
9797www.jrd.or.kr

Received September 4, 2023; Revised October 15, 2023; Accepted October 30, 2023, Published online December 20, 2023
Corresponding author:   Namkug Kim,   https://orcid.org/0000-0002-3438-2217 

Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 
Songpa-gu, Seoul 05505, Korea. E-mail: namkugkim@gmail.com 
Tae-Hwan Kim,   https://orcid.org/0000-0002-3542-2276 
Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-ro, Seongdong-gu, 
Seoul 04763, Korea. E-mail: thkim@hanyang.ac.kr

*These authors contributed equally to this work. 

Copyright © The Korean College of Rheumatology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Machine learning models with time-series clinical features 
to predict radiographic progression in patients with 
ankylosing spondylitis
Bon San Koo, M.D., Ph.D.1*, Miso Jang, M.D., Ph.D.2,3*, Ji Seon Oh, M.D., Ph.D.4, Keewon Shin, Ph.D.2, 
Seunghun Lee, M.D., Ph.D.5, Kyung Bin Joo, M.D., Ph.D.5, Namkug Kim, Ph.D.6,7, Tae-Hwan Kim, M.D., Ph.D.8

1Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, 2Department of Biomedical 
Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of 
Medicine, 3Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, 4Department of Information 
Medicine, Big Data Research Center, Asan Medical Center, 5Department of Radiology, Hanyang University Hospital for Rheumatic 
Diseases, Departments of 6Radiology and 7Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 
8Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea

J Rheum Dis 2024;31(2):97-107
https://doi.org/10.4078/jrd.2023.0056
pISSN: 2093-940X, eISSN: 2233-4718 Original Article

Objective: Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progres-
sion to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of ma-
chine learning models to predict radiographic progression in AS patients using time-series data from electronic medical records 
(EMRs).
Methods: EMR data, including baseline characteristics, laboratory findings, drug administration, and modified Stoke AS Spine 
Score (mSASSS), were collected from 1,123 AS patients between January 2001 and December 2018 at a single center at the time of 
first (T1), second (T2), and third (T3) visits. The radiographic progression of the (n+1)th visit (Pn+1=(mSASSSn+1–mSASSSn)/(Tn+1–
Tn)≥1 unit per year) was predicted using follow-up visit datasets from T1 to Tn. We used three machine learning methods (logistic 
regression with the least absolute shrinkage and selection operation, random forest, and extreme gradient boosting algorithms) 
with three-fold cross-validation.
Results: The random forest model using the T1 EMR dataset best predicted the radiographic progression P2 among the machine 
learning models tested with a mean accuracy and area under the curves of 73.73% and 0.79, respectively. Among the T1 variables, 
the most important variables for predicting radiographic progression were in the order of total mSASSS, age, and alkaline phos-
phatase.
Conclusion: Prognosis predictive models using time-series data showed reasonable performance with clinical features of the first 
visit dataset when predicting radiographic progression.
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INTRODUCTION

Patients with ankylosing spondylitis (AS), a chronic inflam-
matory arthritis, have chronic inflammatory back pain and 
gradually develop ankylosis of the spine [1], limiting their 
movement. Because structural changes due to inflammation 
may impact normal functioning and quality of life. Identifying 
key predictors that contribute to the acceleration of vertebral 
ankylosis in AS patients is of paramount importance.

Previous studies mostly used statistical methods to investi-
gate patient features related to spinal structural changes shown 
by radiography. They identified that radiographic progression 
significantly correlated with men, tobacco, inflammation, and 
HLA-27 [2-4]. However, predicting radiographic progression in 
an individual patient is challenging because of various indirectly 
related factors over time. Because numerous data of various 
types have been accumulated over time in electronic medical 
records (EMRs) of AS patients under clinical care, statistical 
methods may have limitations in analyzing and predicting AS 
radiographic progression. However, machine learning methods 
can help predict radiographic progression using these accumu-
lated data and facilitate understanding the complex relationships 
between variables in big data.

Using machine learning methods in relation to big data has 
increased in the medical field [5]. This approach not only pre-
dicts disease outcomes through data-analysis but also highlights 
the significance of key features required to forecast disease onset 
or activity. Therefore, EMRs stored over time may be the best 
source for use in machine learning models [6]. However, there 
are challenges to using big data analytics in the medical field. 
It is necessary to consider whether big data analytics offer evi-
dence of help in clinical practice and whether it can overcome 
the quality, inconsistency, observational data limitations, and 
validation issues of big data in terms of the approach [7-9].

