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A set of 20 short tandem repeats (STRs) is used by the US criminal justice system to
identify suspects and to maintain a database of genetic profiles for individuals who have
been previously convicted or arrested. Some of these STRs were identified in the 1990s,
with a preference for markers in putative gene deserts to avoid forensic profiles revealing
protected medical information. We revisit that assumption, investigating whether
forensic genetic profiles reveal information about gene-expression variation or potential
medical information. We find six significant correlations (false discovery rate = 0.23)
between the forensic STRs and the expression levels of neighboring genes in lympho-
blastoid cell lines. We explore possible mechanisms for these associations, showing evi-
dence compatible with forensic STRs causing expression variation or being in linkage
disequilibrium with a causal locus in three cases and weaker or potentially spurious
associations in the other three cases. Together, these results suggest that forensic genetic
loci may reveal expression levels and, perhaps, medical information.
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Forensic genetic identification in the United States is typically performed by using
genotype data from 20 short tandem repeats (STRs), known as the Combined DNA
Index System (CODIS) core loci. Because these markers are highly polymorphic, even
just 20 loci provide an immense amount of identifying information regarding a specific
individual (1). Thirteen of these CODIS core loci were established by the Federal
Bureau of Investigation in 1998. These loci were selected for efficient PCR multiplex-
ing, while maximizing identifying information and minimizing ancestry-based popula-
tion differences and medically relevant information (2). In 2017, seven additional
STRs were added to the CODIS core loci, selected for similar criteria, particularly no
known associations with medical conditions (3).
It is important from a legal standpoint that CODIS genotypes do not reveal medical

information. Laws authorizing the compulsory collection of DNA from certain persons
may come into conflict with state privacy statutes or the US Constitution if medical
information is embedded (4). In fact, hundreds of court cases rely on the premise that
the CODIS variants are uninformative, often citing this quote relating to the DNA
Analysis Backlog Elimination Act of 2000, which states that the CODIS loci “were
purposely selected because they are not associated with any known physical or medical
characteristics” (Letter from Robert Raben, Assistant Attorney General, to Judiciary
Committee Chairman Henry Hyde) (5). Yet, some of the CODIS loci, particularly
those selected before the human genome was sequenced, are very close to genes. In
fact, 11 of the CODIS loci are intronic (6).
Any trait information conveyed by CODIS genotypes would raise questions regarding

the medical privacy of individuals whose CODIS profiles are compelled by the govern-
ment, as well as their genetic relatives. These include over 19,350,445 people arrested or
convicted whose CODIS profiles are held in the US national database (7), a group that
overrepresents people of color, especially Black populations (8). The historical and cur-
rent treatment of arrested and convicted individuals is rife with rights unjustly curtailed,
raising even more concern about a potentially lax approach to medical privacy for this
population (9–11). While the access-limited, federally regulated national database is vast,
it does not include all CODIS profiles held at state and local levels. For instance, in the
“spit and acquit” practice by the Orange County (CA) District Attorney’s Office, certain
misdemeanor defendants can be offered a dismissal in exchange for a DNA sample,
resulting in a local database of over 150,000 individuals (12). Other expansive local prac-
tices include using samples collected from nonsuspects for criminal investigation. A
recent example is a sexual assault survivor’s DNA profile later being used to connect her
to a property crime (13, 14). Given the scope of individuals with CODIS profiles stored

Significance

A central assumption in forensic
genetics is that the loci used for
identification do not reveal any
medical information. This
assumption is crucial for the legal
and ethical frameworks guiding
how forensic samples are seized,
databased, and accessed. Despite
the importance of safeguarding
the medical privacy of tens of
millions of people with forensic
genetic profiles, few studies have
addressed the question since the
forensic loci were established in
the 1990s. Here, we show
evidence calling to question this
central assumption. We show
significant correlations between
the genotype of forensic markers
and expression of neighboring
genes, going on to find evidence
for a molecular mechanism. These
results have substantive legal and
ethical implications for the
treatment of forensic genetic
profiles.

Author contributions: R.V.R. designed research; M.M.B.,
Y.J.A.Z., A.R., R.-J.R., E.H.-S., and R.V.R. performed
research; M.M.B., Y.J.A.Z., A.R., R.-J.R., M.G., B.C.R., T.N.,
A.R.V., M.S., E.H.-S., and R.V.R. analyzed data; and
M.M.B., Y.J.A.Z., A.R., R.-J.R., E.H.-S., and R.V.R. wrote
the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).
1Present address: Biological and Medical Informatics
Graduate Program, University of California, San
Francisco, CA 94158.
2B.C.R., T.N., A.R.V., and M.S. contributed equally to
this work.
3To whom correspondence may be addressed. Email:
rrohlfs@sfsu.edu.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2121024119/-/DCSupplemental.

Published September 27, 2022.

PNAS 2022 Vol. 119 No. 40 e2121024119 https://doi.org/10.1073/pnas.2121024119 1 of 10

RESEARCH ARTICLE | GENETICS OPEN ACCESS

https://orcid.org/0000-0002-6292-6269
https://orcid.org/0000-0001-6831-1479
https://orcid.org/0000-0001-7545-9500
https://orcid.org/0000-0002-1506-5494
https://orcid.org/0000-0002-2625-192X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rrohlfs@sfsu.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2121024119&domain=pdf&date_stamp=2022-09-27


and/or shared, in this study, we re-examine the assumption that
CODIS genotypes have no functional or medical impact.
It has long been known that variation in STR number can

alter gene function and regulation, sometimes resulting in dra-
matic phenotypes. A classic example is the coding STR expansion
in the HD gene, which causes increasingly severe Huntington’s
disease (15). Noncoding STRs have also been found to impact
gene expression, resulting in trait variation. For instance, large
numbers of repeats in an STR in the 50 untranslated region of
FRAXA impacts local methylation and gene regulation, causing
Fragile X syndrome (15).
More recent studies involving genome-wide surveys have

found thousands of replicable associations between STR length
and gene expression level (16–18). STR length variation can
impact methylation, as well as histone modifications, causing evo-
lutionarily conserved changes in gene expression (16, 17). Some
of these STR-associated expression changes were associated with
clinical traits (16). Somatic STR mutations have been implicated
in the development of cancer (19). One recent analysis showed
that individuals with autism have significantly more de novo
STR mutations (particularly in introns), as compared with their
neurotypical siblings (20). This growing body of evidence sug-
gests that STR length variation is causally responsible for a range
of complex trait variations, including pathogenic conditions (21).
These results raise questions about whether the CODIS loci

