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Amyloids are a class of insoluble proteinaceous substances generally composed of linear
un-branched fibrils that are formed from misfolded proteins. Conformational diseases
such as Alzheimer’s disease, transmissible spongiform encephalopathies, and familial
amyloidosis are associated with the presence of amyloid aggregates in the affected
tissues. The majority of the cases are sporadic, suggesting that several factors must
contribute to the onset and progression of these disorders. Among them, in the past
10 years, non-enzymatic glycation of proteins has been reported to stimulate protein
aggregation and amyloid deposition. In this review, we analyze the most recent advances
in this field suggesting that the effects induced by glycation may not be generalized
as strongly depending on the protein structure. Indeed, being a post-translational
modification, glycation could differentially affects the aggregation process in promoting,
accelerating and/or stabilizing on-pathway and off-pathway species.

Keywords: amyloid aggregation, protein glycation, AGEs, protein misfolding, amyloidosis

PROTEIN AGGREGATION AND AMYLOID FORMATION
Neurodegenerative disorders, including Alzheimer’s, Parkinson’s,
amyotrophic lateral sclerosis and prion diseases are debilitating
and so far incurable disorders that demand intensive research. In
these diseases, misfolding, aggregation, and precipitation of pro-
teins seem to be directly related to neurotoxicity (Dobson, 2003;
Chiti and Dobson, 2006). Specifically, the physiological alter-
ations are associated with the formation of fibrillar aggregates,
referred to as amyloid fibrils, that usually accumulate in the extra-
cellular space of tissues or also as intracellular deposits (Stefani
and Dobson, 2003; Taylor et al., 2005). Protein molecular assem-
bly is characterized by several events like conformational changes
and intermolecular interactions which strongly affect each other.
The hierarchy of all these mechanisms and their extent depends
on several physical and chemical parameters such as tempera-
ture, pH, ionic strength, and addition of denaturants. Until very
recently, it was thought that only a small number of polypep-
tide chains associated with clinical disorders were able to form
amyloid fibrils. However, a number of recent studies have shown
that proteins unrelated to diseases, under suitable conditions, can
form aggregates in vitro with structural and cytotoxic proper-
ties that closely resemble those of the amyloid fibrils formed in
diseased tissues (Litvinovich et al., 1998; Fandrich et al., 2001;
Sirangelo et al., 2004, 2009; Iannuzzi et al., 2013a). These obser-
vations have led to the idea that the ability to form amyloid fibrils
is a generic property of polypeptide chains irrespective of their
amino acid sequence and caused by stable interactions involving
primarily the common polypeptide backbone. Despite major dif-
ferences in the sequences and three-dimensional structures of the
peptides and proteins involved, the fibrillar forms of the aggre-
gates share a common ultrastructure (Diaz-Avalos et al., 2003;
Nelson et al., 2005; Fitzpatrick et al., 2013). They usually consist

of a number (typically 2–6) of protofilaments, each about 2–5 nm
in diameter, that are often twisted around each other to form
super-coiled ropelike structures typically 7–13 nm in width or
that laterally associate to form long ribbons that are 2–5 nm thick
and up to 30 nm wide (Serpell et al., 2000). X-ray diffraction
analysis has indicated that the characteristic structure, i.e., the
β-cross motif, is formed by β-strands oriented perpendicular to
the long axis of the fibril, and β-sheets propagating in the fib-
ril direction (Sunde and Blake, 1997; Makin and Serpell, 2002;
Maji et al., 2009). These findings suggest that a common molec-
ular mechanism could underlie the aggregation process of the
different proteins involved in misfolding diseases (Kopito, 2000;
Dobson, 2001).