A major strength of machine learning models is that they can 
handle complex and heterogeneous data such as time-series 
EMRs. This study explored applying machine learning models 
to predict radiographic progression in AS patients based on 
time-series data from earlier visits and identify predictive datas-
ets and key features contributing to radiographic progression in 
these models.

MATERIALS AND METHODS

Patients
This paper describes a retrospective study conducted at the 

Hanyang University Seoul Hospital. The dataset comprised re-
viewed EMR data from January 2001 to December 2018 of 1,280 
patients. All patients were diagnosed with AS according to the 
following modified New York criteria [10]; 1) clinical criteria; 
lower back pain, limited range of motion of the lumbar spine, 
and limitation of chest expansion for at least three months, 2) 
radiological criteria; Sacroiliac arthritis is bilateral grade 2~4 or 
unilateral grade 3~4. If any criteria from both the clinical and 
radiographical criteria are fulfilled, it is classified as AS. Out of 
the 1,280 patients, 157 were excluded due to a lack of clinical 
and/or radiologic data. The study was approved by the institu-
tional review board at the Hanyang University Seoul Hospital 
(HYUH 2020-03-012-003). Informed consent was waived be-
cause this study retrospectively reviewed the EMRs. This study 
included only anonymized patient data and was performed in 
accordance with the Declaration of Helsinki.

Clinical data
Patients in this cohort had radiographs taken every 2 years to 

evaluate modified Stoke AS Spine Score (mSASSS) using spinal 
radiographic changes. Clinical characteristics, including age, 
sex, disease duration from the first to the last follow-up, HLA-
B27 positivity, eye involvement with uveitis, and peripheral 
joint involvement with arthritis other than axial joints, were 
investigated. Baseline laboratory results comprised hemoglobin, 
hematocrit, blood urea nitrogen, creatinine, aspartate transami-
nase, alanine transaminase (ALT), alkaline phosphatase (ALP), 
albumin, cholesterol, protein, creatine phosphokinase, gamma 
glutamyl peptidase, lactate dehydrogenase, erythrocyte sedi-
mentation rate (ESR), and C-reactive protein (CRP) levels. The 
prescribed drugs were classified as nonsteroidal anti-inflam-
matory drugs (NSAIDs), methotrexate, steroids, sulfasalazine, 
and biological disease-modifying antirheumatic drugs (bD-
MARDs). The mean values of laboratory tests, the total number 
of prescribed medications from the first visit to the current time 
point, and clinical characteristics were used as machine learning 
features.

Radiographic progression assessment
The mSASSS is a tool used to assess changes in spinal stiff-
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ness in AS patients [11,12]. In the lateral view of the cervical and 
lumbar spine, sclerosis, erosion, syndesmophyte, and complete 
ankylosis at 24 corners can be scored from 0 to 3, totaling 72 
points. Although the criteria for radiographic progression in 
AS patients vary among studies, it is generally defined as an 
increase of 2 or more in the total mSASSS score after two years 
[12].

Two radiologists (SL and KBJ) independently assessed the 
images and scored them according to the mSASSS (0~72) [11]. 
Intraobserver reliability with consistency for a reader (intraclass 
coefficient [ICC]=0.978, 95% confidence interval [CI]: 0.976 to 
0.979) and interobserver reliability with the agreement between 
two readers (ICC=0.946, 95% CI: 0.941 to 0.950) were also ex-
cellent [13,14].

Model design
Although there is a correlation between the onset of inflam-

mation and spinal radiographic changes after two years, the 
evidence is inconclusive [12]. Therefore, this study presented 
models to predict radiographic progression with clinical vari-
ables of visits at various time points. The first (T1), second (T2), 
and third visits (T3) were defined as the time points at which the 
first, second, and third radiographs were taken, respectively. In 
addition, the radiographic progression at each time point was 
calculated as follows: Pn+1=(mSASSS n+1−mSASSS n)/(Tn+1−Tn). 
In other words, mSASSS change is calculated as the difference 
between the current time point and the previous time point 
in mSASSS, divided by the time, and presented as the rate of 

change over one year. A radiographic progressor was defined 
as an individual whose mean mSASSS worsened by more than 
one unit over one year [15]. AS patients were categorized into 
progressor and non-progressor groups. The model uses a binary 
classifier with progressor and non-progressor groups labeled 1 
and 0, respectively.