could impact medically relevant traits. Based on data available in
2011, a review of phenotypic associations with genetic loci con-
cluded that there were no significant associations with the
CODIS STRs (6). However, the study did report that some
CODIS loci fall within predicted sites for genomic regulation,
and all CODIS loci are within 1 kb of at least one genetic variant
associated with a phenotype (6). Because the linkage disequilib-
rium (LD) surrounding the CODIS loci is strong enough to
infer the genotypes of surrounding single-nucleotide polymor-
phisms (SNPs) (21–23), phenotype information may be inferable
through the CODIS genotypes. A more recent review of litera-
ture has identified 84 significant published associations between
traits and STRs for 18 of the 20 CODIS loci (25).
Here, we investigate whether genotypes at the CODIS loci

could directly reveal information about a fundamental trait: the
expression levels of neighboring genes. We identify CODIS loci
significantly correlated with the expression of nearby genes
(CODISeSTRs). We shed light on the mechanisms underlying
these associations. First, we consider the possibility that the asso-
ciations are caused by population structure as a confounding
factor by testing for expression–genotype associations within
subpopulations. With population stratification ruled out, we
explore the possibility of CODISeSTRs causing expression
variation by both comparing their genomic features to a panel
of STRs with strong evidence of expression impact (18) and
using a fine-mapping framework (CAVIAR) to identify putative
causal loci (26). Finally, we investigate the hypothesis that
CODISeSTRs may be in LD with a causal variant by examining
their LD with putative causal sites identified by CAVIAR, as
well as DNase I hypersensitivity (DHS) sites.

Results

Gene Expression and the CODIS Loci in the 1,000 Genomes
Dataset. We turned to a subset of the 1,000 Genomes Project to
investigate the relationship between gene expression levels and
CODIS loci genotypes. STR length variation was not directly
genotyped in the 1,000 Genomes Project because this dataset
used short-read sequencing. Thus, additional measures were taken

to genotype these loci. Saini et al. (27) imputed STR genotypes
for the 1,000 Genomes data by leveraging LD between STRs
and surrounding SNPs to create a publicly available haplotype
reference panel. This haplotype reference panel includes 18 of the
20 core CODIS STRs currently in use (28). Genotypes for STRs
D16S539 and D21S11 were unavailable because their unusually
long alleles are challenging to impute from short-read data.

While these imputed STR genotypes provide a tremendous
resource, their accuracy is limited. For non-European-ancestry
cohorts, the accuracy of imputed STR genotypes is lower because
the imputation training data consisted only of individuals with
European ancestry (27). Imputation accuracy is also lower for
STRs with more alleles. For example, biallelic STRs have an aver-
age concordance of 97%, while the highly polymorphic CODIS
STRs have an average concordance of 70%, with values ranging
from 48 to 94% (27) (Dataset S1). For context, highly polymor-
phic pathogenic STRs with around 70% concordance have been
detected through expression-association studies (27). Another
way to quantify imputation accuracy is the dosage r-squared
(DR2), an estimate of the squared correlation between the most
likely genotype and the true allele dosage. Among CODIS STRs,
DR2 ranges from 10 to 92%, with an average DR2 of 63% (27)
(Dataset S1). Taken together, these metrics of imputation accu-
racy provide varying levels of confidence across the CODIS loci.
While some CODIS STRs have fairly high confidence, imputa-
tion error erodes power to detect signal for other CODIS loci
genotypes; thus, we use a summary statistic, β, to describe the
expected sum of alleles at a locus, given the probability assigned
to each possible allele (Materials and Methods).

We considered gene-expression values based on transcriptome
data from lymphoblastoid cell lines from 421 individuals in the
1,000 Genomes Project. The populations represented in this set
are: Utah residents with northern and western European ances-
try, Finnish in Finland (FIN), British in England and Scotland
(GBR), Toscani in Italy (TSI), and Yoruba in Ibadan, Nigeria
(YRI), each population with a sample size ranging from 89 to
95 individuals (29). We investigated a model of CODIS STRs
causing or being in LD with cis causal loci by considering
expression level variation of genes within 100 kb of the CODIS
loci. Out of the 18 CODIS STRs included in the haplotype ref-
erence panel, only 14 CODIS STRs are within 100 kb of at least
one gene that is expressed in the lymphoblastoid data (SI
Appendix, Supplemental Table 1). We considered a total of 39
CODIS STR–gene pairs, as the number of expressed genes
within 100 kb varied for each CODIS loci. For each CODIS
STR–gene pair, we tested for correlation between CODIS loci
genotypes and the expression levels of neighboring genes. Note
that in this analysis, we did not correct for population structure
because we are not querying the molecular causality of an STR.
Instead, we are investigating informative STR-expression associa-
tions, regardless of their cause.

Of the 39 CODIS STR–gene pairs tested, 6 showed significant
correlations with p values below 0.05 and a false discovery rate
(FDR) of 0.23 (so the expected number of false positives is 1.4)
(Fig. 1 and Dataset S1 and SI Appendix, Fig. 1). The strongest sig-
nal was between D3S1358 and LARS2 (p = 1.1e-6, and coefficient
of determination R2 = 0:059). We see less strong correlations,
although still significant, between CSF1PO and CSF1R (p = 0.03,
R2 = 0:01), between CSF1PO and TIGD6 (p = 0.04,
R2 = 0:009), between D2S441 and C1D (p = 0.01, R2 = 0:014),
between D18S51 and KDSR (p = 0.02, R2 = 0:011), and between
FGA and PLRG1 (p = 0.03, R2 = 0:011) (SI Appendix,
Supplemental Table 1). While the adjusted coefficients of determi-
nation (R2) observed are weak, their statistical significance or
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marginal significance invites further investigation. The six CODIS
STR–gene pairs with p < 0.05 represent an excess of correlation
between CODIS loci and gene expression (p = 2.9e-3, χ2 test).
We refer to the CODIS STRs associated with gene-expression
levels as CODISeSTRs.
Note that these CODISeSTRs (D3S1358, CSF1PO, D18S51,

D2S441, and FGA) have imputation concordances of 0.67, 0.63,
0.51, 0.84, and 0.48, as well as a DR2 of 0.80, 0.55, 0.52, 0.68,
and 0.61, respectively (Dataset S1). These measures suggest mod-
erate to high levels of confidence in imputation accuracy.
The correlations that we observe could be explained by 1) a

confounding factor like population structure and/or environ-
mental variables in both CODISeSTR genotypes and expres-
sion levels, 2) CODISeSTRs causally impacting the expression
of a neighboring gene, 3) LD between the CODISeSTR and a
different causal locus that impacts expression, or 4) a spurious
association in this particular dataset. However, establishing a
putative mechanism for each of the observed associations may
inform us about its stability and generalizability. We explore
these hypotheses in the following analyses.

