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Advances in intelligent robotic systems and brain-machine interfaces (BMI) have helped

restore functionality and independence to individuals living with sensorimotor deficits;

however, tasks requiring bimanual coordination and fine manipulation continue to remain

unsolved given the technical complexity of controlling multiple degrees of freedom

(DOF) across multiple limbs in a coordinated way through a user input. To address

this challenge, we implemented a collaborative shared control strategy to manipulate

and coordinate two Modular Prosthetic Limbs (MPL) for performing a bimanual self-

feeding task. A human participant with microelectrode arrays in sensorimotor brain

regions provided commands to both MPLs to perform the self-feeding task, which

included bimanual cutting. Motor commands were decoded from bilateral neural signals

to control up to two DOFs on each MPL at a time. The shared control strategy enabled

the participant to map his four-DOF control inputs, two per hand, to as many as 12

DOFs for specifying robot end effector position and orientation. Using neurally-driven

shared control, the participant successfully and simultaneously controlled movements

of both robotic limbs to cut and eat food in a complex bimanual self-feeding task.

This demonstration of bimanual robotic system control via a BMI in collaboration

with intelligent robot behavior has major implications for restoring complex movement

behaviors for those living with sensorimotor deficits.

Keywords: human machine teaming, brain computer interface (BCI), bimanual control, robotic shared control,

activities of daily living (ADL)

INTRODUCTION

Individuals living with sensorimotor impairments, such as a spinal cord injury, are faced with
challenges in navigating their environments and completing daily tasks, including self-feeding.
Brain-machine interfaces (BMI) have the potential to increase the independence of such individuals
by providing control signals to prosthetic limbs and re-enabling activities of daily living (ADLs)
(Collinger et al., 2013; Aflalo et al., 2015; Thomas et al., 2020).
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Cortical BMIs can be used to restore function by decoding
neural signals for a variety of applications including handwriting
(Willett et al., 2021), restoring speech (Moses et al., 2021),
perceiving artificial stimulation (Armenta Salas et al., 2018; Fifer
et al., 2022), controlling external robotic limbs with closed-
loop sensory feedback (Flesher et al., 2021), or combined with
other assistive technologies (McMullen et al., 2014; Downey
et al., 2016). Others have demonstrated the use of cortical BMIs
for driving functional electrical stimulation to allow users to
volitionally control their limb for completing tasks such as
drinking (Ajiboye et al., 2017; Colachis et al., 2018).

As invasive cortical BMIs become more advanced, one
challenge that remains is robust control of bimanual robotic
limbs with high degrees of freedom (DOFs). Researchers have
demonstrated bimanual control of virtual arms using neural
signals from bilateral frontal and parietal cortical areas in non-
human primates (Ifft et al., 2013). Prior work has demonstrated
effective control of seven (Collinger et al., 2013) and even
up to 10 (Wodlinger et al., 2015) DOFs in individuals using
an invasive cortical BMI to move anthropomorphic robotic
limbs; however, despite these impressive advances the need for
bimanual control of two robotic limbs for more complex tasks
of daily living requires control over as many as 34 DOFs, if
using highly dexterous robotic limbs (Johannes et al., 2020).
To address this challenge, advanced strategies, such as shared
control, could help significantly reduce the required DOFs
needed to effectively complete tasks requiring two arms while
using a BMI.

Shared control systems, where the BMI user and a semi-
autonomous robot combine efforts to accomplish tasks, can
further increase user independence in a variety of ways. One
method is a form of supervisory shared control where the
robot knows how to perform tasks and the BMI user provides
target goals for the robot (Katyal et al., 2013; McMullen
et al., 2014; Tang and Zhou, 2017). In this case, an “inner
loop” control system drives robot movement and the BMI
user provides “outer loop” control, such as telling the robot
which object to pick up. The approach we describe here is
a form of collaborative shared control, in which a subset of
the robot DOFs are controllable by the BMI user at select
task-specific times, or through mode-switches initiated by the
user. The BMI user and robot share the main control loop
and the intent is to leverage the limited command signals
provided by the BMI to enable the user to customize robot
behavior. A third approach could be to combine supervisory and
collaborative shared control, where for a given task some subtasks
are performed by the robot given target goals (supervisory—
e.g., BMI user indicates which glass to pick up) whereas
other subtasks involve real time input from the BMI user
(collaborative—e.g., user controls how quickly to pour contents
of glass).