We composed three clinical datasets for predicting radio-
graphic progression: baseline dataset at the first visit (T1) with 
radiographic progression at the second visit (P2), two-point 
dataset at first and second visits (T1+T2) with radiographic pro-
gression at the third visit (P3), and three-point dataset at first, 
second, and third visits (T1+T2+T3) with radiographic progres-
sion at fourth visit (P4). The three clinical dataset matrixes were 
used to train the three prediction models for progressor and 
non-progressor groups (Figure 1). Three machine learning 
classifiers were applied: logistic regression with least absolute 
shrinkage and selection operation (LASSO) using Python in 
the Scikit-learn package (https://github.com/scikit-learn/scikit-
learn) [16], random forest (RF) using the Scikit-learn pack-
age [17], and extreme gradient boosting (XGBoost) using the 
Xgboost package (https://github.com/dmlc/xgboost) [18]. The 
algorithms were selected based on their superior performance 
and application readiness. All continuous clinical features were 
centered and scaled to a mean of zero and a standard deviation 
of one (z-score transformation was performed before feature 
selection). The results of the three models were compared to 
determine the best combination for determining progressor 
or non-progressor in the three clinical datasets. All possible 

T1 T2 T3

Model Model Model

mSASSS1 mSASSS2 mSASSS3

Laboratory test1 Laboratory test2 Laboratory test3

Drug
prescription1

Drug
prescription2

Drug
prescription3

P2 P3 P4

Figure 1. Time points for prediction of 
radiographic progression. The datasets 
including the clinical information of the 
first, second, and third visits were T1, T2, 
and T3, respectively. The radiographic 
progressions of the second, third, 
and fourth visits were P2, P3, and P4, 
respectively. mSASSS: modified stoke 
ankylosing spondylitis spine score.

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/dmlc/xgboost
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combinations of the model’s hyperparameters were investigated 
through grid search using the GridSearchCV library in the 
Scikit-learn package [16].

A LASSO regression model uses a linear combination of the 
selected features weighted by their respective coefficients for 
prediction. RF, a representative ensemble method, is widely used 
because it is powerful and lighter than other ensemble methods. 
RF constructs several tree-type base models and forms an en-
semble through the bootstrap aggregating or bagging technique. 
XGBoost is a gradient-boosted decision tree algorithm for large 
datasets. Detailed hyperparameters of the three models in the 
three datasets are described in the supporting information (Sup-
plementary File).

Performance evaluation
We evaluated the prediction models in three rounds of three-

fold cross-validation [19]. The operations, including z-nor-
malization and machine learning classification, were executed 
separately on the training data during each cross-validation. 
Because of the unequal distribution of the progressor and 
non-progressor groups in the dataset, we used stratified cross-
validation to divide the dataset. In each round, an entire dataset 
was randomly and equally divided into three parts with strati-
fied probability. Two were used as the training dataset, and the 
third as the test dataset. The process was repeated three times in 
the three datasets in the three models. The one-point dataset for 
predicting radiographic progression at the second visit (T1 for 
P2) had 29 features, two-point dataset for predicting radiograph-

Table 1. Baseline characteristics in patients with non-progression and progression