Exploring the Role of Population Substructure in Observed
CODISeSTR Correlations. First, we investigate if the observed
CODISeSTR-expression-level associations observed across the
whole dataset (including CEU, GBR, FIN, TSI, and YRI) are
caused by population structure as a confounding factor. We inves-
tigate this possibility by adding population membership as a covar-
iate in the linear models of gene expression and CODISeSTR
variation. For most CODISeSTR–gene pairs (D3S1358–LARS2,
D18S51–KDSR, D2S441–C1D, and FGA–PLRG1), the associa-
tions remain significant with population as a covariate (Dataset
S1). Thus, the associations observed are unlikely to be caused
by population structure. For CSF1PO–CSF1R and CSF1PO–

TIGD6, the associations are somewhat less pronounced with pop-
ulation as a covariate (CSF1PO–CSF1R p value goes from 0.03 to
0.06 and CSF1PO–TIGD6 from 0.04 to 0.06). This is consistent
with the hypothesis that CSF1PO associations may be caused in
part by population stratification.
If a cumulative association is caused entirely by structure at

the level of the specified subpopulations, then there would be
no associations within subpopulations, and there would be dif-
ferences in β and expression-level distributions across subpopu-
lations. We further investigate population-specific associations
by testing for CODISeSTR-expression-level associations within
subpopulations (SI Appendix, Fig. 2 and Supplemental Table
2). We found six significant associations under a p value thresh-
old of 0.05, with an FDR of 0.21 (expected number of false
positives is 1.3) (Dataset S1).

For D3S1358–LARS2, D18S51–KDSR, and CSF1PO–

CSF1R, we observe CODISeSTR-expression level associations
within subpopulations. D3S1358 β is significantly correlated
with LARS2 expression in the FIN group (p = 0.0013, R2 =
0.11), as well as showing a significant correlation in the TSI
(p = 0.005, R2 = 0.08) and the GBR (p = 0.02, R2 = 0.06)
groups. This lack of subpopulation heterogeneity (I 2 = 0%) is
consistent with the significant p value in the cumulative popu-
lation (p = 1.12e-6, R2 = 0.06) (Dataset S1 and SI Appendix,
Fig. 3A). For D18S51 and KDSR, we see a significant associa-
tion in YRI (p = 0.003, R2 = 0.11), with nonsignificant results
for all other subpopulations. However, in this case, the stronger
association in YRI does result in higher subpopulation hetero-
geneity (I 2 = 34%) (Dataset S1 and SI Appendix, Fig. 3D). For
CSF1PO–CSF1R, we see correlations in FIN (p = 0.04, R2 =
0.04) and GBR (p = 0.04, R2 = 0.04), but in different direc-
tions (r = 0.22 and r = �0.24, respectively) (Dataset S1 and SI
Appendix, Fig. 3B). These results suggest that for those
CODISeSTR–gene pairs, the cumulative signal is not a product
of population structure, but it may be driven by stronger and/
or distinct associations in some subpopulation groups.

By contrast, while the associations for D2S441–C1D,
CSF1PO–TIGD6, and FGA–PLRG1 are significant in the cumu-
lative dataset, within subpopulations, we observed no significant
or nominally significant correlations (SI Appendix, Supplemental
Table 2). To determine whether subpopulation structure is
causing both the cumulative association and lack of associations
within populations, we tested for differences in the β and
expression-level distributions between subpopulations (SI
Appendix, Supplemental Table 3 and Fig. 4). We did observe
some significant differences in β distributions for FGA (YRI–
CEU) and CSF1PO (YRI–FIN, –GBR, and –TSI), but there
were no corresponding significant differences in the expression dis-
tributions of C1D, TIGD6, or PLRG1. Thus, the significant asso-
ciations for these CODISeSTR–gene pairs are not caused by this
level of population structure as a confounding factor. Instead, it
suggests either that the association is too weak to detect within
subpopulations with decreased sample size and statistical power, or
that the cumulative correlation is spurious.

Power Analysis for Detection of Associations between CODIS
Genotypes and Expression Levels. Given the small sample sizes
in the empirical data, we sought to determine the power to detect
significant associations, particularly within subpopulations. Accord-
ingly, we simulated genotypic and phenotypic data for a European-
like (EUR) population for CODISeSTRs CSF1PO and D3S1358
and a Yoruban-like (YRI) population for D18S51. Because
admixed populations, such as Latinx and African-Americans, are
not included in the empirical data, but are overrepresented in
CODIS databases (8), we also investigated the power to detect
associations in an admixed American-like (AMR) population.

For CSF1PO, D3S1358, and D18S51 and for each of the
populations where we found a significant association, we simu-
lated genotypes and traits with varying phenotypic variance
explained (PVE) by genetic variation (Materials and Methods).
Using these data, we performed power analyses over varying
sample sizes, from n = 20 to 200.

We found that the power to detect associations is sensitive to
PVE, with higher PVEs yielding higher powers (SI Appendix,
Fig. 5). Similarly, we observed a positive association between
sample size and power. For the average sample size in the Euro-
pean ancestry subpopulations in the empirical data—80 indi-
viduals—and for a PVE of 0.5 in both CSF1PO and D3S1358
simulations, we estimated a power to detect associations at 0.74

Fig. 1. Correlations between CODIS loci and the expression of neighboring
genes. Associations of CODIS STR–gene pairs are shown as negative log
p values. Red dotted line denotes the significant p value threshold. CODI-
SeSTRs are shown in dark blue, and non-CODISeSTRs are shown in light blue.

