been shown that these techniques increase the performance in image classification [32].
Images are augmented with a 45-degree rotation range, 0.2-percent focusing range, and
0.2-percent width and height shift. Example patch images of an augmented image from the
dataset are shown in Figure 3. The parameter names and values of the data augmentation
techniques are shown in Table 2.

!

Data Augmentation:
Rotation
Zoom —
Width Shift
Height Shift
Horizontal Flip
Vertical Flip

Figure 3. Data sample, data augmentation and output samples with respect to data augmentation settings.

Table 2. Data augmentation arguments and their range and values.

Settings Values
Rotation Range 45
Zoom Range 0.2
Width Shift Range 0.2
Height Shift Range 0.2
Horizontal Flip True
Vertical Flip True

2.2. Deep Learning Model

Following the high success rates of DNNs against traditional methods, they have been
widely applied for classification of medical images as well. Particularly, convolutional neu-
ral networks (CNNs) can be trained to recognize complex patterns that are hard to model
using hand-crafted features. In this study, a feature detection network was developed using
CNNs, and then a fully connected layer that learns which feature is associated with which
lesion was trained. The classification error was minimized by using the backpropagation
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algorithm using the training dataset [33]. Thus, the deep learning model was optimized,
and the classification model with the highest performance was revealed.

2.2.1. Deep Learning Architectures

There are many architectures that are based on different approaches in deep learning
models. Usually, these architectures are designed to be efficient for specific tasks. Different
deep learning architectures such as Xception [34], MobileNetV1 [35], MobileNetV2 [36],
and NASNetMobile [37] have been developed to achieve high performance with a low
number of network parameters. For this purpose, depthwise separable convolutions are
a very effective method to reduce model size and improve accuracy [38]. Depthwise
separable convolutions have two separate layers instead of a full convolutional operator.
The depthwise convolution as the first layer applies a single convolutional filter per input
channel, and the pointwise convolution as the second layer isa 1 x 1 convolution filter.
MobileNetV1 and Xception are built on depthwise separable convolutions for efficient
mobile models and scaling up depthwise separable filters. MobileNetV2 architecture,
which is an improved version of the MobileNet architecture [35], differs in that it reduces
the computational cost and is a smaller model. Depthwise separable convolution, shortcut
connections, inverted residuals, and bottleneck layers are the innovations and structures
that make MobileNetV2 more successful than its predecessor [36]. NASNetMobile uses the
neural architecture search (NAS) with Scheduled DropPath technique and a mobile version
of the NASNet model [39].

2.2.2. Transfer Learning and Fine-Tuning

Transfer learning is a process in which particular layers are frozen and particular layers
are retrained by implementing pre-trained networks on different large-scale datasets [40].
Depending on the dataset and the purpose of the pre-trained network, the retrained layers
can be changed. The transfer learning concept is shown in Figure 4. The ImageNet dataset is
the most commonly used dataset for obtaining the pre-trained weights [31]. The ImageNet
dataset can be considered a universal feature resource because it contains 21841 synsets
and more than 14 million images. The effectiveness of transfer learning using pre-trained
models with ImageNet has been demonstrated in many applications. In this study, four
deep learning architectures pre-trained with the ImageNet dataset was used.

2.2.3. Network Implementation

In deep learning models, images are scaled to a lower resolution because high-resolution
images take longer to process, and there exists a memory problem. Therefore, the collected
images were scaled t0 299 x 299 x 3 pixels for the Xception model and 224 x 224 x 3 pixels
for MobileNetV1, MobileNetV2, and NASNetMobile. Since taking images by continuously
accessing the memory during the training process causes a slowdown in model training,
the RGB values of the images were converted to the array format of the NumPy library
and saved. Then, training was done through these NumPy arrays [41]. In order to make
the deep learning model suitable for our dataset, additional neural network layers were
added to the end of the deep learning architectures. The GlobalAveragePooling layer was
added to the end of the deep learning architectures, and then the Dropout layer was added
with a ratio of 0.2 to implement architectures for this classification case. With the flatten
layer, the image coming from the architecture is converted into a form to be processed in
the fully connected layer. The fully connected layers of ImageNet were deleted. At the end
of the deep learning model, a 128-node dense layer was added. Then, similarly, a 128-node
dense layer and a dropout layer with a 0.2 ratio were added. Finally, the output layer with
eight nodes was added. For detailed information about the four neural networks, see the
Supplementary Materials. Since the classification problem includes eight classes and will
be run on mobile platforms, the aim was to increase the performance with the least possible
number of parameters. Pre-trained deep learning architectures on the ImageNet dataset
were used with 2-stage training for fine-tuning the model. In the first stage, all the layers of
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ImageNet Database

