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 INTRODUCTION 
 Prion diseases (transmissible spongiform encephalopathies) are 

subacute neurodegenerative diseases that affect both humans 

and animals. Many prion diseases, including natural sheep 

scrapie, bovine spongiform encephalopathy, chronic wasting 

disease in cervids, and variant Creutzfeldt – Jakob disease in 

humans, are acquired peripherally such as by oral exposure. 

After exposure, prions first replicate upon follicular dendritic 

cells (FDC) as they make their journey from the site of infec-

tion to the central nervous system (a process termed neuro-

invasion). 1 – 5  FDC are a unique subset of stromal cells resident 

within primary B-cell follicles and germinal centers of lym-

phoid tissues. 6  Prion accumulation and replication upon FDC 

is critical for efficient disease pathogenesis as in their absence, 

neuroinvasion is impaired. 1 – 3,7  During prion disease aggrega-

tions of PrP Sc , an abnormally folded isoform of the cellular prion 

protein (PrP C ) accumulate in affected tissues. Prion infectiv-

ity co-purifies with PrP Sc  and is considered to constitute the 

major, if not sole, component of the infectious agent. 8,9  Host 

cells must express cellular PrP C  to sustain prion infection, and 

FDC express high levels of PrP C  on their surfaces. 7,10,11  From 

lymphoid tissues, prions appear to invade the central nervous 

system via the peripheral nervous system 12  although hematog-

enous spread cannot be entirely excluded. 

 Gut-associated lymphoid tissue (GALT) comprises chiefly of 

the appendix, tonsils, Peyer ’ s patches, colonic and cecal patches, 

and isolated lymphoid follicles. Together with the mesenteric 

lymph nodes (MLNs), these tissues help protect the host from 

gastrointestinal infections. However, our studies in mice show 

that after oral exposure early prion replication upon FDC in 

Peyer ’ s patches is obligatory for efficient neuroinvasion. 3  For 

prions to replicate on FDC in Peyer ’ s patches after ingestion of 

a contaminated meal they must first cross the follicle-associated 

epithelium (FAE), but the mechanism by which this occurs is 

uncertain. The uptake of prions by several cell types includ-

ing microfold cells (M cells), enterocytes, and mononuclear 

phagocytes has been proposed, but definitive confirmation of a 

specific uptake mechanism  in vivo  is lacking. The identification 

of the cells and molecules involved in the trans-epithelial trans-

port of prions may identify important processes that influence 

disease susceptibility and to which intervention strategies can 

be developed. 

 The luminal surface of the intestine limits the access of 

pathogenic microorganisms to the underlying host tissues, and 

is protected by a single layer of epithelial cells bound by tight 

junctions. Located within the FAE of Peyer ’ s patches and occa-

sionally within villus epithelia are M cells, a unique subset of 

epithelial cells specialized for the transepithelial transport of 
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macromolecules and particulate antigens. 13,14  M cells enable 

the host ’ s immune system to sample the intestinal lumen and 

mount an appropriate immune response. However, some patho-

genic microorganisms exploit M cells and use them to gain 

entry into mucosal tissues. 15  Data from the immunohistologi-

cal tracing of prion-infected brain homogenate 16,17  or  in vitro  

studies of Caco-2 cells 18  suggest that M cells are also plausible 

sites for the transcytosis of prions across the intestinal epithe-

lium. However, similar studies suggest that this translocation 

occurs via enterocytes independently of M cells. 19,20  In response 

to inflammatory stimuli, mononuclear phagocytes within the 

lamina propria including macrophages and classical dendritic 

cell (DC) (a distinct population from stromal FDC 6 ) can insert 

dendrites through the tight junctions between enterocytes. These 

projections enable mononuclear phagocytes to directly sample 

the luminal contents. 21,22  As our own data show that the tem-

porary depletion of CD11c     +      mononuclear phagocytes impairs 

oral prion pathogenesis, 23  these data highlight another potential 

route which may influence the transepithelial transport of prions 

during inflammatory conditions in the intestine. Thus, although 

several cell populations are plausible sites of prion transcytosis 

across the FAE into Peyer ’ s patches, definitive evidence of their 

role  in vivo  is lacking. 