PNAS 2022 Vol. 119 No. 40 e2121024119 https://doi.org/10.1073/pnas.2121024119 3 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121024119/-/DCSupplemental


(Dataset S2 and SI Appendix, Fig. 5). For D18S51, sampling
80 individuals from a YRI-like population yielded a power of
0.70 for a PVE of 0.5 (SI Appendix, Fig. 5 and Dataset S2).
Similar trends were observed when sampling from the admixed
AMR population. For both D3S1358 and D18S51, when sam-
pling 80 individuals from the AMR population for a PVE of
0.5, the estimated power was 0.72, which is comparable to the
powers estimated for those CODISeSTRs in the EUR and YRI
populations. For CSF1PO, power in AMR was 0.66, lower than
in the EUR population (SI Appendix, Fig. 5 and Dataset S2).
We note that PVE values reported above are high compared

to most empirical data and that these power analyses may be
sensitive to modeling parameter values for both genotype and
phenotype simulations (30, 31). Nonetheless, these results serve
as a starting point for more in-depth power analyses, show that
such associations are detectable, and suggest that some associa-
tions may be slightly less detectable in admixed populations.

Comparing Genomic Features of CODISeSTRs and FMeSTRs. We
go on to investigate if the CODISeSTRs resemble expression-
associated STRs (eSTRs). A previous genomic analysis of a total
of 1,620,030 STRs in humans identified 20,609 eSTRs with evi-
dence of impacting gene expression in 1 of 17 tissues (18). These
eSTRs were then fine-mapped and ranked by their probability
of causality using the statistical framework CAVIAR (26). The
eSTRs with the top 5% of probabilities of causality (1,380
unique STRs) were then characterized as fine-mapped eSTRs
(FMeSTRs) to express the additional evidence for their impact
on gene expression (18). Of note, 3 of the 20 CODIS STRs
were previously identified as eSTRs by Fotsing et al. (18), more
than expected by chance (one-tailed binomial test, p = 0.002).
Specifically, expression associations were found for TPOX in tib-
ial nerve tissue, for D2S1338 in heart left ventricle tissue, and
for TH01 in both visceral adipose and esophagus mucosa tissues.
It is unsurprising that this study in lymphoblast cell lines did
not reproduce those associations. However, these potential asso-
ciations raise questions about expression associations of other
CODIS loci across tissues.
The genomic features of FMeSTRs were characterized, show-

ing that they are more likely to be long, intronic, located near
transcription start sites (TSSs), located near DHS sites, and to
contain particular repeating units. We examine how the CODI-
SeSTRs fit the FMeSTR profile in order to investigate the

hypothesis that the CODISeSTR genotypes are directly causing
changes in the expression of neighboring genes (Table 1).

In general, the CODIS loci are similar to FMeSTRs in their
extreme length—the CODISeSTRs, in particular, are all in at
least the 93rd percentile of lengths compared to all genomic
STRs (SI Appendix, Fig. 6). The CODISeSTRs further resem-
ble FMeSTRs in that four of the five are intronic (CSF1PO:
CSF1R; D18S51:BCL2; D3S1358:LARS2; and FGA:FGA).
Like FMeSTRs, two CODISeSTRs are unusually near to a
TSS: FGA is 2.92 kb from the TSS of the gene FGA (92.7th
genomic percentile), and CSF1PO is 4.65 kb from the TSS of
CSF1R (88.6th genomic percentile) (SI Appendix, Fig. 7). Simi-
lar to FMeSTRs, which are disproportionately found near
DHS sites, one CODISeSTR in particular overlaps with a
DHS site observed in lymphoblasts or lymphoblast derivatives:
CSF1PO (100th genomic percentile) (SI Appendix, Figs. 8 and
9). Finally, the repeating units of four of the five CODISeSTRs
have been found to be significantly enriched among eSTRs
(D3S1358, CSF1PO, D2S441, and D18S51) (18) (Table 1).

Altogether, CODISeSTRs, most particularly CSF1PO, fit
the genomic profile of an FMeSTR that putatively impacts
gene-expression levels. These results are consistent with a
hypothesis that CSF1PO has a causal impact on CSF1R expres-
sion levels, without being conclusive evidence.

Identifying Local Genetic Variants to Explain Observed Variation
in Gene Expression. Knowing that CODISeSTRs resemble STRs
that impact expression, we attempted to determine whether the
expression variation is being driven by each CODISeSTR itself
or if it is due to nearby causal genetic variants (other STRs or
SNPs) in LD with the CODISeSTR. To identify causal cis var-
iants, we used CAVIAR, a Bayesian fine-mapping framework
that leverages pairwise LD and z scores to identify a set of puta-
tively causal variants (26). CAVIAR assigns a posterior probabil-
ity (which we will refer to as “CAVIAR score”) to each marker
in the ρ-causal set (18, 32). With a ρ = 0.95, the ρ-causal set is
a subset of markers that with 95% confidence contains all causal
variants. Fine-mapping was performed in each subpopulation
and CODISeSTR–gene combination for which we found a sig-
nificant or nominally significant association (Exploring the Role of
Population Substructure in Observed CODISeSTR Correlations).
Thus, this causality analysis includes LARS2 in the FIN, GBR,

Table 1. Genomic features of CODISeSTRs

CODISeSTR

Location
relative to
genes

Distance to
nearest TSS,
bp (genomic
percentile, %)

Distance to TSS
of associated
gene, bp

Distance to
nearest DHS

site, bp
(genomic

percentile, %)

Distance to
nearest

lymph DHS
site, bp
(genomic
percentile)

Length, bp
(genomic

percentile, %) Repeating unit

D3S1358 Intronic to
LARS2

31,194 (52.6) 152,15 to LARS2 1,916 (72.3) 4,651 (69.1) 63 (96.7) [AGAT]n

D2S441 Intergenic 41,143 (45.8) 41,143 to C1D 14,064 (28.1) 19,514 (39.3) 47 (93.6) [TGCC]m[TTCC]n
CSF1PO Intronic to

CSF1R
4,649 (88.6) 4,649 to CSF1R

75,157 to
TIGD6

0 (100.0) 0 (100.0) 51 (94.8) [AGAT]n

D18S51 Intronic to
BCL2

36,928 (48.4) 85,535 to KDSR 13,230 (29.3) 3,714 (73.2) 71 (97.3) [AGAA]n

FGA Intronic to
FGA

2,922 (92.7) 2,922 to FGA
37,303 to
PLRG1

8,065 (40) 27,933 (27.9) 87 (98.1) [TTTC]m
TTTTTTCT[CTTT]n
CTCC[TTCC]o
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and TSI populations; CSF1R in the FIN and GBR populations;
and KDSR in YRI.
These CAVIAR analyses produced scores between 0.04 and

0.60 for the putative causal variants (Dataset S3). While the
relatively small sample sizes (65 to 83 individuals) mean that
power may be limited for some of these analyses, scores as high
as 0.60 are noteworthy.
We also used CAVIAR to estimate the most likely n causal

variants contributing to the phenotype with a max of n = 4.
The “putative causal set” comprises n variants in the ρ-causal set
with the highest CAVIAR scores. While the CODISeSTRs were
not tagged as putative causal variants, they do appear in most of
the ρ-causal sets. For example, the highest CAVIAR score in a
CODISeSTR is for D18S51 in the YRI subpopulation at 0.10.