Our Database

the deep learning architecture were frozen. Only the fully connected block added to the end
of the architecture was trained. Thus, it was ensured to select according to the universal
features extracted from the ImageNet dataset. In the second stage, fine-tuning was carried
out. At this stage, all model layers were included in the training, and the model that would
reveal the highest performance was obtained by optimizing the universal features extracted
from the ImageNet dataset. The dynamic learning rate approach was used to optimize the
learning rate during the training using the ReduceLROnPlateau function. If the validation
performance did not decrease every two epochs, the learning rate was reduced by 0.1 to
accelerate learning. The Keras library was used over the Python programming language
to train the models. Models were run on a system using Nvidia GTX1080Ti with 11 GB
memory, an AMD Ryzen Threadripper 1950X processor, and 32 GB RAM. A two-step
100 epoch model training was used in this study. The average training time of the deep
learning model for 100 epochs of fine-tuning is about 2 h.

90% Cat

7% Dog

0.3% Spoon

-

Fully Connected

Predicted Labels
Layers

Convolution Layers

lTrained Weights Transfer lTrain From Scratch

1
! —————
1
1 1 73% Melanom i
1
: 1 13%Newus !
> 1 . I
1 . 1
1 1
. 1
1 1
1 0.21% 1
1 Dermatofibrom |
1 e -
|

Fully Connected
Layers

Convolution Layers

Predicted Labels

Figure 4. Overview of transfer learning process. The weights obtained on the ImageNet dataset
are transferred to the convolution layers. The weights in the fully connected part are retrained.
After optimization, the four deep learning models have two 128 node dense layers and one dropout
layer with a 0.2 ratio as fully connected layers.

2.2.4. Testing

There are different approaches to measure the success and robustness of the trained
model, such as k-fold cross-validation and classification metrics. With k-fold cross-validation,
the training dataset is divided into k parts, and k models are created. One fold is the valida-
tion dataset, and the rest is the training dataset. By mixing the training and validation data
of the dataset in this way, the average model performance can be measured by eliminating
the effect of randomness in the selection of training data. For the success criteria of the
model, there are many metrics in classification problems. In this study, the accuracy (Acc),
precision (Prec), and F; score of four models as a result of k-fold cross validation were
calculated on test data. F; score was used to measure the balance of positive and negative
prediction rates of the model. The formulas for these classification metrics are shown in
Table 3.
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Table 3. Metrics and formulas used to measure model performance.

Metric Formula
Accurac IP+IN
y TP+ FP+ TN + EN
.. TP
Precision m

. Precision x Recall
Precision + Recall

Fi Score

3. Results

Table 4 shows the classification performance of the deep learning models. The skin
lesion classification model based on the MobileNetV1, MobileNetV2, NASNetMobile,
and Xception architectures, developed with eight outputs, were performed with 5-fold
cross validation. The average Acc, Prec, and F; score values of the 5 models obtained with
SD and 95% confidence intervals (CI) are 76.96% (£2.60, (74.7,79.2)), 77.94% (£2.93, (75.4,
80.5)), and 77.45% (£2.76, (75, 79.9)) for MobileNetV1, respectively. The average Acc, Prec,
and Fj score values of the 5 models are 89.18% (+1.13, (88.2, 90.2)), 88.13% (+2.81, (85.7,
90.6)), and 87.38% (£2.52, (85.2, 89.6)) for MobileNetV2, respectively. The average Acc,
Prec, and F; score values of the 5 models are 77.21% (£+1.22, (76.1, 78.3)), 78.04% (+1.33,
(76.9,79.2)), and 77.62% (£1.24, (76.5, 78.7)) for NASNetMobile, respectively. The average
Acc, Prec, and Fy score values of the 5 models are 89.64% (+1.89, (88, 91.3)), 89.99% (+1.73,
(88.5,91.5)), and 89.81% (£1.8, (88.2, 91.4)) for Xception, respectively.