 The tumor necrosis factor (TNF) superfamily member 

receptor activator of NF- � B ligand (RANKL) is selectively 

expressed by subepithelial stromal cells beneath the FAE in 

Peyer ’ s patches. 13  RANKL signals via its receptor RANK (recep-

tor activator of NF- � B), which is expressed by epithelial cells 

throughout the intestine. RANKL is the critical factor that con-

trols the differentiation of RANK-expressing enterocytes into 

M cells. 13  Furthermore, M cells are depleted  in vivo  by RANKL 

neutralization, and are absent in RANK-deficient mice. Data 

from histological studies suggest M cells acquire prions after 

oral exposure. 16,17  Here, to determine the influence of M cells 

in prion uptake from the gut lumen, M cells were depleted in 

mice by treatment with an anti-RANKL monoclonal antibody 

(mAb) and the effects on oral prion pathogenesis studied. Our 

data show that following RANKL neutralization, both the early 

prion accumulation upon FDC in Peyer ’ s patches and neuro-

invasion were blocked. Together, these data suggest that M cells 

are important sites of prion uptake from the gut lumen into 

Peyer ’ s patches.   

 RESULTS  
 Depletion of M cells in the FAE of Peyer ’ s patches by 
RANKL neutralization 
 To study the requirement for M cells in the transcytosis of pri-

ons across the FAE i n vivo , RANKL neutralization was used to 

transiently deplete these cells before oral prion exposure. 13  Mice 

were injected intraperitoneally with the IK22-5 rat anti-mouse 

RANKL-specific mAb every 2 days for 8 days as described 13  and 

tissues collected 24   h after the last treatment. A parallel group 

of mice were treated with an isotype-matched nonspecific rat 

IgG2a  �  mAb as a control (control Ig). Glycoprotein 2 (GP2) is 

a novel, specific surface marker for M cells. 24,25  As anticipated, 

the number of GP2     +      M cells in the FAE of Peyer ’ s patches of 

anti-RANKL mAb-treated mice was dramatically and sig-

nificantly reduced when compared with controls ( Figure 1 ; 

 P     <    0.0079). In contrast, RANKL neutralization did not signifi-

cantly affect the number of GP2     −     UEA-1     +      goblet cells ( Figure 1 ; 

 P     =    0.241).   

 RANKL neutralization does not affect FDC status 
 As prion replication upon PrP C -expressing FDC within the 

GALT is important for efficient neuroinvasion from the intes-

tine, 1,3  we next determined the effect of RANKL neutralization 

on FDC status. FDC in mice characteristically express high lev-

els of complement receptors 1 (CR1 / CD35) and 2 (CR2 / CD21) 26  

and cellular PrP C . 7,10,11  Immunohistochemical (IHC) analysis 

suggested there was no observable difference in the status of 

CD21 / CD35-expressing FDC within B-cell follicles in the 

GALT and spleens of control Ig and anti-RANKL mAb-treated 

mice ( Figure 2a ). The expression of PrP C  by FDC was likewise 

unaffected by these treatments ( Figure 2b ). These data are 

consistent with the expression of negligible levels of  Tnfrsf11a  

(which encodes RANK) by FDC ( Supplementary Figure 1  

online). Meta-analysis of mRNA micro-array data from a large 

collection of data sets ( n     =    136 individual samples) represent-

ing different mouse cells and tissues showed high expression of 

 Tnfrsf11a  by Peyer ’ s patch FAE, osteoclasts, and lymphoid tissue 

inducer cells, but negligible levels by FDC. An important role 

for RANKL – RANK signaling in osteoclast function has been 

described. 27  However, no observable effects of RANKL neutrali-

zation on the presence and distribution of F4 / 80     +      and CD11c     +      

mononuclear phagocytes within the intestine, GALT, and spleen 

were observed ( Figure 2c ). These data are consistent with the 

expression of negligible levels of  Tnfrsf11a  by tissue macrophages 

and classical DC from Peyer ’ s patches, lymph nodes, and spleen 

( Supplementary Figure 1  online). Furthermore, the density and 

distribution of CD11c     +      cells was not affected within crypto-

patches of RANKL     −     /     −      mice. 28  Together, these data confirm 

that RANKL neutralization depletes M cells within the FAE 

without apparent influence on the status of FDC or mononuclear 

phagocytes in the intestine.   