Here, we describe an experimental setup aimed at testing
a collaborative shared control approach in which a BMI user
controlling up to four combined bilateral degrees-of-freedom
completes a bimanual self-feeding task similar to Task 1 of
the Arm Motor Ability Test [AMAT (Kopp et al., 1997)]
(Figure 1A).

METHODS

Human Participant Testing and Regulatory
Information
The participant recruited for this study was a 49 year old male
who suffered from a C5 sensory /C6 motor spinal cord injury
≈30 years prior to this testing. The injury was categorized as a
B (incomplete) on the American Spinal Cord Injury Association
Impairment Scale. In particular, the participant retained some
movement in shoulder and elbow, partial movement of wrist
(extension only), and minimal to no movement of fingers. The
participant was implanted with six NeuroPort electrode arrays
(Blackrock Neurotech; Salt Lake City, UT) in the motor and
somatosensory cortices of both brain hemispheres. Additional
details can be found in McMullen et al. (2021) and Fifer et al.
(2022). Briefly, two 96 channel arrays (10 × 10 layout spanning
4 × 4mm) were placed in the dominant (left) primary motor
cortex and two 32 channel arrays (within a 6 × 10 layout
spanning 4 × 2.5mm) were placed in the somatosensory cortex.
In the non-dominant (right) hemisphere, one 96 channel array
and one 32 channel array were located in the primary motor
and somatosensory cortices, respectively (Figure 1B). The arrays
notionally covered neural regions representing both the left and
right limbs as reported in previous studies (Thomas et al., 2020;
Christie et al., 2021; McMullen et al., 2021; Osborn et al., 2021a,b;
Fifer et al., 2022).

This study was conducted under an approved Food and
Drug Administration (FDA) Investigational Device Exemption
(G170010). This study was registered on ClinicalTrials.gov
(NCT03161067) and was reviewed and approved by the Johns
Hopkins Institutional Review Board (IRB). Surgical explantation
of the investigational device occurred approximately a year after
this testing.

Neural Decoding
Neural signals were recorded from the implanted microelectrode
arrays using a wired connection from the implants to three
128 channel Neuroport Neural Signal Processors (Blackrock
Neurotech). Before each experiment session began, voltage
thresholds for each electrode were set to −3.25 times the root-
mean-square (RMS) voltage of the neural signal during a resting
state. Neural spikes from the implanted arrays were recorded
at 30 kHz and the firing rate for each electrode was calculated
using 30ms bins. Spiking activity in each channel, specifically the
square-root of the firing rate, was normalized at each time point
using a streaming z-score calculation (using the channel-specific
mean and standard deviation) over the preceding 60 s (Downey
et al., 2017; Colachis et al., 2018).

For this study, our team leveraged a gesture-based 2D control
strategy, wherein each direction was mapped to a gesture: up
(open hand), down (2-finger pinch), toward midline (wrist flex),
away frommidline (wrist extend), and no movement (hand rest).
This mapping was familiar to the participant prior to this study.
This control strategy was chosen due to limited directional tuning
of spiking signals, and resulting poor performance of classical
continuous direction-based velocity control. The participant
performed a target-reach training task at the beginning of the
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FIGURE 1 | System diagram for BMI-based shared control of bimanual robotic limbs. (A) Movements are decoded from neural signals through the brain-machine

interface and mapped to two external robotic limbs while using a collaborative shared human-machine teaming control strategy to complete a self-feeding task

requiring simultaneous bimanual manipulations. (B) NeuroPort electrode arrays (Blackrock Neurotech) implanted in the motor and somatosensory regions of the left

and right hemispheres record neural activity. (C) Neural data is streamed from the cortical implants and processed before being decoded. Decoded gestures are

passed to the shared control strategy for mapping onto robot degrees of freedom depending on the current state of the task. Autonomous portions of the task are

performed by the robot while semi-autonomous steps are controlled in part by the participant using attempted gestures to modulate a subset of robotic limb end

effector degrees of freedom using the current DOF mapping. The degrees of freedom controlled via BMI are based on a task library accessed by the robot.