Three major factors have been identified as important param-
eters in the conversion of a protein into aggregates; these are high
hydrophobicity, high propensity to convert from α-helical to β-
sheet structure, and low net charge (Konno, 2001; Ciani et al.,
2002; Tjernberg et al., 2002; Chiti et al., 2003; Tartaglia et al.,
2008). Protein destabilization favors the formation of partially
unfolded conformations that are highly prone to aggregation
(Uversky and Fink, 2004). In most cases, protein destabilization is
facilitated by amino acid mutations which also increase the struc-
tural flexibility of the peptide chain; however, other proteins are
amyloidogenic even in the wild type form (Hurle et al., 1994;
Goedert et al., 2000; Quintas et al., 2001; Niraula et al., 2002;
Iannuzzi et al., 2007; Infusini et al., 2012, 2013). It has been sug-
gested that protein folding and protein aggregation, despite being
distinct processes, are in competition each other and the envi-
ronmental conditions dictate which one is favored for a given
polypeptide chain (Tartaglia and Vendruscolo, 2010). On this
basis, extensive studies have been carried out in vitro to inves-
tigate the nature of the transition between natively folded states
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and soluble aggregate-precursor states, and between the latter
and mature amyloid fibrils and the factors affecting all of these
(Wiseman et al., 2005). Recent data indicate that these dangerous
aggregation-prone states, although similar to the native confor-
mation, display altered surface charge distribution, alternative
β-sheet topologies and increased solvent exposure of hydropho-
bic surfaces and of aggregation-prone regions of the sequence (De
Simone et al., 2011). The propensity of normally folded proteins
to form amyloid-like fibrils increases in conditions that allow the
protein to break the major unfolding energy barrier, favoring par-
tial unfolding of the native state. These include low pH, high
temperature, or the presence of organic solvents (Guijarro et al.,
1998; Villegas et al., 2000). However, increasing evidence is now
accumulating that folded proteins also retain a significant ten-
dency to aggregate with no need for unfolding as first obligatory
step (Plakoutsi et al., 2004; Bemporad and Chiti, 2009).

Protein aggregation begins with the appearance of aggre-
gation nuclei, whose growth is considered the rate-limiting
step of the process, which has many characteristics of a
nucleation-dependent polymerization mechanism (Kelly, 1998)
(Figures 1, 2). These species, generally indicated as protofib-
rils or soluble oligomeric intermediates, appear as globules of
2.5–5.0 nm in diameter or larger, with an intrinsic tendency to
further assemble into pore-like annular and tubular structures
(Lashuel et al., 2002; Poirier et al., 2002). Once a nucleus is
formed, fibril growth is thought to proceed rapidly by further
association of either monomers or oligomers with the nucleus
(Cohen et al., 2012).

While insoluble aggregates correlate with disease progression,
there are increasing evidences that the initiating and most toxic
events are caused by prefibrillar forms rather than mature fib-
rils. These results have led to the idea that molecular basis of cell
and tissue impairment may be related to the transient appearance
of prefibrillar assemblies, under conditions where their intracel-
lular levels increase as a consequence of dysfunctions in cellular
clearance machineries (Stefani, 2012). The specific mechanism by
which these species appear to mediate their toxic effects is not

completely understood; probably toxicity is mediated by com-
mon structural features shared by prefibrillar precursors (Kayed
et al., 2003; Bucciantini et al., 2004; Malmo et al., 2006; Cecchi
and Stefani, 2013).

PROTEIN GLYCATION AND AMYLOIDOSIS
Although the aggregation process of amyloidogenic proteins has
been widely studied in vitro and many physiological (environ-
mental and genetic) factors involved have been identified, the
molecular mechanisms underlying the formation of aggregates
in vivo and in pathological conditions are still poorly under-
stood. The majority of neurodegenerative diseases are sporadic,
suggesting that other factors must contribute to the onset and
progression of these disorders. Post-translational modifications
are known to affect protein structure and function. Some of these
modifications might affect proteins in detrimental ways and lead
to their misfolding and accumulation. Reducing sugars play an
important role in modifying proteins, forming advanced glyca-
tion end-products (AGEs) in a non-enzymatic process named

FIGURE 2 | Nucleation-dependent fibril formation process.