Variable Total patients (n=1,123) Non-progressor (n=830) Progressor (n=293) p-value
Male 993 (88.42) 718 (86.51) 275 (93.86) 0.001
Age (yr) 32.01±9.41 30.98±9.46 34.93±8.65 <0.001
Eye involvement 363 (32.32) 245 (29.53) 118 (40.27) <0.001
Peripheral involvement 401 (35.71) 319 (38.43) 82 (27.99) 0.002
HLA-B27 1,079 (96.08) 793 (95.54) 286 (97.61) 0.163
ALP (IU/L) 79.51±32.98 77.82±32.16 84.28±34.82 0.005
ALT (IU/L) 21.55±16.64 21.06±16.91 22.95±15.81 0.084
AST (IU/L) 19.96±9.24 19.94±9.36 20.00±8.89 0.921
Albumin (g/dL) 4.33±1.07 4.38±1.01 4.19±1.21 0.019
BUN (mg/dL) 12.94±4.69 13.14±4.54 12.37±5.06 0.022
CPK (IU/L) 96.40±231.63 99.21±243.98 88.43±192.56 0.444
CRP (mg/dL) 1.74±2.09 1.61±2.00 2.10 ±2.31 0.001
Cholesterol (mg/dL) 162.48±50.70 162.31±48.81 162.94±55.79 0.864
Creatinine (mg/dL) 0.83±0.31 0.83±0.22 0.83±0.48 0.999
ESR (mm/hr) 28.57±27.30 26.89±26.93 33.32±27.82 <0.001
GGT (IU/L) 14.97±30.47 13.52±26.00 19.09±40.31 0.028
Hb (g/dL) 13.40±3.17 13.46±3.02 13.24±3.57 0.346
Hct (%) 40.64±9.36 40.78±8.88 40.23±10.60 0.427
LDH (IU/L) 114.39 ±77.68 115.65±77.13 110.81±79.23 0.366
NSAIDs 880 (78.36) 650 (78.31) 230 (78.50) 0.987
bDMARDs 246 (21.91) 185 (22.29) 61 (20.82) 0.659
Methotrexate 151 (13.45) 122 (14.70) 29 (9.90) 0.049
Steroids 260 (23.15) 197 (23.73) 63 (21.50) 0.485
Sulfasalazine 283 (25.20) 228 (27.47) 55 (18.77) 0.004
mSASSS 14.57±16.28 12.36±16.07 20.84±15.25 <0.001

Values are presented as number (%) or mean±standard deviation. HLA: human leukocyte antigen, ALP: Alkaline phosphatase, AST: aspartate 
aminotransferase, ALT: alanine aminotransferase, BUN: blood urea nitrogen, CPK: creatine phosphokinase, CRP: C-reactive protein, ESR: 
erythrocyte sedimentation rate, GGT: gamma glutamyl peptidase, Hb: hemoglobin, Hct: hematocrit, LDH: lactate dehydrogenase, NSAIDs: 
nonsteroidal anti-inflammatory drugs, bDMARDs: biologic disease-modifying anti-rheumatic drugs, mSASSS: modified stoke ankylosing 
spondylitis spine score.
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ic progression at the third visit (T1+T2 for P3) had 53 features, 
and three-point dataset for predicting radiographic progression 
at the fourth visit (T1+T2+T3 for P4) had 77 features. Each aver-
age of the three models of the three-fold cross-validation in the 
one-point dataset is the estimated performance of the models. 
The same was the case for the other two datasets. We used the 
receiver-operator characteristics (ROC) to assess the predictive 
power of each predictor.

Feature selection
We performed feature importance analysis using RF and 

XGBoost to verify the robustness of the results. Features with 
greater contributions to the LASSO regression model were 
selected for analysis. Variable importance was evaluated using 
the model-based variable importance scores. The important 
variables (particularly those informative to radiographic pro-
gression) were captured when fitting the models to the training 
dataset [20,21].

Statistical analysis
For continuously distributed data, the results are shown as 

mean±standard deviation; between-group comparisons were 

performed using Student’s t-test. Categorical or dichotomous 
variables were expressed as frequencies and percentages and 
were compared using the chi-squared test. Area under receiver 
operating characteristic curve (AUCs) were used to determine 
the diagnostic performance, with optimal thresholds of the clin-
ical parameters determined by maximizing the sum of the sen-
sitivity and 1−specificity, i.e., the Youden index values. Machine 
learning model training and statistical analysis were performed 
using Python (version 3.5.2; Python Software Foundation, 
Wilmington, DE, USA).

RESULTS

Differences between non-progressor and progressor 
groups

Out of the 1,280 patients, 157 lacked clinical and/or radiologic 
prescription and laboratory data; therefore, 1,123 patients were 
included in the study. The average time intervals between T1 
and T2 and T2 and T3 were 2.27±1.38 years and 2.12±1.58 years, 
respectively. The baseline characteristics of the non-progressor 
and progressor groups at the first visit (T1) are shown in Table 1. 
The datasets of 1,123 patients at the first visit, 1,115 patients at 

Total patients
1,280 patients

First visit
(T )

1,123 patients
1

Training set
748 patients

Test set
375 patients

Test set
372 patients

Training set
743 patients

Training set
599 patients

Test set
300 patients

First and second visit
(T +T )

1,115 patients
21

First, second, and third visit
(T +T +T )

899 patients
31 2

Patients without clinical or radiograph data
157 patients

Figure 2. Flowchart of the study.