 M cell-depletion blocks the early accumulation of prions 
upon FDC in Peyer ’ s patches 
 Within weeks after oral exposure, ME7 scrapie prions accumu-

late first upon FDC within the Peyer ’ s patches where they persist 

at high levels until the terminal stages of disease. 1,3,23  Therefore, 

we next determined the effect of M cell-depletion on the uptake 

of prions into Peyer ’ s patches. Mice were treated for 8 days with 

anti-RANKL mAb to deplete their M cells. A separate group of 

mice was treated with control Ig. Two days after the last antibody 

injection, when M cells were significantly depleted in the FAE 

by RANKL neutralization, mice were orally exposed to ME7 

scrapie prions. 

 In this study, the normal cellular form of the prion protein is 

referred to as PrP C  and two distinct terms (PrP Sc  and PrP d ) are 

used to describe the disease-specific, abnormal accumulations 

of PrP that are characteristically found only in prion-affected 

tissues. Prion disease-specific PrP accumulations are relatively 
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resistant to proteinase K (PK) digestion, whereas cellular PrP C  

is destroyed. As a consequence, PK-resistant PrP (referred to as 

PrP Sc ) can be used as a biochemical marker for the presence of 

prions. 8  Unfortunately, the treatment of histological sections 

with PK destroys the tissue microarchitecture. Therefore, on 

histological sections we refer to these abnormal disease-specific 

PrP accumulations as PrP d . However, to confirm the pres-

ence of PrP Sc , adjacent sections were applied to nitrocellulose 

membrane, treated with PK, and subsequently analyzed by 

paraffin-embedded tissue (PET) immunoblot analysis. 29  

   Figure 1             Receptor activator of NF- � B ligand (RANKL) neutralization depletes glycoprotein 2 (GP2     +     ) microfold cells (M cells) within the follicle-
associated epithelium (FAE) of Peyer ’ s patches. Whole-mount immunohistochemical analysis of the effect of anti-RANKL monoclonal antibody (mAb) 
treatment on the presence of GP2     +      M cells within the FAE of Peyer ’ s patches. ( a ) Tissues were stained with GP2-specific mAb (green), the lectin UEA-
1 (red), and phalloidin (blue) to detect F-actin. The positions of the X – Z and Y – Z projections of the FAE are indicated by the solid line in the X – Y image. 
Arrows indicate GP2     +      M cells with characteristic basolateral pockets. Arrowheads indicate GP2     −     UEA-1     +      goblet cells. The boxed areas in each of the 
main panels are shown on the right-hand side at higher magnification with their X – Z and Y – Z projections. Scale bars: main panels, 100    � m; boxed 
areas, 25    � m. ( b ) The number of M cells in the FAE was significantly reduced after anti-RANKL mAb treatment ( P    =     0.0079). Data are representative 
of 3 – 5 Peyer ’ s patches from each of four control and four anti-RANKL mAb-treated mice.  
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We have repeatedly shown in a series of studies that these PrP d  /

 PrP Sc  accumulations occur only in prion-infected tissues, and cor-

relate closely with the presence of ME7 scrapie prions. 1,3,10,23  

 In Peyer ’ s patches from control mice, heavy PrP d  accumu-

lations, consistent with localization upon FDC within B-cell 

follicles, were detected at 15 weeks after oral prion exposure 

( Figure 3a ). PET immunoblot of adjacent histological sections 

confirmed the presence of high levels of PrP Sc  upon FDC in 

tissues from control mice ( Figure 3b ). At the terminal stage of 

disease, high levels of PrP Sc  were maintained upon FDC in the 

Peyer ’ s patches, MLNs, and spleens of control Ig-treated mice 

( Figure 3c ). In contrast, in the absence of M cells at the time of 

    Figure 2             Receptor activator of NF- � B ligand (RANKL) neutralization does not affect the status of follicular dendritic cells (FDC) or mononuclear 
phagocytes within the gut-associated lymphoid tissue (GALT) and spleen. (  a  ) Immunohistochemical (IHC) analysis of the CD21 / CD35-expressing 
FDC networks (red) within B-cell follicles (B220     +      cells, green) in the GALT and spleens of anti-RANKL monoclonal antibody (mAb)-treated and 
control mice suggested no observable effect of treatment on FDC status. ( b ) No observable effect of RANKL neutralization on cellular prion protein 
(PrP C ) expression (green) by FDC (CD35     +      cells; red) was detected by IHC. ( c ) No observable effect of RANKL neutralization on the status of F4 / 80     +      
macrophages and CD11c     +      cells in the intestine, GALT, and spleen. Dotted line (upper right panels) indicates luminal surface of follicle-associated 
epithelium. Boxed areas are displayed at higher power in underlying panels. Data are representative of tissues from four mice per group. Scale 
bars    =    50    � m unless stated otherwise. MLNs, mesenteric lymph nodes.  
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prion exposure, PrP Sc  accumulation within the GALT and spleen 