FIGURE 1 | Association of two or more non-native peptide/protein molecules forming highly ordered, fibrillar aggregates.
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glycation. This process is different from glycosylation; indeed
these two post-translational modifications affect the structure of
the target protein in a different way. Glycosylation is a selective
protein modification, driven by specific enzymes, that is gener-
ally associated to a gain of function (or stabilization) of the target
protein. Non-enzymatic glycation is a non-selective modification
and it is generally associated to a loss of function of the target
protein due to modifications of its native structure. While glyco-
sylation is a well controlled cellular mechanism, non-enzymatic
glycation only depends on the exposure of free amino-groups in
the polypeptide chain, concentration of the sugar and oxidative
conditions.

Recently, much attention has been devoted to the role played
by non-enzymatic glycation of proteins in stimulating amyloid
aggregation and toxicity. Proteins in amyloid deposits are found
often glycated suggesting a direct correlation between protein
glycation and amyloidosis (Miyata et al., 1993; Kikuchi et al.,
2000; Munch et al., 2000; Dukic-Stefanovic et al., 2001; Shults,
2006). Glycation reactions are common to all cell types: glycated
products slowly accumulate in vivo leading, besides cellular modi-
fications involved in the aging process, to several different protein
dysfunctions (Lyons et al., 1991; Miyata et al., 1999; Gul et al.,
2009). The process begins with a nucleophilic addition reaction
between a free amino group of a protein and a carbonyl group
of a reducing sugar, forming a reversible intermediate product
(Schiff ’s base). Side-chains of arginine and lysine residues, the
N-terminus amino group of proteins, and thiol groups of cysteine
residues, are the main targets of protein glycation. The process
depends on several conditions, such as the concentration and
reactivity of the glycation agent, the presence of catalytic factors
(metals, buffer ions and oxygen), the physiological pH, temper-
ature and the half-life of each protein. All reducing sugars can
participate in glycation reactions and, between them, D-ribose
is the most active and its intracellular level can be quite high.
D-glucose is the least reactive and its intracellular concentration
is negligible, while dicarbonyl compounds are far more reactive.
The levels of D-ribose in the blood are estimated around 20 mg/L
in healthy individuals while D-glucose 6–10 g/L. Once formed,
the Schiff ’s base can turn into a stable ketoamine by Amadori
rearrangement (Figure 3). This reaction is reversible depending
on the concentration of the reactants. The late-stage of the pro-
cess is an irreversible cascade of reactions involving dehydration,
hydrolysis, and other rearrangements leading to the formation of
AGEs. AGEs products are considered to be a marker of several
diseases, such as arteriosclerosis, renal failure, Alzheimer disease,
or diabetes, although they normally increase in aging (Vlassara,
2005).

Indeed, protein glycation has been considered an age related
problem influencing mainly extracellular proteins, such as colla-
gen and elastin, which are located outside the cells and provide
strength and flexibility to the tissues. AGEs formation can inter-
fere not only with the regular functioning of the proteins to which
they are attached but also induce the formation of covalent cross-
links with close proteins. This process is gradual, so that cross-
links accumulate over the years on the longest-lived extracellular
proteins, which do not get cleared very often; clear evidence of
this is found in the extracellular collagen and elastin (Furber,

2010). The observation that proteins in amyloid deposits, such as
β-amyloid, tau, prions and transthyretin, are often found glycated
in patients suggests a direct correlation between protein glycation
and amyloid formation. This is thought to be associated with an
increased protein stability through the formation of cross-links
that stabilize protein aggregates (Figure 4). Also, glycation affects
the structure and the biological activity of proteins as well as their
degradation process (Shaklai et al., 1984; Mendez et al., 2005)
and, being an abnormal modification, it has been found to induce
some proteins to misfold and, thus, promote protein aggregation
(Vitek et al., 1994; Chellan and Nagaraj, 1999; Verzijl et al., 2002;
Bouma et al., 2003).