experiment where they attempted gesture-based control while
watching two virtual Modular Prosthetic Limbs (vMPL) (Ravitz
et al., 2013; Wester et al., 2020) move to targets located on
vertical and horizontal axes. The target locations were displayed
for 0.5–1 s before the vMPLs began to move to the targets.
vMPL movement initiation was signaled by an audio cue,
which instructed the participant to start attempting the gestures
corresponding to the movement direction. The participant was
instructed to attempt to perform the gestures, i.e., without
inhibiting movement of fingers or wrist. The gestures were
attempted and held continuously until the vMPL reached its
target. The gesture-direction mapping was mirrored between the
two hands, and the participant was presented with 16 repetitions
of each unimanual and bimanual (parallel and anti-parallel
directions) movement combination (256 total training trials).
Specifically, there were 16 unimanual and bimanual gesture
combinations that were trained: four unimanual movements
(hand open, pinch, wrist extend/flex) with the right arm and
four with the left arm; two bimanual parallel movements in
the horizontal directions (i.e., right wrist flex with left wrist

extend and vice versa) and two bimanual anti-parallel horizontal
movements (i.e., right wrist flex with left wrist flex and right
wrist extend with left wrist extend); two bimanual parallel vertical
movements (i.e., right open hand with left open hand and
right pinch with left pinch) and two bimanual anti-parallel
vertical movements (i.e., right open hand with left pinch and
vice versa). Offline decoding accuracy was determined using 10-
fold cross-validation. The normalized neural firing rates from
each hemisphere were segmented from the training data and
used to train a linear discriminant analysis (LDA) classifier for
decoding intended gestures from the contralateral hand to enable
simultaneous classification of bimanual movements (Thomas
et al., 2020). To generate the training samples for the neural
decoder, the normalized neural signals were split into 240ms
windows with a 90ms shift. The average activity was taken for
each window and labeled with the corresponding attempted hand
gesture to create a training sample.

Online performance of these gesture classifiers was tested
using the same target-reach task. But rather than the vMPLs
being controlled by the computer, their movement direction was

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 918001

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Handelman et al. Shared Robotic BMI Control for Self-Feeding

determined by the gestures predicted by the decoding model.
Online decoding was achieved by binning the incoming neural
signal and averaging the normalized firing rates from each
electrode across a 240ms buffer. A gesture prediction from
the neural signal was made every 30ms and the output was
transmitted using a custom software interface to send control
commands to the robot control system controlling the MPL
(Johannes et al., 2020).

Shared Control Strategy
In our shared control strategy, the participant and the bimanual
manipulators are viewed as a human-robot team, and the goal
is to enable the human to control a minimal set of key DOF to
maximize task performance while minimizing human workload.
It is a form of adjustable autonomy in which the robot nominally
knows how to perform a task, and human input is used to guide
and customize robot behavior (Handelman et al., 1990, 2022;
National Academies of Sciences, Engineering, and Medicine,
2022).

For bimanual manipulation, the shared control system must
maneuver the two MPL end effectors (i.e., the anthropomorphic
robot hands) to achieve desired task goals. A total of 12 DOFs—
3D position and 3D orientation (pose) of both end effectors—
need to be controlled at all times by either the user or the system.
Each MPL uses seven joints (three in the shoulder, one in the
elbow and three in the wrist) to position and orient the end
effector, and we use inverse kinematics to compute commanded
joint angles for a desired end effector pose (Handelman et al.,
2018).

In this study, the human was positioned between the robot
arms and in front of a table with a plate of food (Figure 1A).
The robot hands held utensils and the fingers of each robot
hand remained fixed relative to the wrist. The shared control
strategy was to dynamically partition the 12 controllable DOFs
(position and orientation of each robot hand) into BMI-
controlled and system-controlled DOF (Figure 1C). Complex
tasks were manually divided into task steps. During each task
step up to four DOFs were controlled by the BMI (i.e., up to two
DOF on each side), and the remaining DOF were controlled by
the robot control system. The active mapping of participant two-
DOF input (north-south or east-west) to end effector six-DOF
movement for each hand (left-right, forward-back, up-down,
yaw left-right, pitch up-down, and roll left-right) was announced
verbally by the robot during task execution. The overall goal was
to let the robot do the majority of a task but allow the participant
to take control of a subset of DOF to shape task performance to
their liking. In the case of self-feeding, for example, given a plate
with a variety of foods on it, we want the participant to be able to
choose which food to eat, where to cut (if necessary), and the size
of the piece to eat (Figure 2).

The robot end effector DOFs available to the participant were
those considered most useful for the active task step. This made
the shared control system easy to use, robust, and safe in its
behavior, operating within a constrained task-specific envelope of
motion. Sometimes the participant could control only one DOF
of one end effector in one direction (“move right hand down”),
sometimes two bidirectional DOFs of one end effector (“move

right hand forward, back, left, right”), and sometimes three DOFs
total, one associated with one effector and two associated with the
other (“move left hand down, move right hand back and right”).