Table 2. Prediction performance evaluation according to time points and machine learning models

Prediction of 
radiographic 

progression (Pn+1) 
with visit data (Tn)

LASSO and logistic regression Random forest XGBoost

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUC Sensitivity 

(%)
Specificity 

(%)
Accuracy 

(%) AUC Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUC

P2 with T1 68.25 68.31 68.3 0.7169 73.72 73.73 73.73 0.7959 70.99 70.84 70.88 0.7729
P3 with T1+T2 66.18 66.3 66.27 0.6831 67.95 67.27 67.44 0.7467 66.21 66.3 66.28 0.7132
P4 with T1+T2+T3 61.39 60.03 60.4 0.6442 68.47 67.93 68.08 0.7348 66.8 67.94 67.63 0.7062

LASSO: least absolute shrinkage and selection operation, AUC: area under receiver operating characteristic curve.



102 www.jrd.or.kr

Bon San Koo et al.

the second visit, and 899 patients at the third visit were divided 
into training and test sets (Figure 2).

Predicting radiographic progression with three time-
point datasets

The radiographic progression was predicted using clinical 
data at the first, second, and third visits (Table 2). Among the 
machine learning models, the RF model exhibited the best per-
formance, with higher mean sensitivity, mean specificity, mean 
accuracy, and mean AUC than those of the LASSO regres-
sion and XGBoost models. In the RF model, P2 with T1 dataset 
showed better performance compared to P3 with T1+T2 dataset 
and P4 with T1+T2+T3 dataset.

The confusion matrix and ROC for the prediction of P2 with 
T1 dataset are shown in Figure 3A and 3B, respectively. In three-
fold cross-validation, the mean sensitivity, specificity, and ac-
curacy are 73.72%, 73.73%, and 73.73%, respectively. The mean 
AUC of three-fold cross-validation is 0.7959 (Supplementary 
Figures 1 and 2 show the confusion matrix and ROC of LASSO 
regression and XGBoost model for P2 with T1 dataset, Supple-
mentary Figures 3~8 show the confusion matrix and ROC of 
three machine learning models in P3 with T1+T2 dataset and P4 

with T1+T2+T3 dataset).

Importance of features for predicting radiographic 
progression

The variables in the first visit data contributing to radio-
graphic progression prediction at the second visit using RF are 
listed in Figure 3C. The most important feature in three-fold 
cross-validation is the total mSASSS. The second and third most 
important features are age and ALP followed by CRP, choles-
terol, ESR, hematocrit, and ALT. Drugs such as sulfasalazine 
and methotrexate, clinical features such as eye and peripheral 
involvement, sex, and HLA B27 contributed less to radiographic 
progression than laboratory findings. In the XGBoost model 
for P2 with T1, mSASSS is the most important feature; however, 
drugs such as sulfasalazine and methotrexate also ranked high 
in feature importance (Supplementary Figure 2). In addition, 
feature importance was identified in the RF and XGBoost mod-
els in P3 with T1+T2 (Supplementary Figures 4 and 5) and P4 
with T1+T2+T3 (Supplementary Figures 7 and 8). Supplementary 
Table 1 shows the top and bottom 5 most important features of 
the RF and XGBoost models. For most models, mSASSS is the 
most important feature. In addition, variables related to baseline 

characteristics rank in the top 5.

DISCUSSION

We developed a machine learning model that predicts radio-
graphic progression using EMR data between January 2001 and 
December 2018. The RF model trained on data from the first 
visit predicted radiographic progression with an accuracy of 
73.73% and an AUC of 0.7959, showing the best performance 
among the three models. Moreover, the accuracy and AUC 
decreased in the model trained with the second and third visit 
data. These results suggest that the data accumulated over an 
extended period did not increase the model performances, and 
the data from the first visit may contain important predictors for 
predicting radiographic progression in AS. Although the pre-
diction model did not exhibit exceptionally high accuracy, this 
study is significant in identifying the data set among the three 
time points that predicts radiographic progression effectively 
and determining the essential features for prediction.

mSASSS, age, and CRP are ranked as highly important fea-
tures, and their association with radiographic progression is 
well-known in statistical studies [15,22-25]. Interestingly, in our 
study, ALP ranked the highest in laboratory finding for pre-
dicting radiographic progression. ALP is produced in the liver, 
bone, and kidneys [26]. Bone and liver-specific isoforms of ALP 
form more than 90% of total serum ALP with a 1:1 ratio. In 
some studies, serum ALP activity was related to inflammatory 
markers in mineral metabolism [27,28]. In addition, serum ALP 
is associated with high disease activity, low bone mineral den-
sity, and high structural damage scores in patients with spon-
dyloarthritis [29]. Therefore, radiographic progression may be 
associated with elevated serum ALP, particularly bone-specific 
ALP. In the future, statistical analysis will be conducted to prove 
the relationship between ALP and radiographic progression.