Moreover, once proteins become glycated at their exposed
lysine residues, clearance by the ubiquitin-proteasome system
would be impaired because ubiquitination of lysine residues, a
modification that targets proteins to the proteasome for degra-
dation, might be impeded. Thus, accumulation of proteins as
aggregates or as depositions or inclusions in tissues might be
favored after glycation.

However, in addition to directly affecting protein structure
and function, AGEs also exert cellular effects mediated by spe-
cific AGEs receptors (RAGE), as well as macrophage scavenger
receptors, MSR type II, OST-48, 80K-H, galectin-3, and CD36
(Vlassara et al., 1995; Li et al., 1996; Ohgami et al., 2002; Stern
et al., 2002). Indeed, glycation may be responsible, via RAGE, for
an increase in oxidative stress and inflammation through the for-
mation of reactive oxygen species and the activation of the nuclear

FIGURE 3 | Classification of non-enzymatic glycation reaction

products.

FIGURE 4 | AGEs pathway in aging and amyloid diseases.
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transcription factor-κB generally associated to amyloid toxicity
(Xie et al., 2013).

DIFFERENTIAL EFFECTS OF GLYCATION ON PROTEIN
AGGREGATION
Several proteins related and not related to misfolding diseases
have been so far examined to investigate the effect of glycation
on their propensity to aggregate and form amyloid structure.

Aβ-PEPTIDE
Vitek et al. (1994) observed, for the first time, that plaque
fractions of AD brains contained about three-fold more AGE
adducts than preparations from healthy, age-matched controls.
They showed that the in vivo half-life of β-amyloid is prolonged
in AD, resulting in greater accumulation of AGE modifications
which may, in turn, act to promote accumulation of additional
amyloid. Moreover, AGE-modified Aβ peptide-nucleation seeds
accelerated aggregation of soluble Aβ peptide compared to non-
modified seed material (Vitek et al., 1994). Successively, Munch
et al. (1997, 2000) reported that glycation promotes in vitro amy-
loid aggregation of Aβ peptide, probably because of crosslinking
through AGEs formation. Further studies revealed that glycation
is not only capable of enhancing the rate of formation of amy-
loid, oligomers and protofibrils but also of increasing the size of
the aggregates (Chen et al., 2006). The fibrillar aggregates formed
upon glycation were not cytotoxic, thus glycation in the Aβ pep-
tide seems to strongly reduce its toxicity (Fernandez-Busquets
et al., 2010).

β2-MICROGLOBULIN
Also in the case of β2-microglobulin, glycation seems to pro-
mote amyloid aggregation. In particular, D-ribose interacts with
human β2-microglobulin to generate AGEs that form aggre-
gates in a time-dependent manner. Ribosylated β2-microglobulin
molecules are highly oligomerized compared with the unglycated
protein, and have granular morphology. Such ribosylated β2-
microglobulin aggregates show significant cytotoxicity to both
human SH-SY5Y neuroblastoma and human foreskin fibroblast
FS2 cells and induce the formation of intracellular reactive oxy-
gen species (Kong et al., 2011). By contrast, modification of
β2-microglobulin with D-glucose was reported to inhibit fibril
extension in vitro (Hashimoto et al., 1999).

INSULIN
A different effect has been observed for glycated insulin. This pro-
tein is intimately associated with glycaemia and is vulnerable to
glycation by glucose and other highly reactive carbonyls especially
in diabetic conditions. (Brange et al., 1997). In vitro experi-
ments have shown that glucose is able to produce glycated bovine
insulin on Lys29 in the C-terminal region of chain B and on
N-terminus of chains A and B. Glucose produces glycated bovine
insulin adducts with different structural features depending on
the experimental conditions. In particular, in reducing condi-
tions glycation produces higher levels of insulin oligomerization
and, therefore, accelerates amyloid formation. On the contrary,
in non-reducing conditions, glycation inhibits amyloid formation
in a way proportional to the glycation extent (Alavi et al., 2013).