Some samples where the model classifies correctly for each class are shown in Figure 5.
In Figure 6, some examples of incorrect classification are shown for each class. In Table 5,
the performance of four deep learning models with their standard deviations (SD) for each
class are given.

|
i (/3

j vasc (0.99) sk (0.83) df (0.80)
™~ E
& - : .
bee (0.99) scc (0.99) mel (0.76) nv (0.99)

Figure 5. Samples of correctly classified images with their corresponding probability.
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scc (0.15) as
bece (0.85)

ak (0.09) as
bece (0.55)

sk (0.34) as
nv (0.37)

vasc (0.07) as
df(0.26)

-
nv (0.06) as mel (0.00) as vasc (0.07) as sk (0.12) as
sk (0.42) nv (0.99) bee (0.99) mel (0.76)

Figure 6. Samples of misclassified images, true classes with prediction values of true class and false
predicted classes with corresponding false prediction values.

Table 4. Mean values and SDs for weighted metrics of four deep learning models evaluated with
5-fold cross validation.

Metric MobileNetV1 MobileNetV2  NASNetMobile Xception
Accuracy  76.96% £ 2.60  89.18% =+ 1.13 77.21% + 1.22 89.64% + 1.89
Precision 77.94 £ 293 88.13% + 2.81 78.04% + 1.33 89.99% + 1.73
Fi Score  7745% + 2.76  87.38% =+ 2.52 77.62% + 1.24 89.81% + 1.80

Table 5. Shows the class accuracies for each of the eight classes, along with their mean percentile
performance and SD.

Lesion =~ MobileNetV1 MobileNetV2 NASNetMobile Xception
ak 68.00% (+13.04)  80.00% (£0.00)  72.00% (£16.43)  66.00% (4-20.74)
vasc 80.50% (4-4.47) 90.50% (42.82) 78.50% (46.52) 91.00% (44.18)
sk 52.78% (£7.61) 67.78% (£8.97) 56.11% (£6.63)  72.78% (£10.65)
df 37.14% (£12.78)  68.57% (£3.67)  40.00% (£25.56)  71.43% (£14.29)
bec 65.11% (+8.85)  73.62% (£10.94)  61.70% (£7.82) 73.19% (46.13)
sce 65.14% (£2.39) 89.71% (£5.75) 65.14% (£3.73) 85.71% (44.95)
mel 85.81% (£7.77) 89.03% (£4.31) 85.81% (£7.43) 87.74% (£2.70)
nv 91.38% (£0.93) 91.87% (£2.64) 92.52% (+2.47) 91.00% (+4.18)

4. Discussion

Studies on skin cancer can be classified under three categories: studies with clinical
photographs, studies with dermoscopic photographs, and studies with multiple models.
In studies with clinical photographs, the images collected by directly taking the skin image
are processed. Most of the images collected from the skin illuminated by a polarized
or non-polarized light source are processed in studies with dermoscopic photographs.
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In multi-model studies, results are obtained by combining different models, including
clinical, dermoscopic, and metadata information. Table 6 shows our dataset specifications
and other open access skin lesion datasets.

Table 6. Specifications of the largest open access skin lesion datasets in the literature and related studies.

Dataset Study Type C]gzllrﬁ:ti(s);):g‘i/\srizh Dataset Size Class Size Derﬁ::ﬁézfism
Hybrid 1* [16] Clinic Yes 129,450 9 2
Hybrid 2 ** [42] Clinic Yes 19,398 12 16

PH? [43] Dermoscopic No 200 3 -
ISIC 2016 [44,45] Dermoscopic Yes 1279 3 8
ISIC 2017 [46] Dermoscopic No 2750 3 -
ISIC 2018 [19,47,48] Dermoscopic Yes 10,015 7 511
ISIC 2019 [19,20] Dermoscopic No 25,331 8 -
ISIC 2020 [17] Dermoscopic No 33,126 2 -
Mobile Dermoscopy Own Dermoscopic No 1644 8 -

* ISIC Dermoscopic Archive, the Edinburgh Dermofit Library and Stanford Hospital. ** Asan, MED-NODE dataset

and atlas site images.