Investigating LD between CODISeSTRs and Putative Regulatory
Elements. The observed correlation between CODISeSTR geno-
types and expression levels of neighboring genes could be caused
by LD between a CODISeSTR and a regulatory variant that
impacts gene expression. To investigate this possibility, we con-
sidered LD between CODISeSTRs and both CAVIAR-identified
putative causal variants and DHS sites, indicating accessible
DNA likely to contain regulatory elements.

In addition to the identification of CODISeSTR D18S51 in
the ρ-causal set for KDSR expression in YRI, we observed high
LD between CODISeSTR D3S1358 and the putative causal var-
iants impacting LARS2 expression levels (Fig. 2 and SI Appendix,
Fig. 10). Two of the putative causal variants for LARS2 expres-
sion in FIN have an LD of at least 0.61 with CODISeSTR
D3S1358, while four of the putative causal variants for LARS2
expression in GBR have an LD of 0.54 with D3S1358, and the
putative causal variants with top CAVIAR scores for LARS2
expression in TSI have an LD of at least 0.68 with D3S1358.
While the CAVIAR scores associated with these ρ-causal sets are
modest, the convergent high LD values across subpopulations
support the hypothesis that D3S1358 may be in LD with a
causal locus contributing to LARS2 expression variation.

We also examined the LD between CODIS STRs and DHS
sites within 100 kb (SI Appendix, Figs. 11 and 12). We mea-
sured the STR–DHS site LD as the maximum correlation
between the STR and a SNP located in the DHS site (SI
Appendix, Fig. 11 and Dataset S4). We observed a high DHS-
site LD for some CODIS STRs (D1S1656, TH01, TPOX, and
vWA) and a large number of DHS sites surrounding others
(CSF1PO, D22S1045, and TH01). Note that, of these, one is
a CODISeSTR, while TPOX and TH01 were previously

Fig. 2. LARS2–D3S1358 CAVIAR and local LD landscape. Local LD and CAVIAR score landscapes in a 100-kb window centered on the LARS2 gene for the FIN subpopu-
lation (A), GBR subpopulation (B), and TSI subpopulation (C). For each plot, Upper shows LD between the CODISeSTR D3S1358 versus each variant in the ρ causal set,
and Lower shows CAVIAR scores for variants in the ρ causal set. Dark green circles enclose putative causal variants in both CAVIAR and LD panels. Chr, chromosome.
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identified as eSTRs (18). We did not observe a general excess
of LD with DHS sites for CODISeSTRs, as compared to other
CODIS STRs (p = 0.52, two-tailed Kolmogorov–Smirnov
test).
Additionally, the CODISeSTR CSF1PO overlaps with a DHS

site, suggesting that variation in CSF1PO length may directly
impact the action of that DHS (SI Appendix, Fig 12). D3S1358 is
in LD (r2 > 0.45) with SNPs in four DHSs detected in lympho-
blasts, while D18S51 has an LD of r2 = 0.31 with SNPs in one
DHS (Dataset S4).

Putative Mechanisms for Observed CODISeSTR-Expression
Associations. For each CODISeSTR–gene pair, we weighed the
results supporting different mechanisms for the observed STR–
gene-expression association. (Table 2).
Association between D3S1358 and LARS2 expression.We observed
a significant negative correlation between D3S1358 allele
length and the LARS2 expression levels in our cumulative
1,000 Genomes analysis (Dataset S1). The strength of this cor-
relation is demonstrated by the maintenance of the significant
association within the smaller FIN subpopulation, as well as
associations within GBR and TSI (Dataset S1). As to the mech-
anism for this correlation, there is weak evidence suggesting
that D3S1358 resembles a causal FMeSTR (Table 2). How-
ever, there is stronger evidence that D3S1358 is in LD with
both a variant that putatively impacts LARS2 expression
(Dataset S3) and DHS sites active in lymphoblasts (Dataset
S4). Together, these results are consistent with the hypothesis
that D3S1358 may be in LD with a locus that impacts
LARS2 expression.
Association between CSF1PO and CSF1R expression. CSF1R expres-
sion has a significant negative correlation with the genotype of
intronic CODIS locus CSF1PO (Dataset S1) in the cumulative
analysis. The subpopulations FIN and GBR show a significant
positive and negative correlation, respectively (Dataset S1), and
there is only weak evidence that the association is partially due
to population stratification (Dataset S1). CSF1PO bears a
remarkable resemblance to FMeSTRs with its close proximity
to CSF1R’s TSS and particularly with its overlap with a DHS
site found in lymph cell lines, as well as its length, and repeat-
ing unit (Table 1 and SI Appendix, Fig. 12). These results are
consistent with the hypothesis that CSF1PO could causally
impact CSF1R expression or be in LD with a different
causal locus.
Association between D18S51 and KDSR expression.D18S51 β val-
ues are significantly correlated with KDSR expression across all
samples, as well as within the YRI subpopulation (Dataset S1
and SI Appendix, Table 2). We note that the distribution of β
values is significantly different in YRI compared to the other

subpopulations (SI Appendix, Table 3 and Fig. 4). Further, in
the YRI subpopulation, the D18S51 was identified as the sec-
ond-most-probable locus to cause KDSR expression variation,
with a CAVIAR score of 0.10 (Dataset S3). Even if D18S51 itself
is not causal, we note that its LD with a DHS site is 0.31
(Dataset S4 and SI Appendix, Fig. 12). Together, these results
suggest that a correlation within the YRI subpopulation could be
driving the correlation at the cumulative level and that the corre-
lation likely has a molecular basis (whether causal or in LD with
a causal locus).