Probably, under these conditions, insulin adducts possess a higher
internal dynamics that prevent formation of the rigid cross-β core
structure thus reducing the ability to form fibrils. Methylglyoxal
is able to produce glycated human insulin in a single site, i.e.,
Arg46 of the B-chain. This modification induces the formation
of native-like aggregates and reduces the ability to form fibrils by
blocking the formation of the seeding nuclei. These aggregates are
small, soluble, non-fibrillar and retain a native-like structure. The
lag phase of the nucleation-dependent polymerization process
increased as a function of methylglyoxal concentration. In this
case glycation preserved insulin native conformation, blocking
the α-helix to β-sheet transition thus leading to a reduced fibril
formation. Again, the effects may be ascribed to a higher dynam-
ics in glycated insulin leading to impairment in the formation
of the rigid cross-β core structure. Taken together, these results
showed that methylglyoxal-induced glycation reduces insulin fib-
ril formation and promotes the population of oligomeric states
(Oliveira et al., 2011).

CYTOCHROME C
Cytochrome c (Cyt c) was also used as a model protein to study
the impact of glycation on protein structure, stability, and ability
to form aggregates. Methylglyoxal has been shown to covalently
modify Cyt c at a single arginine residue and induces early confor-
mational changes that lead to the formation of native-like aggre-
gates without promoting amyloid formation. Oligomerization
occurs due to localized protein structural changes, which induce
a decrease in the conformational stability of the modified protein.
Consequently, the aggregation process starts directly by monomer
addition in a way that is thermodynamically and kinetically
favored. Furthermore, partially unfolded species are formed, but
they do not seem to be implicated in the aggregation process.
Interestingly, the glycated Cyt c unfolded species are an off path-
way by-product and, for this reason, they do not promote the
amyloidogenic aggregation pathway (Oliveira et al., 2013).

α-SYNUCLEIN
Glycation of α-synuclein is a factor involved in the aggregation
of the protein into Parkinson’s disease and in the formation of
Lewy bodies (LB). Glycation was first reported to be present in
substantia nigra and locus coeruleus of peripheral LB (Vicente
and Outeiro, 2010). The protein has 15 lysine residues making
it a target for glycation at multiple sites (Padmaraju et al., 2011).
Lee and collaborators found that methylglyoxal induces oligomer-
ization of α-synuclein and inhibits the formation of amyloid
fibrils. Moreover, protein fibrillization was also significantly sup-
pressed by the seeding of modified α-synuclein species (Lee et al.,
2009). Similar results were obtained with D-ribose: ribosylation
of α-synuclein promotes the formation of molten globule-like
aggregates which caused cells oxidative stress and resulted in high
cytotoxicity (Chen et al., 2010).

LYSOZYME
Also hen egg white lysozyme (HEWL) has been used to study
the impact of glycation on protein structure and aggregation.
HEWL is a structural homolog of human lysozyme, responsible
for systemic amyloidosis disease and, for this reason, considered a
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very good model. HEWL undergoes glycation in vitro and poten-
tial glycation sites are considered to be the N-terminal α-amino
group, ε-amino group of lysine residues and guanidino group of
arginine residues (Tagami et al., 2000).

Glycation of HEWL has been tested over a prolonged period
in the presence of D-glucose, D-fructose and D-ribose (Fazili
and Naeem, 2013; Ghosh et al., 2013). Glycation has been found
to promote the formation of cross-linked oligomers in HEWL
instead of amyloid aggregates and, among the tested sugars,
D-ribose resulted the most effective one. Glycation in HEWL
has been shown to promote at first an alpha to β transition and
then, prolonged glycation induced the formation of cross-linked
β-sheet rich oligomers which are amorphous and globular in
nature.