was blocked. No PrP Sc  was observed upon FDC in the Peyer ’ s 

patches, MLNs, or spleens from anti-RANKL mAb-treated mice 

collected at 15 weeks after exposure ( Figures 3a and b ), or at 454 

days after exposure at which time the experiment was stopped 

( Figure 3c ). These data clearly demonstrate that in the absence 

of M cells in the FAE at the time of oral exposure, the uptake of 

prions into Peyer ’ s patches was blocked.   

 M cell-depletion blocks prion neuroinvasion from 
the intestine 
 We next determined the effect of M cell-depletion on prion dis-

ease susceptibility. All control-Ig-treated mice succumbed to clin-

ical prion disease after oral exposure to ME7 scrapie prions with a 

mean incubation period of 341 days ( n     =    8;  Table 1 ). In contrast, 

the depletion of M cells blocked disease susceptibility as all of 

the anti-RANKL mAb-treated mice remained free of the clinical 

signs of prion disease up to at least 454 days after oral exposure at 

which time the experiment was stopped ( n     =    8;  Table 1 ). 

 Characteristic spongiform pathology, astrogliosis, microglio-

sis, and PrP Sc  accumulation typically associated with terminal 

infection with ME7 scrapie prions were detected in the brains of 

all clinically affected control-Ig-treated mice ( Figure 4a , upper 

row). The severity and distribution of the spongiform pathology 

within the brains of the clinically affected control mice was like-

wise typical of mice clinically affected with ME7 scrapie prions 

( Figure 4b ). In contrast, none of the histopathological charac-

teristics of prion disease were detected within the brains of any 

of the anti-RANKL mAb-treated mice in which M cells were 

depleted before oral exposure ( Figure 4 , middle row).    

      Figure 3             M cell-depletion blocks prion accumulation in the gut-associated lymphoid tissue (GALT) and spleen. Mice were treated with anti-receptor 
activator of NF- � B ligand (RANKL) monoclonal antibody (mAb) to deplete their microfold cells (M cells) and orally infected with the ME7 scrapie agent. 
Tissues were collected 105 days post infection ( a  and  b ,  n     =    4 mice per group) or at the end stage of disease ( b ),  n     =    8 mice per group). ( a ) High levels 
of prion protein (PrP) d  (brown, right-hand columns) were detected in association with follicular dendritic cells (FDC) (red, left-hand columns) in the 
B-cell follicles (green, middle columns) of Peyer ’ s patches, mesenteric lymph nodes (MLNs), and spleens of prion-infected control-Ig-treated mice. 
( b  and  c ) Analysis of adjacent sections by paraffin-embedded tissue-immunoblot analysis confirmed the presence of proteinase K-resistant PrP Sc  
(blue / black). In contrast, no PrP Sc  was detected in any of the Peyer ’ s patches, MLNs, and spleens of anti-RANKL mAb-treated mice, which lacked 
M cells at the time of oral exposure. Arrows indicate ( a ) PrP d  and ( b ) PrP Sc  accumulation upon the same FDC networks.  a , scale bar    =    100    � m.  c , scale 
bar    =    200    � m. Clinical observation: presence of clinical signs of prion disease at the time of cull. dpi, days post oral prion infection.  



MucosalImmunology | VOLUME 5 NUMBER 2 | MARCH 2012  221

ARTICLES

 DISCUSSION 
 These data suggest that M cells are important sites of prion 

uptake from the gut lumen into Peyer ’ s patches after oral expo-

sure. In order to study the role of M cells in oral prion patho-

genesis, a mouse model was used in which M cells within the 

FAE of Peyer ’ s patches could be depleted through treatment 

with anti-RANKL mAb. Our data show that coincident with 

the depletion of M cells by RANKL neutralization, the early 

accumulation of prions upon FDC in the GALT and spleen 

was blocked. Furthermore, we show that in the absence of 

M cells at the time of oral exposure, the spread of prions from 

the intestinal lumen to the brain and disease susceptibility were 

also blocked. Although a number of mechanisms have been sug-

gested through which prions may cross the intestinal epithelium 

after oral exposure, these data suggest that M cells are the main 

sites of uptake. 