Associations between CSF1PO and TIGD6 expression; D2S441 and
C1D expression; and FGA and PLRG1 expression. For the remain-
ing CODISeSTR–gene pairs, we see significant correlations at
the cumulative population level, with no significant associations
within subpopulations (Dataset S1 and SI Appendix, Table 2).
While this might suggest that the associations are due to popula-
tion structure, two factors tell a different story: 1) the mainte-
nance of a significant association with population as a covariate
(Dataset S1); and 2) the lack of consistent subpopulation differ-
ences in both β frequencies and expression levels (SI Appendix,
Table 3 and Fig. 4). These results may be explained by either
the smaller subpopulation group sample sizes reducing power to
detect weak correlations, or a spurious association in the cumula-
tive analysis. This is consistent with the other analyses showing
that D2S441 and FGA weakly fit the pattern of FMeSTRs
(Table 1) and have relatively low LD to local DHS sites
(Dataset S4).

Discussion

CODIS loci were chosen because, at the time, researchers
believed that no medical information would be revealed. How-
ever, in this study, we identified CODISeSTRs whose genotypes
are correlated to the expression of neighboring genes in lympho-
blast cell lines. Our results build on previous work finding
expression associations with CODIS loci TPOX, TH01, and
D2S1338 in other tissues (18). Specifically, we observed six sig-
nificant correlations: between D3S1358 and LARS2, between
D18S51 and KDSR, CSF1PO and both CSF1R and TIGD6,
D2S441 and C1D, and FGA and PLRG1. We go on to investi-
gate the putative mechanism for these correlations, finding that
the associations between D3S1358–LARS2, D18S51–KDSR,
and CSF1PO–CSF1R are likely due to a causal relationship or
LD with at least one causal locus, while the other associations
are weaker or possibly spurious. These results provide evidence
that contravenes the assumption that CODIS genotypes convey
no trait information.

Table 2. Putative mechanisms for observed CODISeSTR-expression associations

CODISeSTR–Gene
Association observed
at subpopulation level

CODISeSTR fit to
FMeSTR Profile*

CODISeSTR LD with
CAVIAR causal variants†

CODISeSTR LD with
DHS sites active In

lymphoblasts†

CSF1PO–CSF1R Yes Strong Low Overlaps with DHS site
D18S51–KDSR Yes Moderate Low Low
D3S1358–LARS2 Yes Weak Moderate–High Low–Moderate
CSF1PO–TIGD6 No Strong N/A Low–Moderate
D2S441–C1D No Weak N/A Low
FGA–PLRG1 No Weak N/A Low

*Strong fit is defined as satisfying most or all of the FMeSTR characteristics described in Table 1; moderate is defined as satisfying at least half; weak is defined as satisfying less
than half.
†High LD is considered ≥ 0.7; moderate LD is between 0.4 and 0.69; low LD is <0.4. N/A values indicate STR–gene pairs that were not included in the CAVIAR analysis.
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Medical Relevance of CODISeSTR-Associated Gene-Expression
Variance. Our analysis shows that a CODIS genotype profile
can be used to gain information about the expression of some
genes. This raises the question: Would those expression levels
reveal medical information? A number of studies have found
associations between medical conditions and CODIS loci,
including the CODISeSTRs (25). In addition to those findings,
we consulted the medical genetics literature to begin to address
this question (SI Appendix, Table 4 and Text 1–6). We discuss
some of the most striking cases: CSF1R, LARS2, and KDSR.
CSF1R expression variation and neural and psychiatric conditions.
CSF1R, which CSF1PO is intronic to, encodes a cytokine
receptor that plays a key role in microglial regulation (33).
Disruptive sequence mutations in CSF1R lead to a variety of
brain conditions, including leukoencephalopathy (33–38),
while inhibition of CSf1R protein function seems to ameliorate
some neural conditions like epilepsy (39), Alzheimer’s disease
(40–42), and spinal cord injury recovery (43) (SI Appendix,
Text 3). Further, and most relevantly for this study, variation in
the expression and splicing of CSF1R are associated with psy-
chiatric conditions, including depression and schizophrenia in
humans (44–46). Since CSF1R expression is correlated with
CSF1PO, the CODIS genotype may be informative about
those psychiatric conditions.
LARS2 and KDSR associations with medical conditions. LARS2
and KDSR function reduction or elimination have also been
associated with medical conditions. LARS2, which contains
D3S1538 in an intron, encodes a mitochondrial leucyl–transfer
RNA synthetase gene (47). LARS2 is well-established as an
essential gene, as mutations that reduce or knock out its func-
tion have been associated with Perrault syndrome (48–50),
MELAS syndrome (51), and other conditions (SI Appendix,
Text 1). KDSR, which is near to D18S51, encodes an enzyme
involved in synthesis of the lipid ceramide. Mutations in KDSR
that eliminate or decrease enzyme function have been associated
with a number of severe skin and platelet conditions (52–54)
(SI Appendix, Text 5). These medical genetic studies provide
strong evidence that LARS2 and KDSR expression variation
impact a number of medical conditions. The fact that dramati-
cally reduced function leads to severe phenotypes raises the
question of whether marginally lowered expression may lead to
intermediate conditions. The association between CODI-
SeSTRs and those genes’ expression means that the CODIS
genotype may be informative about risk of those conditions or
other intermediate phenotypes.

Limitations. The associations reported here were observed in the
subset of the 1,000 Genomes Project, where expression data
were also available. These data are limited in a few important
ways. First, expression data were only available in lymphoblas-
toid cell lines. This single cell type means that our analysis will
miss genes that are not highly expressed, or whose expression
isn’t regulated by cis-elements, in lymphoblastoid cell lines spe-
cifically. Second, data were only available from CEU, FIN,
GBR, TSI, and YRI subpopulations. As four of five of these
populations are European, they do not reflect the genetic diver-
sity of the general population of the United States, notably with
regard to their lack of admixture. Correlations due to population
structure as a confounding factor may be underestimated in our
analysis. Further, this analysis is unable to identify correlations
that are specific to subpopulations not represented here. Third,
errors in the imputation of the CODIS genotypes may erode
power to identify associations, particularly in non-European sub-
populations, where imputation has higher error rates.

In addition, our approach to detecting associations is specifi-
cally testing for a linear relationship between STR allele length
and expression levels. While this type of linear relationship is
generally expected (Materials and Methods), there could be other
nonlinear relationships present that were not detected here.