ALBUMIN
Also human and bovine serum albumin (BSA) have been shown
to be efficiently glycated in vitro by D-ribose and, in this case, gly-
cation has been shown to promote amyloid aggregation (Bouma
et al., 2003; Sattarahmady et al., 2007). Although BSA is a
highly soluble protein rich in helical structure, glycation pro-
motes strong conformational changes affecting both secondary
and tertiary structure. Indeed, it has been observed a strong
reduction of the helical content and, subsequently, the forma-
tion of β-rich aggregates that rapidly evolve to the formation of
amyloid fibrils.

Amyloid-like aggregates of glycated BSA are able to induce
high cytotoxicity that trigger cell death by activation of cellular
signaling cascades. Indeed, independent experiments have shown
that aggregates of glycated BSA are able to induce oxidative stress
ROS mediated and apoptosis in both neurotypic SH-SY5Y and
MCF-7 cells (Wei et al., 2009; Khan et al., 2013).

W7FW14F APOMYOGLOBIN
Recently, it has been shown that glycation of the amyloido-
genic apomyoglobin mutant W7FW14F significantly accelerates
the amyloid fibrils formation providing evidence that glycation
actively participates to the process affecting the reaction kinet-
ics (Iannuzzi et al., 2013b). Moreover, it has been examined the
effect of glycation on wild type apomyoglobin and preliminary
results indicate that, for this protein, AGEs formation does not
trigger amyloid aggregation, thus suggesting that the presence of
amyloidogenic sequences in a misfolded protein is crucial for pre-
disposing the protein to amyloid aggregation (unpublished data).
These data indicate that a synergy between predisposing factor,
i.e., aggregation propensity, and AGEs induced cross-links forma-
tion may be a strongly relevant factor in addressing the formation
of amyloid structure.

The differences observed in the protein models so far studied
might be a consequence of the inherent properties of the native
structure of each protein or structural changes induced by AGE
modifications as result of different glycation agents. In most of
the cases mentioned above, fibrillation enhancement is achieved
by modifying amyloidogenic proteins with glycating sugars like
glucose or fructose while small and highly reactive carbonyls like
methylglyoxal are apparently more prone to reduce fibril forma-
tion. This suggests that different glycation agents lead to specific

structural constraints that have a major role in protein fibrillation
kinetics. Moreover, some glycated proteins undergo oligomeriza-
tion without promoting amyloid fibril formation and this can
be related to the aggregation behavior of some amyloidogenic
proteins upon glycation. In fact both insulin and α-synuclein,
which are involved in amyloid diseases, show decreased amyloid
fibril formation after glycation and both significantly retain the
native three dimensional structure during the aggregation pro-
cess. Overall, glycation of amyloidogenic proteins can lead to a
shift from an amyloidogenic pathway to a native-like aggrega-
tion through a process that is thermodynamically and kinetically
favored.

CONCLUSIONS AND PERSPECTIVES
The above referred considerations make the study of AGEs one
of the most important areas of biomedical research today. Several
questions remain to be answered: whether glycation of susceptible
proteins is a triggering event or just a result of its reactivity toward
low-turnover aggregated species, which are highly insoluble and
protease-resistant, remains controversial. Several studies suggest
that glycation may be an early event promoting or accelerat-
ing abnormal protein deposition, followed by increased protease
resistance and insolubility. Regardless of the chronology of AGEs
formation, it is known that its accumulation is related to sus-
tained inflammatory responses and oxidative stress, which is a
common feature in many neurodegenerative disorders. Glycation
may then be understood as a dynamic contributor to these
multifactorial diseases by promoting, accelerating or stabilizing
pathological protein aggregation and inducing responses leading
to cell dysfunction, damage and death. Thus, it will be impor-
tant to further investigate the biochemical effects induced by the
interaction of AGEs-modified proteins with cells, such as, the acti-
vation of oxidative stress signaling pathway and inflammatory
response.
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