 The translocation of PrP d  across the intestinal epithelium 

in sheep has been studied in an  in vivo  gut loop model. 19  In 

these studies, scrapie-affected brain homogenate was injected 

directly into the ligated gut lumen and the dissemination of 

the inoculum monitored by IHC. In contrast to the data in the 

current study, these studies suggested that prion uptake across 

the gut epithelium occurred via enterocytes independently of 

M cell-mediated transcytosis. However, if enterocytes do signifi-

cantly contribute to the translocation of prions across the gut 

epithelium  in vivo , one would not expect the specific depletion 

of M cells to completely block oral prion disease susceptibility 

as shown here. The reasons for the discrepancies between these 

studies are uncertain. In the sheep studies, no intra-epithelial 

cell-associated PrP d  was detected suggesting that the prions may 

have been carried into the Peyer ’ s patches by M cells at levels 

below the threshold of IHC detection. In addition, large quanti-

ties of prion-infected brain homogenate were injected directly 

into the lumen of the ligated gut loops. This may have protected 

the prions from any possible degradative effects of digestive 

enzymes as they travel along the gastrointestinal tract after oral 

exposure. As a consequence, the presence of much higher dose 

of prions may have facilitated their uptake into an alternative 

compartment to that utilized following exposure to physiologi-

cally relevant doses via the oral cavity. To avoid these issues in 

the current study, we deliberately chose to infect the mice by 

ingestion of prion-contaminated food pellets to closely model 

oral pathogenesis via a physiologically relevant and natural route 

of exposure. Of course, although a role for RANK stimulation 

in antigen uptake by enterocytes has not been described, data 

in the current study cannot entirely exclude the possibility that 

RANKL neutralization may have affected the uptake of prions 

by these cells. 

 The mechanism through which prions may be acquired by 

M cells is uncertain. The identification of the molecules involved 

may reveal important targets for the design of treatments to 

specifically block the uptake of prions from the gut lumen. Prion 

uptake into M cells could occur nonspecifically, via pinocytosis, 

or specifically via receptor-mediated endocytosis. For exam-

ple, the glycoprotein GP2 on the apical plasma membrane of 

M cells acts as a transcytotic receptor for mucosal antigens. 25  

The demonstration that M cells express high levels of PrP C  on 

their surfaces highlights another plausible molecular mecha-

nism by which prions 14  and other pathogenic microorganisms 30  

may be specifically acquired. Tunneling nanotubes have been 

proposed as an intercellular conduit through which prions may 

disseminate between cells. 31  The protein M-Sec (encoded by 

 Tnfaip2 ) is expressed at high levels by M cells and mono nuclear 

phagocytes, and functions as a key regulator of tunneling nano-

tubes formation. 32  Most M cells within the FAE of Peyer ’ s 

patches appear to have a one-to-one association with mono-

nuclear phagocytes, which extend their dendritic processes 

into the basolateral pockets of M cells. 33  This tight association 

raises the suggestion that prions may also be transferred between 

M cells and mononuclear phagocytes via tunneling nanotubes. 

 Although RANK – RANKL stimulation is important for 

the development and function of M cells, 13  osteoclasts, 27  and 

lymphoid tissue inducer cells, 34  our data show that RANKL 

neutralization did not appear to affect the status of FDC and 

mononuclear phagocytes in the GALT. These data are consist-

ent with the restriction of high levels of RANK expression to 

the epithelium in the intestine 13  and expression of negligible 

levels of  Tnfrsf11a  by Peyer ’ s patch lymphocytes, 35  FDC, macro-

phages, and classical DC (including Peyer ’ s patch classical DC) 

when compared with the FAE, osteoclasts, and lymphoid tissue 

inducer cells ( Supplementary Figure 1  online). Previous studies 

have suggested that RANKL can promote the survival of bone 

marrow-derived DC and their expression of pro-inflammatory 

cytokines such as IL-12 p40. 36,37  However, these data were 

derived from the  in vitro  analysis of bone marrow-derived DC, 

which have a distinct transcriptomic profile from tissue classical 

   Table 1     Effect of M cell-depletion on susceptibility to oral prion infection 

    Treatment     a     

  Disease incubation 
periods or survival 

times (days)     b     

  Mean disease 
incubation period 

(days ± SEM)  
  Clinical 
disease     c     

  Vacuolar pathology 
in brain    PrP   Sc    in brain  

  PrP   Sc    in GALT 
and spleen  

   Control Ig  307, 314, 328, 328, 
328, 349, 349, 426 

 341 ± 13  8 / 8  8 / 8  8 / 8  8 / 8 

                