Altogether, while our analysis produced significant correla-
tions, it is limited in scope and underpowered. This raises the
question of whether stronger correlations would be identified in
an analysis on a larger, more representative sample, with direct
STR genotyping, using more expression data from more varied
tissues.

Conclusion

Within the limitations of the publicly available data examined
here, our results suggest that information on gene expression lev-
els may be revealed by CODIS profiles. Further, some of those
gene expression levels have been connected to medical pheno-
types. These results join a growing body of work showing that
CODIS genotypes may contain more information than purely
identity. CODIS profiles have been found to provide informa-
tion about the surrounding haplotype (21–23), as well as genetic
ancestry (55). Together, these findings raise concerns about the
medical privacy of individuals whose CODIS profiles are seized,
databased, and accessed, as well as the genetic relatives of those
persons.

Materials and Methods

The 1,000 Genomes Project CODIS Genotype Data. Phase 3 of the 1,000
Genomes Project sampled 2,504 individuals from 26 different populations with
ancestry from Africa, East Asia, Europe, South Asia, and the Americas (56). The
short-read-sequencing approach used for this dataset presents a challenge for
genotyping the CODIS loci, which are highly polymorphic, often with very long
alleles. We used imputed CODIS loci genotype data that were made publicly
available as a haplotype reference panel (27, 57, 58). Because of the limits of
this approach with particularly long alleles, genotypes for only 18 of the 20
CODIS STRs were successfully imputed (27). These 18 loci are D22S1045, TPOX,
D2S441, D2S1338, vWA, D12S391, D5S818, CSF1PO, D1S1656, D10S1248,
TH01, D13S317, D18S51, D19S433, D3S1358, FGA, D7S820, and D8S1179.
The two CODIS STRs not included in our study are D16S539 and D21S11. We
note that the very factors that make these loci difficult to impute (length and
polymorphism) may make them particularly relevant for studies of phenotypic
impact (18).

For our analysis of correlation between CODIS genotypes and expression lev-
els, we created a summary statistic based on estimated allelic dosages generated
by Beagle during imputation. For each individual, STR estimated allele dosages
are the sum of the posterior allele probabilities for both haplotypes (59). Hence,
their values range from zero to two (60).

We used the imputed STR allelic dosages to compute a normalized linear
weighted genotype for each CODIS STR. We refer to this weighted average geno-
type as β (beta). We computed β for each individual for each CODIS STR using
the following:

β =
1
2
∑
n

i=1
ridi;

where n is the number of distinct alleles on record at the locus, ri is the number
of repeats in allele i, and di is its estimated allelic dosage (genotype probability).
For non-CODIS STRs, β genotypes were computed by substituting ri with the
allele nucleotide length, instead of the repeat count.

The 1,000 Genomes Project Gene-Expression Data. Transcriptomes were
typed from lymphoblastoid cell lines of 462 unrelated individuals from the
1,000 Genomes Project (29). The samples in this set correspond to five popula-
tions: CEU, FIN, GBR, TSI, and YRI. Transcriptomic levels were quantified with
reads per kilobase of transcription per million mapped reads (RPKM).
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Transcripts with zero counts in more than half the number of samples were
removed (29). Full data are available at the European Bioinformatics Institute
ArrayExpress portal (accession no. E-GEUV-1) (61) (see Data, Materials, and Soft-
ware Availability for URL).

Of the 462 individuals with gene-expression data, 90 were filtered out
because either β genotypes or gene-expression values were missing. Our study
was performed with 372 individuals for which we have CODIS genotype data
and where at least one known gene within a 100 kb window was expressed in
the lymphoblastoid cell-lines data. Within-population analysis contained between
65 and 83 individuals.

Testing Associations between STR Length and Gene Expression. Using
data from the University of California Santa Cruz (UCSC) Genome Browser, we
identified genes within 100 kb of the CODIS markers, measuring 100 kb from
the start and end of each CODIS STR genomic location. We summarized the gen-
otypes with β values, as detailed in The 1,000 Genomes Project CODIS Genotype
Data. We next fit linear regression models to test for Pearson correlation
between the β genotypes for each CODIS STR versus the expression levels of
nearby genes.

The approach implicitly assumed a linear relationship between STR alleles by
length. This assumption is justified by findings that STR impact on expression
level scales with allele length (15, 21, 62). For an STR that is not causal, but is in
LD with a causal locus, the step-wise STR mutational process (63, 64) will lead to
multiple similarly lengthed STR alleles on the causal haplotype.

We controlled for FDR using q values (65). With 6 features under a p value
threshold of 0.05, we expect 1.4 of those to be a false positive (Dataset S1).

Power Analysis in European, Yoruban, and Admixed Individuals. For
each CODISeSTR with a significant association within a subpopulation (CSF1PO,
D18S51, and D3S1358), we performed 1,000 coalescent simulations per sample
size using Msprime (66). Sample sizes ranged from 20 to 200 diploid individu-
als in increments of 20. We simulated a single chromosome composed of one
STR surrounded by 100 kb of DNA sequence on either side. STR variation was
generated by using a stepwise model of mutation with low and high repeat val-
ues following each population’s empirical genotypic variance (67). The demo-
graphic parameters are those of the American Admixture model from Browning
et al. (68). Under this model, admixture from African, European, and East Asian
populations into admixed individuals from the Americas was introduced 12 gen-
erations ago with admixture proportions of 1/6, 2/6, and 3/6, respectively. We
used the mutation rates for CSF1PO, D18S51, and D3S1358 that were estimated
by Saini et al. (27).

A pool of potential causal variants was created to include SNPs with both a
minor allele frequency above 0.05 and an LD of at least r2 = 0.20 with the CODI-
SeSTR. A set of four causal SNPs was then randomly sampled, without replace-
ment, from the pool of potential causal variants.

Using the genotypes corresponding to the set of randomly sampled causal
SNPs, we generated gene-expression values by employing an additive linear
model. This model is represented by: y = X b + ε, where X is the set of causal
SNPs genotypes, b is a vector of linear effect sizes, and ε is the residual error.
Linear effect sizes b and residual errors ε were drawn from a Gaussian distribu-
tion N ∼ 0, Ið Þ, where I represents the identity matrix. We scaled the effect sizes
b and I (additive effects) such that the genotypes explained some fixed propor-
tion of the phenotypic variation. Following PVE ranges observed in real data, we
generated gene-expression phenotypes for an array of PVE values starting at
0.05 and up to 0.5 in increments of 0.05 (30, 31).