In this type of collaborative control strategy, where the robot
is performing the majority of a multi-step task (e.g., “cut and eat
food”) but the BMI user controls a subset of DOF during certain
task steps, the robot must be able to estimate when the BMI user
is satisfied with their input (and current robot state) and is done
with the active step so that the robot can move on to the next
step. For a task step where the user is providing input, the robot
waits for the user to provide initial BMI input (gestures), then
waits for the user to stop providing input, then moves on to the
next step.

Detection of this “intentional” user activity is complicated by
the nature of the BMI-generated gestures signals. Occasionally a
short-lived gesture “spike” occurs that does not necessarily imply
intended sustained robot arm movement by the BMI user. In
order to handle this situation, we compute a cmd_moving_raw
signal as the sum of the absolute values of the incoming
active DOF, where each degree of freedom has a gesture-based
value of −1, 0, or 1. This cmd_moving_raw signal is passed
through a second-order filter (damping ratio 0.8, settling time
0.5 s) to provide cmd_moving_filtered. If cmd_moving_filtered
is greater than or equal to cmd_moving_threshold value of
0.125 it is assumed that the BMI user is actively providing
input, otherwise it is assumed the user is not providing input.
This filter enables “noisy” gesture spikes to be ignored by the
system while enabling sustained gestures to be interpreted as
intentional activity. The robot control system monitors these
values at a rate of 40Hz, the nominal robot control system
update rate.

User gestures are mapped to robot end effector velocity
for the active DOF through a velocity scaling factor. This
scaling factor needs to be tuned so that it is not too
slow as to be tedious to control by the user but not so
fast as to induce overshoot and oscillations. For each task
step where user input is expected, the robot detects initial
movement (cmd_moving_filtered ≥ cmd_moving_threshold),
then looks for a lack of input activity (cmd_moving_filtered
< cmd_moving_threshold for >1.1 s (cmd_moving_wait_reset),
at which point it considers the current step done. The
robot also considers the current step done if the user BMI
input switches from inactive to active at least 13 times
(cmd_moving_count_max). Another feature of the system is to
keep the robot end effector within a bounded region (bounding
box) relative to a task step reference point, such as where
the robot positions the fork over the food, the knife over
the food, and the food in front of the user’s mouth in the
self-feeding task. In some task steps the step is considered
done when the edge of the bounding box is reached, such
as when moving the fork down to stab food, moving the
knife down to cut food, and when moving food into the
user’s mouth.

Self-Feeding Task
To demonstrate shared control of bimanual robotic limbs, a
decadent dessert pastry was placed on a table in front of two
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FIGURE 2 | Bimanual self-feeding task flowchart. The collaborative shared control strategy enables the participant to control a minimum set of DOFs while still

maximizing task performance.

MPLs mounted on a stand. The participant was instructed to use
neural control to guide the robotic limbs in order to cut a piece
of the pastry and bring it to his mouth (Figure 1A). Consuming

the pastry was optional, but the participant elected to do so given

that it was delicious.
A fork and a knife were attached to the right and left MPLs,

respectively. The participant controlled a subset of the position

and orientation DOF of each MPL using the decoded neural

signal commands and the self-feeding task was stepped through

using various DOF modes to contribute to the overall feeding

task as described above. Figure 2 presents the shared control

self-feeding task flowchart. Trials were considered successful if

the participant was able to cut the pastry using bimanual neural

control and complete the self-feeding portion of the task using

the MPLs.

RESULTS

Neural Decoding
Global offline gesture decoding accuracy from the neural signals
for the left and right hands was 63.5 and 67.6%, respectively
(chance accuracy: 20%; see Figure 3). These offline accuracies are
similar to previously reported results by our team using similar
methods during simultaneous bimanual movements (Thomas
et al., 2020). During online testing with the target-reach task, the
participant was successful in 17 out of 20 trials (85%), indicating
usability of the neural decoder for controlling the external robotic
limbs in the self-feeding task.

Bimanual Self-Feeding Task
Calibration and testing of the collaborative shared control
strategy for self-feeding was performed in one session with
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FIGURE 3 | Offline decoding performance for the left and right hands during simultaneous attempted gestures (including “rest”). Contralateral neural signals were

used to decode each hand (i.e., left motor and somatosensory cortex signals were used to decode right hand movements). On each hand, there were 48 instances

for each of the movement classes (open, pinch, wrist flex, wrist extend) and 64 for the “rest” condition. Of the movements, “pinch” gestures were decoded with the

highest accuracy for both left and right hands, while “wrist extend” was notably more difficult to decode (45 and 34% for left and right hands, respectively).

the participant. Development of robot task behaviors and
preliminary tuning of system parameters was done using
simulation prior to the session.