   Anti-RANKL mAb  8X     >      454     0 / 8  0 / 8  0 / 8  0 / 8 
     Abbreviations: GALT, gut-associated lymphoid tissue; mAb, monoclonal antibody; PrP, prion protein; RANKL, receptor activator of NF- � B ligand.   
   a    Mice were treated with anti-RANKL mAb for 8 days (or control Ig) and 2 days later orally infected with ME7 scrapie prions.   
   b    The notation  “ NX     >      454  ”  means mice that were free of the clinical and histopathological signs of prion disease up to at least this time after oral exposure.   
   c    Incidence=number of animals affected / number of animals tested.   
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DC. 38  Indeed, unlike bone marrow-derived DC, mucosal 

DC from Peyer ’ s patches and MLNs express very low levels of 

RANK on their surfaces and do not exhibit prolonged survival 

or induce IL-12 p40 expression in response to RANKL treat-

ment. 39  Furthermore, the density and distribution of CD11c     +      

cells is also unaffected in cryptopatches of RANKL     −     /     −      mice. 28  

Thus, while a potential role for RANK – RANKL stimulation in 

antigen uptake from the gut lumen cannot be entirely excluded, 

these data suggest that possible effects of RANKL neutralization 

on DC were not the major influence on oral prion pathogenesis. 

Although an important role for RANK – RANKL stimulation 

in the regulation of bone remodeling by osteoclasts has been 

described, 27  a temporary blockade of this activity after treat-

ment with anti-RANKL mAb is highly unlikely to influence the 

early uptake of prions into Peyer ’ s patches. Taken together, these 

data, and data from the current study, suggest the major effect 

of RANKL neutralization on oral prion susceptibility was due 

to effects on M cell-differentiation. 

    Figure 4             M cell-depletion blocks prion disease susceptibility after oral exposure. Control (control Ig) and M cell-depleted anti-receptor activator of 
NF- � B ligand (RANKL) monoclonal antibody (mAb)-treated mice were orally infected with ME7 scrapie prions. Brains were collected from clinically 
scrapie-affected mice and mice that were free of the clinical signs of prion disease at the end of the experiment (454 days after exposure), and the 
neuropathology within each brain was compared. ( a ) High levels of spongiform pathology (hematoxylin and eosin (H & E), left-hand column), heavy 
accumulations of disease-specific prion protein (PrP) (brown, middle column), reactive astrocytes expressing glial fibrillary acidic protein (GFAP) 
(brown, fourth column), and active microglia expressing Iba-1 (brown, right-hand column) were detected in the brains of all clinically scrapie-affected 
control mice (upper row). Analysis of adjacent sections by paraffin-embedded tissue-immunoblot analysis confirmed the presence of proteinase K-
resistant PrP Sc  (blue / black, second column). In contrast, none of the M cell-depleted anti-RANKL mAb-treated mice (middle row) developed clinical 
signs of prion disease during their life spans or displayed histopathological signs of prion disease in their brains. Data are representative of tissues from 
eight mice per group. ( b ) Pathological assessment of the spongiform change (vacuolation) in brains from terminally scrapie-affected mice and mice 
that remained free of the signs of disease at the end of the experiment. Vacuolation was scored on a scale of 0 – 5 in the following gray (G1 – G9) and 
white (W1 – W3) matter areas: G1, dorsal medulla; G2, cerebellar cortex; G3, superior colliculus; G4, hypothalamus; G5, thalamus; G6, hippocampus; 
G7, septum; G8, retrosplenial and adjacent motor cortex; G9, cingulate and adjacent motor cortex; W1, inferior and middle cerebellar peduncles; 
W2, decussation of superior cerebellar peduncles; and W3, cerebellar peduncles. Data are representative of tissues from eight mice per group.  
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 Data from the current study and elsewhere suggest that after 