With these simulated genotype and phenotype data, we tested for associa-
tions in the same way as in the empirical analyses.

Subpopulation Heterogeneity Analysis. For each CODISeSTR with a signifi-
cant association in the cumulative analysis, we performed the I2 test for
subpopulation heterogeneity using the metaforest library in R. We used a
random-effects model assuming different effect sizes across studies and created
forest plots using the forest function.

Characterizing Genomic Features of CODISeSTRs. We quantified several
genomic features of the CODISeSTRs in order to examine how they compare to
the characteristics of putatively causative expression-altering STRs (referred to as

FMeSTRs) (18). Genomic STR coordinates, including those of CODIS STRs and
CODISeSTRs, were gathered from a genome-wide survey of STRs (32, 69).

For context, we used the survey data to compute CODISeSTR lengths and
their length percentiles as the proportion of genome-wide STRs that are at least
as long. Distance, in base pairs, between STRs to the nearest gene and the near-
est TSS was determined by additionally using genetic coordinates from the
UCSC Genes track in the UCSC Genome Browser (70). We also used the UCSC
Genes track to determine the distance of each STR relative to its associated
gene(s) and the TSS(s) thereof. The repeating units for each CODISeSTR were
gathered from STRbase (71, 72).

Like in the analysis of FMeSTRs (18, 32), for each CODISeSTR, we computed
the distance between each STR and the nearest DHS site. DHS site cluster loca-
tions were taken from the ENCODE Regulation “DNase Clusters” track via the
UCSC Genome Browser (73, 74). All distances between STRs and nearby geno-
mic elements, except for TSSs, which are represented by the starting coordinate
of the protein-coding region, were calculated to reflect the distance between the
closest endpoints of the elements in question.

For the general analysis, we considered DHS site clusters annotated in at least
20 sources. We performed additional analyses focusing on DHS site clusters
observed in lymphoblasts or lymphoblast derivatives. We identified 20 cell lines
that are lymphoblasts or lymphoblast derivatives, specifically, Adult_CD4_Th0*,
CD20+, CLL, CMK, GM06990, GM12864, GM12865, GM12878, GM12891,
GM12892, GM18507, GM19238, GM19239, GM19240, HL-60, Jurkat, K562,
NB4, Th1, and Th2. For lymphoblast-specific analyses, we consider DHS sites that
were observed in at least 5 of the 20 lymphoblasts or lymphoblast derivatives in
the dataset.

Evaluating the Potential Causality of cis Variants. We performed a fine-
mapping analysis with CAVIAR (18, 32) to identify specific local genetic variants
(either CODISeSTRs, other STRs, or SNPs) that are putatively causal of the varia-
tion in expression levels. CAVIAR employs the variants’ LD structure, as well as
association statistics to predict a subset of variants, the ρ causal set, in which all
causal markers are said to be included with a certain probability ρ, with ρ =
95% in our case. Each variant in the CAVIAR ρ credible set is then assigned a
probability of being causal. We refer to this posterior probability as CAVIAR score.

We considered SNPs and STRs within 100 kb upstream and downstream of
genes with significant or marginally significant CODIS locus associations at the
subpopulation level: LARS2, CSF1R, and KDSR. SNPs that did not exhibit varia-
tion within each subpopulation group were removed. We followed the CAVIAR
protocol established by Fotsing et al. (18). Next, we filtered for SNPs and STRs
that hold a significant association with gene-expression level. Specifically, we
tested for correlation between gene expression and either SNP or STR genotypes.
For non-CODIS STRs, genotypes were considered as the nucleotide length of
each allele, and β values were computed, while for CODIS STRs, we considered
the number of repeats. Variants with p > 0.05 were excluded from further
analysis. Since it is unlikely for a phenotype to be caused by one variant alone,
we allowed for CAVIAR to consider up to four independent causal variants per
locus by including the parameters -f 1 -c 4. We define the putative causal var-
iants as the n number of variants with the highest CAVIAR scores, where n is
CAVIAR’s predicted number of putative causal variants, ranging from one to
four. In the cases where a set of variants are in perfect LD with one another
(and therefore have identical CAVIAR scores), the set is considered as a single
prediction.

Quantifying LD. LD between STRs and SNPs was quantified as the correlation
between CODIS STR β values versus the SNP genotypes (sum of alternative
alleles), implicitly testing a linear relationship. This measure of LD between
STRs and SNPs is similar to a haplotype-based method shown to reliably follow
the expected patterns of variation when applied to phased X-chromosome hap-
lotypes (75). LD between two STRs was quantified as the correlation between
β values. For CODISeSTRs, β was based on the number of repeats, while for
non-CODIS STRs, β was based on the nucleotide length. We used genotypic LD,
rather than haplotypic LD, because the imputed STR estimated allele dosages
lack phase information.

For analyses of LD between STRs and DHS sites, we calculated LD between
CODIS loci and all SNPs within a DHS site. We considered DHS sites found
within at least 5 of the 20 available lymphoblast cell lines or derivatives, as well
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as DHS sites found within at least 20 cell-line sources (SI Appendix, Figs. 9 and
12). As a summary, we considered the highest LD per the DHS site (Dataset S4).
For DHS sites without SNPs in the region, LD was not computed and therefore
not included in the summary.

Data, Materials, and Software Availability. Weighted average beta geno-
types generated in this study, CAVIAR, regression, and power analysis scripts are
publicly available at https://github.com/TalesOfDNA/CODISMarkers-Xprssn.git (76).
Previously published data were used for this work. CODIS STR genotypes imputed in
the 1,000 Genomes Dataset are available on the Gymrek Lab website (http://
gymreklab.com/2018/03/05/snpstr_imputation.html) (58). Transcriptome data from
cell lines derived from individuals participating in the 1,000 Genomes Dataset are
available at ArrayExpress (https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/)
(61). The genome-wide STR survey is available at GitHub (https://github.com/HipSTR-
Tool/HipSTR-references/blob/master/human/hg19.hipstr_reference.bed.gz) (69). Tech-
nical details on CODIS STRs are available at STRBase (https://strbase.nist.gov/str_fact.
htm) (72). DHS site locations from ENCODE are available (http://hgdownload.cse.
ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeReg
DnaseClusteredV3.bed.gz) (74).
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