Statistical studies have linked radiographic progression to 
age, gender, inflammation, HLA B27, and smoking [12]. In 
this study, the baseline characteristics were important features 
in P2 and in predicting P3 and P4. However, bDMARDs, such 
as tumor necrosis factor (TNF) inhibitors known to delay ra-
diographic progression, did not belong to the top key features 
in five of the six models predicting radiographic progression. 
In this cohort, TNF inhibitors were used in patients initially 
refractory to treatment with NSAIDs and sulfasalazine. Because 
patients with long disease duration were included, bDMARDs 
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Figure 3. Prediction results with the random forest model. Confusion matrix (A), AUC (B), and importance of features in cross-validation 
(C). AUC: area under receiver operating characteristic curve, mSASSS: modified stoke ankylosing spondylitis spine score, ALP: alkaline 
phosphatase, CRP: C-reactive protein, ESR: erythrocyte sedimentation rate, BUN: blood urea nitrogen, Hct: hematocrit, LDH: lactate 
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CPK: creatine phosphokinase, GGT: gamma glutamyl peptidase, bDMARDs: biological disease-modifying antirheumatic drugs.



104 www.jrd.or.kr

Bon San Koo et al.

might have had little effect on radiographic progression.
Although machine learning models have recently been intro-

duced to predict radiographic progression, disease activity, treat-
ment response, and AS diagnosis [30-37], the performance of 
these models can vary due to differences in the type and quanti-
ty of data, hyperparameter tuning, and outcome settings. Walsh 
et al. [34,35,37] developed several models for AS diagnosis. In 
differentiating sacroiliitis, the developed model demonstrated 
an accuracy of 91.1% using text documents from the EMR 
[17]. Additionally, various algorithms applied to the same data 
showed an area under the receiver operating characteristic curve 
ranging from 0.86 to 0.96 to confirm axial spondyloarthropathy 
[14]. For identifying AS, Deodhar et al. [33] developed a model 
using medical and pharmacy claim data, with a positive predic-
tive value of 6.24%.

Joo et al. [38] predicted radiographic progression using ma-
chine learning on the training (n=253) and test sets (n=173). 
The balanced accuracy in the test set was above 65% in all mod-
els and 69.3% in RF, the highest of all models. In addition, the 
generalized linear model and support vector machine showed 
the best performance with an AUC of above 0.78. The outcomes 
of their study are similar to ours in predicting radiographic 
progression but with significant differences in detail. First, we 
examined machine learning-based prediction models for ra-
diographic progression according to each visit using three time-
point datasets containing EMR data accumulated over 18 years. 
Moreover, we used more time-series data and could identify 
clinical characteristics affecting radiographic progression at each 
time point. These results provide insight into the factors and 
timing that influence the prediction of radiographic progression 
in AS patients. In addition, the accuracy and AUC achieved in 
our study were higher. This difference in predictive power may 
be related to the difference in the amount of data and variables, 
such as limited features for bone marrow density and syndes-
mophyte score and additional laboratory findings.

We used time-series EMR data from the first, second, and 
third visits to predict radiographic progression at subsequent 
visits Data from the first visit may be important clinical infor-
mation related to radiographic progression. In addition, as treat-
ment with NSAIDs started at the first visit, the disease activity 
index, such as theBath AS Disease Activity Index, CRP, and ESR 
decreased subsequently. A decrease in the disease activity index, 
which leads to an increase in mSASSS [2-4], may have reduced 
the differences in important features between individuals. Thus, 

the prediction performance may have deteriorated with datasets 
from the second and third visits.

Recurrent neural networks (RNNs) are also powerful models 
for learning and predicting temporal patterns and dependen-
cies in data. We tried using RNN to study this dataset, but it did 
not train properly and was unsuitable for our problem setting, 
which involves irregular event sequences daily. As Che et al. [30] 
pointed out, irregular events pose a very challenging problem 
for RNNs, in terms of capturing temporal regularities. More-
over, our dataset lacks sequential data to perform RNN analysis 
effectively. Therefore, we organized data by time of patient visit 
in our dataset to predict the deterioration of the disease using a 
machine learning model that can better handle irregular event 
sequences. In the future, we will apply an appropriate deep 
learning model more suitable for predicting progression in this 
dataset.