oral exposure, prion neuroinvasion occurs by the following cel-

lular relay. After ingestion of a contaminated meal, prions are 

initially transcytosed across the FAE from the intestinal lumen 

by M cells. In the absence of M cells, the intestinal epithelium 

appears to act an impermeable barrier to the uptake of prions, 

and as a consequence the prions are most likely degraded within 

the gut lumen and excreted. Once the prions have crossed the 

epithelium, they are subsequently acquired by mononuclear 

phagocytes, which appear to act as  ‘ Trojan horses ’  and carry 

them towards the B-cell follicles within the Peyer ’ s patches. 23  

The prions are then acquired by FDC, which are considered to 

amplify the prions above the threshold level required for neu-

roinvasion. 1,3,7  Following their expansion upon FDC, prions 

subsequently infect neighboring nerve fibers of the enteric nerv-

ous system. Prions are mainly considered to spread to the central 

nervous system via the peripheral nervous system, 12  (sympa-

thetic and parasympathetic), although the hematogenous route 

may provide a parallel pathway of neuroinvasion. 

 Diet (consumption of prion-contaminated food) and prion 

protein genotype are important factors that affect prion disease 

susceptibility. The status of lymphoid tissue architecture in the 

gut also has a role as inflammation may enhance prion uptake 

or expand their tissue distribution 3,40,41  demonstrated by the 

fact that bacterial colitis alters oral prion susceptibility. 42  The 

effects of intestinal inflammatory responses on M cell density 

may also influence prion pathogenesis. For example, recom-

binant-RANKL treatment stimulates the widespread expan-

sion of functional M cells enhancing the uptake of antigens and 

enteric bacteria, 13  and M cell status can also be influenced by the 

presence of pathogenic bacteria in the gut lumen. 43,44  These data 

suggest it is plausible that the triggering of M cell-differentiation 

by concurrent infection with an intestinal pathogen or inflam-

matory stimuli may also influence oral prion susceptibility. 

 In conclusion, our data suggest that M cells are important sites 

of prion uptake from the gut lumen into Peyer ’ s patches. In the 

absence of M cells at the time of oral exposure, prion accumula-

tion upon FDC in the GALT, neuroinvasion, and disease suscep-

tibility are blocked. Antigen uptake by M cells is an important 

initial step in the induction of efficient immune responses after 

oral vaccination. Furthermore, the targeted delivery of vaccine 

antigens to M cells is an effective means of inducing antigen-

specific immune responses. 45  Mucosal immunization has been 

shown to have significant efficacy against oral prion infection in 

mice. 46  Therefore, data in the current study suggest M cells rep-

resent a novel cellular target for intervention in orally acquired 

prion infections.   

 METHODS     
  Mice   .   C57BL / 6 mice (6 – 8 weeks old) were used throughout this study. 
Mice were maintained under specific pathogen free (SPF) conditions. 
All studies using experimental mice and regulatory licenses were 
approved by both The Roslin Institute ’ s and University of Edinburgh ’ s 
Protocols and Ethics Committees. All animal experiments were carried 
out under the authority of a UK Home Office Project Licence within the 
terms and conditions of the strict regulations of the UK Home Office 
 ‘ Animals (scientific procedures) Act 1986 ’ . Where necessary, anesthesia 

appropriate for the procedure was administered, and all efforts were 
made to minimize harm and suffering. Mice were humanely culled 
using a UK Home Office Schedule One method.   

  Treatment with anti-RANKL mAb   .   To neutralize the activity of 
RANKL  in vivo , mice were injected intraperitoneally with 250    � g of 
the IK22-5 rat anti-mouse RANKL mAb 47  every 2 days for 8 days as 
described. 13  A parallel group of mice were treated with an isotype-
matched nonspecific rat mAb, rat IgG2a  �  (eBioscience, San Diego, 
CA) as a control.   

  Prion exposure and disease monitoring   .   For oral exposure, mice were 
fed individual food pellets doused with 50    � l of a 10 %  (w / v) dilution of 
scrapie brain homogenate prepared from mice terminally affected with 
ME7 scrapie prions (containing  ~ 2.5 × 10 4  intra-cerebral ID 50  units). 
To do so, during the dosing period mice were individually housed in 
bedding- and food-free cages. Water was provided  ad libitum . A single 
prion-dosed food pellet was then placed in the cage. The mice were 
returned to their original cages (with bedding and food  ad libitum ) as 
soon as the food pellet was observed to have been completely ingested. 
The use of bedding-free and additional food-free cages ensured easy 
monitoring of consumption of the prion-contaminated food pellet. 
Following exposure, mice were coded and assessed blindly for the signs 
of clinical prion disease and culled at a standard clinical endpoint. 48  
Survival times were recorded for mice that did not develop clinical 
signs of disease. Scrapie diagnosis was confirmed blindly on coded 
sections by histopathological assessment of vacuolation in the brain. 
For the construction of lesion profiles, vacuolar changes were scored in 
nine gray-matter and three white-matter areas of brain as described. 49  
Where indicated, some mice were culled at the times indicated post 
injection with prions and tissues taken for further analysis.    