There are many studies comparing dermatologists and developed deep learning mod-
els in macroscopic image analysis. In these studies, while deep learning models gave better
results than beginner and intermediate-level experienced dermatologists, they did not
produce better results in all comparisons when compared to expert dermatologists [49,50].
There are two major breakthroughs in this field. The first is Esteva et al.’s work [16], which
includes 129,450 images containing 2032 classes. They developed a deep learning model
based on the Inception v3 CNN architecture by reducing 2032 classes to 3 and 9 main
classes according to a taxonomy tree and compared it with two board-certified dermatol-
ogists. They achieved a similar success rate to the dermatologists. The other work is by
Han et al., where they developed the ResNet152 CNN architecture for a dataset containing
19,398 images of 12 different skin diseases [42]. As a result of the comparison made with
16 dermatologists, 10 of whom were professors and 6 were clinicians, the developed deep
learning architecture gave much better results than dermatologists, especially in terms of
accuracy. The use of clinical images aims to make decisions by using skin images directly
without the use of any tools. In this process, skin lesion images taken with any mobile
phone can be uploaded to a mobile phone application, and a prediction result can be
produced. Since it is an inappropriate and expensive process for patients to purchase a
digital dermoscope device or a hand-held dermoscope, datasets and studies created in this
field stand out in producing results using a mobile phone in home conditions. However,
low performance and model reliability are the biggest problems. In addition, the model
estimation is not stable because the images are affected by parameters such as the light
angle, intensity, skin type, and patterns that are not visible enough.

Most of the studies on skin cancer have been carried out using dermoscopic images [51].
Their performance is much higher than macroscopic images since superficial and deeper
patterns can be selected in dermoscopic images. The majority of studies in the field of
dermoscopic images are carried out on datasets shared under ISIC. The first challenge was
carried out in 2016 on 1279 dermoscopic images [44]. In the challenge in which 25 teams
participated, dermatologists obtained similar results with the best model, and thanks
to the fusion algorithm developed, a specificity value of 76% was obtained against the
specificity value of 59% of dermatologists [45]. In addition, an area under of the curve
(AUC) value of 0.86 was obtained from the fusion algorithm, while the AUC value of the
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dermatologists remained at only 0.71. In the challenge in 2017, three different tasks were
performed, in which lesion segmentation, dermoscopic feature classification, and three
different lesion classification were performed [46]. In 2018, similar tasks were performed on
12,500 images as in 2017. For the challenge held in 2018, the performance of 511 participants
from 63 different countries was measured [47]. While the top three deep learning models
had an average sensitivity of 86.2%, the best model had a sensitivity value of 88.5%. Despite
the deep learning models, the average participant sensitivity remained at only 79.2%,
while the expert dermatologist sensitivity was 81.2% [48]. Brinker et al. also developed
a deep learning model trained with dermoscopic images and classified clinical images
with this model. Comparing the results of the deep learning model with the performance
of 145 dermatologists, they showed that the deep learning model performed better than
doctors in clinical images, even though it was trained on dermoscopic images [50]. As seen
from the most extensive datasets and participants, skin lesion diagnosis is highly related to
the experience of examiners. Therefore, even if dermoscopic images are used, the use of
decision support mechanisms will be effective in increasing the success of both experienced
and inexperienced dermatologists. However, great strides can be taken in the success of
diagnosis with an inexpensive method based on mobile or embedded devices that can be
accessed by many medical institutions, including primary health care institutions.

In multi-model studies, datasets containing dermoscopic images, clinical images,
and metadata were used in different skin cancer studies using different combinations.
The most comprehensive study in this area is the study by Yap et al., in which they tried six
combinations of macroscopic, macroscopic + metadata, dermoscopic, dermoscopic + meta-
data, dermoscopic + macroscopic, and dermoscopic + macroscopic + metadata [21]. This
study showed that the model trained with only dermoscopic images gave outstanding re-
sults compared to macroscopic and macroscopic + metadata models, which did not include
dermoscopy images. Each additional dataset added on top of the dermoscopic dataset
contributed to the performance and stability of the model. In a study by Pacheco et al., two
models were trained using images collected by mobile phones. The first is the scenario
where only clinical images are used, and the second is the scenario where clinical images
and clinical features are used as multiple models. As seen from this study, the scenario
using only clinical images produced similar results to other publications that use clinical
images. However, in the scenario where clinical images and clinical information were
used, approximately 7% more success was achieved [52]. In another study, they devel-
oped a combined CNN-based model using clinical and dermoscopic images presented by
Tschandl et al. In this study, when clinical and dermoscopic images were used together,
the deep learning model produced better results than novice (<3 years) and moderately
experienced dermatologists (3-10 years). However, it could not reach the success of expert
dermatologists (>10 years) [53]. As seen from multi-model studies, inclusion of clinical
images, dermoscopic images, or metadata increases accuracy. However, extra processing
and data entry is required for each added dataset. That data entry is not possible in coun-
tries where the number of patients per doctor is high. In addition, in the case of using
different datasets together, even if the model performances increase, results and predictions
are produced at the extreme points. In this regard, the most stable prediction distribution
is the studies in which only dermoscopic datasets are used, although the performance is
slightly lower than the others.