The EMR data of AS patients accumulate over years or de-
cades of follow-up. Radiographic progression with recurrent or 
chronic inflammatory status may be due to the delayed effects of 
clinical or environmental factors; for example, in AS, inflamma-
tion begins, ossifies, progresses to syndesmophyte, and is con-
firmed on radiographs. Although disease activity markers such 
as CRP or AS activity score, is an important predictor of radio-
graphic progression [24,25], it need not be an absolute long-
term factor determining radiographic progression. For example, 
the radiographic progression continues even when recurrent 
transient inflammations are actively controlled [31]. This evi-
dence suggests that many important clinical factors influence 
radiographic progression. Unlike investigating numerous statis-
tical associations, this study provides insight into the timing and 
factors important for predicting radiographic progression.

Several machine learning models using large datasets have 
been useful for diagnosing axial spondyloarthritis [32]. Those 
approaches can help in early diagnosis and reduce the social 
burden of diseases. Using a claim dataset, Deodhar et al. [33] 
suggested that machine learning models have a positive predic-
tive value of 6.24% compared to the Assessment of SpondyloAr-
thritis International Society classification criteria with a positive 
predictive value of 1.29%. In addition, machine learning models 
with EMR datasets have also shown good performance for early 
diagnosis of axial spondyloarthritis, with accuracies ranging 
from 82.6% to 91.8% [34-36]. It can be used for early diagnosis 
of AS by creating a machine learning model with image and text 
data because images such as radiographs are important in AS 
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diagnosis. The detection of sacroiliitis using X-ray, computed 
tomography, and magnetic resonance imaging using machine 
learning methods has been conducted recently with excellent 
performance in screening AS patients [37]. Therefore, devel-
oping a machine learning model for diagnosis by combining 
images, life-log, and clinical information is essential to improve 
diagnosis accuracy, which is worthy of future challenges for pre-
dicting radiographic progression in AS patients. Furthermore, 
an important task is assembling a representative and diverse da-
taset to meet the demands of high-performance machine learn-
ing models [39].

Despite the advantages, there are some limitations to our 
study. First, we applied three machine learning models to predict 
individual radiographic progression and identified the impor-
tance of features contributing to their prediction. Interpreting 
the importance of features is possible because previous statistical 
studies have shown the factors related to radiographic progres-
sion. Therefore, machine learning methods may complement 
statistical methods. However, additional statistical validation is 
needed to generalize important unknown features contribut-
ing to radiographic progression. Second, we used the EMR data 
from a single center. Validation using EMR data from various 
centers is required. Third, we used a machine learning model 
using EMR data at diagnosis and initial treatment. Therefore, 
this model can predict radiographic progression only when a 
patient first visits the hospital. While there exists a substantial 
correlation between disease activity and radiological alterations 
[25], the model falls short in accounting for the cumulative 
disease activity over time, primarily due to the absence of in-
formation on various aspects of disease activity spanning from 
the first visit to subsequent ones. In the future, developing a 
model that can predict radiographic progression at various time 
points will be necessary by advancing machine learning models. 
Fourth, there may be models using algorithms that are better 
than the machine learning models developed in this study. It is 
possible to try a better model using an artificial neural network, 
but it may become more difficult for clinical application owing 
to the limitations of the “black box” model. Fifth, it is impor-
tant to note that smoking is a recognized factor associated with 
radiographic progression [15]. However, this study could not 
include smoking as a variable due to the absence of available in-
formation regarding smoking habits. Sixth, given the extensive 
18-year duration of the data used in this study, it is imperative to 
consider the potential influence of changes in treatment proto-

cols and alterations in insurance coverage when interpreting the 
study's findings.

CONCLUSION

Among the datasets, including for the first, second, and third 
visits, predicting the radiographic progression of the second visit 
using the first visit dataset resulted in the best performance, with 
the highest accuracy and AUC. Therefore, the clinical features 
of the first visit are likely to contain essential information for 
predicting radiographic progression. In terms of the importance 
of features, mSASSS, age, ALP, and CRP were ranked high. In 
addition to EMR data, various types of data, such as images and 
life-log, may be required to increase accuracy.
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