 IHC and immunofluorescent analyses.   For whole-mount staining, 
Peyer ’ s patches were dissected from small intestines and fixed with 
BD Cytofix / Cytoperm (BD Biosciences, Oxford, UK). Tissues were 
subsequently immunostained with rat anti-mouse GP2 mAb (MBL 
International, Woburn, MA). Following addition of primary Ab, tis-
sues were stained with Alexa Fluor 488-conjugated anti-rat IgG Ab 
(Invitrogen, Paisley, UK), rhodamine-conjugated  Ulex europaeus  agglu-
tinin I (UEA-1; Vector Laboratories, Burlingame, CA), and Alexa Fluor 
647-conjugated phalloidin (Invitrogen). 

 Intestines, MLNs, and spleens were removed and snap-frozen at the 
temperature of liquid nitrogen. Serial frozen sections (10    � m in thickness) 
were cut on a cryostat and immunostained with the following anti bodies: 
FDC were visualized by staining with mAb 7G6 to detect CR2 / CR1 
(CD21 / CD35) and mAb 8C12 to detect CR1 (CD35; BD Biosciences). 
Cellular PrP C  was detected using PrP-specific polyclonal antibody (pAb) 
1B3. 50  B cells were detected using rat anti-mouse B220 mAb (clone RA3-
RB2, Caltag, Towcester, UK). Mononuclear phagocytes were detected 
using rat anti-mouse F4 / 80 mAb (clone CI:A31, AbD serotec, Kidlington, 
UK) and hamster anti-mouse CD11c mAb (clone N418, AbD Serotec). 
 For the detection of disease-specific PrP (PrP d ) in Peyer ’ s patches, 
MLNs, spleens, and brains, tissues were fixed in periodate-lysine-
paraformaldehyde fixative and embedded in paraffin wax. Sections 
(thickness 6    � m) were deparaffinized, and pre-treated to enhance the 
detection of PrP d  by hydrated autoclaving (15   min, 121 ° C, hydration) 
and subsequent immersion formic acid (98 % ) for 5   min. Sections were 
then immunostained with 1B3 PrP-specific pAb. For the detection of 
astrocytes, brain sections were immunostained with anti-glial fibrillary 
acidic protein (GFAP; DAKO, Ely, UK). For the detection of microglia, 
deparaffinized brain sections were first pre-treated with Target Retrieval 
Solution (DAKO) and subsequently immunostained with anti-ionized 
calcium-binding adaptor molecule 1 (Iba-1; Wako Chemicals GmbH, 
Neuss, Germany). Immunolabelling was revealed using HRP-conju-
gated to the avidin – biotin complex (Novared kit, Vector Laboratories, 
Peterborough, UK). PET immunoblot analysis was used to confirm 
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the PrP d  detected by immunohistochemistry, which was PK-resistant 
PrP Sc . 29  Membranes were subsequently immunostained with 1B3 PrP-
specific pAb. 

 For light microscopy, following the addition of primary antibodies, 
biotin-conjugated species-specific secondary antibodies (Stratech, 
Soham, UK) were applied and immunolabelling was revealed using 
HRP-conjugated to the avidin – biotin complex. Sections were coun-
terstained with hematoxylin to distinguish cell nuclei. For fluorescent 
microscopy, following the addition of primary antibody, streptavidin-
conjugated or species-specific secondary antibodies coupled to Alexa 
Fluor 488 (green), Alexa Fluor 594 (red), or Alexa Fluor 647 (blue) dyes 
(Invitrogen) were used. Sections were mounted in fluorescent mount-
ing medium (DAKO) and examined using a Zeiss LSM5 confocal 
microscope (Zeiss, Welwyn Garden City, UK).  

  Statistical analyses   .   Data are presented as mean ± s.e. Unless indicated 
otherwise, significant differences between samples in different groups 
were sought by Student ’ s t-test. Values of  P     <    0.05 were accepted as 
significant.        

    SUPPLEMENTARY MATERIAL  is linked to the online version of the 
paper at  http://www.nature.com/mi    
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