As can be seen from the results, although dermoscopic images taken using a mobile
phone integrated into hand-held dermoscopes contain large distortions such as blurring,
a model with high performance can be obtained due to their high resolution. Recently,
the most significant breakthrough with the work on mobile phones has come from the
Google company. They developed a mobile dermatology application for mobile phones
on skin lesions. According to the study, which was published as a landmark study of
mobile application, a model developed using clinical images and metadata datasets with
the secondary purpose for a total of 419 skin diseases and high performance for 27 common
skin diseases was presented from 16,114 images [54]. Similarly, in a study involving 20 pri-
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mary care physicians and 20 nurse practitioners, a total of 40 board-certified clinicians,
by using artificial intelligence as a decision support mechanism, the success of clinicians in-
creased from 48% to 58% for primary care physicians, and the success of nurse practitioners
increased from 46% to 58% [22]. As can be seen from the studies, mobile phones will be ac-
tively used as a decision support mechanism in the following years. Thus, the performance
of not only expert dermatologists but also other clinicians will be increased cheaply and
practically. Our study presents a deep learning model for skin lesions using the four deep
learning architectures, which can produce high results with low parameters for a mobile ap-
plication by using dermoscopic images, which are datasets that produce successful results.
The nv lesion is the most successfully classified lesion type. The majority of misclassified nv
lesions were predicted as sk lesion. The df and sk lesion types also have the lowest success
because of the small sample size and similarity with nv lesions, respectively. In addition, all
misclassified scc lesions were predicted as bce lesions, and the majority of misclassified bec
lesions were classified as scc lesions. The misclassification of lesions that are in the same
group as malign or benign is not as bad as other error types. In addition, ak and vasc lesions
can be classified with high accuracy. The most important lesion type, melanoma, has a high
class accuracy around 90%. Finally, the decision support systems can be very effective in
daily clinical practice with successful predictions. Both expert dermatologists and other
clinicians will be able to use artificial intelligence as a decision support mechanism by using
their mobile phones only with the help of hand-held dermoscopes.

5. Limitations

This study includes some limitations. First, the presented dataset was collected only
from the western Turkish region. Therefore, Fitzpatrick’s skin types mainly include type
2 and type 3 skin types. Secondly, lesions collected from nails and mucosal regions were
not included in the study. Third, the dataset does not include metadata and macroscopic
images. A more stable and reliable model can be put forward by participating in the study
of these datasets and increasing the number of data.

6. Conclusions

In the present study, a dataset containing dermoscopic images of eight skin lesions
collected using a mobile phone-attached hand-held dermoscope has been presented to the
literature. Deep learning models based on four deep learning architectures, which aim to
produce high performance with few parameters for mobile phones, has been developed
using this dataset. This deep learning model has the ability to be used over mobile phones
as a decision support mechanism for both expert dermatologists and clinicians. In future
studies, the dataset will be expanded and tested with other dermatologists to compare their
performance with the deep learning model. In addition, examinations will be conducted
on how much the performance of clinicians can be increased by using only hand-held
dermoscope in decision support.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/jem11175102/s1, Figure S1: The layers of fully connected block
of deep learning models.; Figure S2: The layers of fully connected block of deep learning models
with parameters.; Figure S3: The layers of convolution block of MobileNetV1 architecture; Figure S4:
The layers of convolution block of MobileNetV1 architecture with parameters.; Figure S5: The layers
of convolution block of MobileNetV2 architecture.; Figure S6: The layers of convolution block of
MobileNetV2 architecture with parameters.; Figure S7: The layers of convolution block of NAS-
NetMobile architecture.; Figure S8: The layers of convolution block of NASNetMobile architecture
with parameters.; Figure S9: The layers of convolution block of Xception architecture.; Figure S10:
The layers of convolution block of Xception architecture with parameters. Reference [55] is cited in
Supplementary Materials.
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