In the current experimental setup, the robot had a priori
knowledge of the approximate locations of the plate, of the
food on the plate, and of the participant’s mouth. Robot motion
segments involving the robot moving the tip of the fork and the
blade of the knife to the food, and moving the piece of food
to the participant’s mouth, were calibrated during testing using
end effector position and orientation reference points. As noted
previously, when the participant was controlling an end effector
DOF, bounding box limits were placed on how far the end effector
could move from the default position (reference point). This
kept the robot from wandering too far from a practical pose for
the active task step, helping to minimize participant effort, and
kept the robot within a safe envelope relative to the participant,
such as when placing food within the participant’s mouth. These
bounding box limits for various task steps were also calibrated
during testing.

Calibration of the end effector velocity scaling factor was

critical. Improper calibration would cause the robot arm

to either move frustratingly slowly, requiring a great deal

of participant effort (many gestures to move the robot
arm a small distance), or too quickly, causing the fork
or knife to overshoot the desired location. Calibration of
user activity monitoring parameters cmd_moving_threshold,
cmd_moving_wait_reset, and cmd_moving_count_max was also
important to properly interpret when intended user activity
had begun and when it had ended. Improper setting of these
parameters caused task steps to end sooner than desired, before
the fork or knife had been positioned as desired.

Once the shared control system was tuned, the participant
could perform the self-feeding task, cutting off a reasonably

sized piece of food using simultaneous bimanual commands
and bringing it to his mouth without dropping it (Figure 4,
Supplementary Movie 1). The test session included 37 trials,
most of which involved calibration of the aforementioned
parameters due to inconsistencies between the robot simulation
and physical hardware. Ultimately, seven successful trials were
demonstrated where the participant was able to cut off a
reasonably sized piece of food and bring it to his face
without dropping it using simultaneous bimanual commands
(Supplementary Movie 1). While the size of the cut food was
subjectively determined by the participant’s preference, we note
that in one of those seven trials the piece of food cut was too
large to be reasonably consumed in one bite and in another one
of those seven trials the cut food was much smaller. In seven
partially successful trials the participant was able to cut the food
but the food fell off the fork. In a total of 26 out of the 37 trials the
participant performed bimanual control by employing the knife
and fork in the self-feeding task, and the remaining 11 trials were
halted and bimanual control was not achieved because the fork
did not make contact with the food.

DISCUSSION

The collaborative approach to shared control presented here
is intended as an exploratory proof of concept into how BMI
signals might be blended with robot autonomy to enable a user
to perform complex bimanual tasks that can be customized
using limited BMI signals, such as which food on the plate to
eat and how big a piece to cut. The ultimate goal is adjustable
autonomy that leverages whatever BMI signals are available to
their maximum effectiveness, enabling the human to control the
few DOFs that most directly impact the qualitative performance
of a task while the robot takes care of the rest. An important
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FIGURE 4 | Select screenshots of self-feeding task performance. The robot holds a fork in right hand and a knife in left hand. (A) Step 1: Participant initiates task by

moving robot right hand forward. (B) Step 3: Participant repositions fork horizontally to align with desired piece of food. (C) Step 6: Participant repositions knife

horizontally to select cut point. (D) Step 7: Participant moves knife down and fork back and right to cut food. (E) Step 10: Robot moves food to default position in

front of participant’s mouth. (F) Step 12: Participant places food in mouth.

objective is to accommodate a wide range of BMI signal
quantity and quality, both high-fidelity continuous/proportional
signals and event-based/bang-bang signals such as the BMI-
based gestures reported here, as well as BMI signals that might
degrade over time.

As opposed to low-autonomy, task-independent approaches
to BMI-drivenmanipulation that provide generalized capabilities
for low-level behaviors such as grasping, reaching and
transporting objects (Katyal et al., 2013; McMullen et al.,
2014, 2020; Downey et al., 2016), this work focuses on the
higher end of the autonomy spectrum, where the robot is
assumed to be capable of nominally accomplishing complex
bimanual tasks requiring sequential and simultaneous multi-step
actions (including ADLs such as eating and getting dressed)
and we want to enable BMI-based task customization. As
robotics technology continues to advance, we want to leverage
these new capabilities while maintaining human control and
customization via BMI. The limitation of our current approach
to collaborative shared control is that it is task dependent and
assumes significant competency on the part of the robot, but the

strength is that it enables BMI users to personalize task behavior
with minimal effort.

In the current study, the participant was able to use a BMI-
based shared controller to successfully maneuver two MPLs to
perform a bimanual ADL (Figure 4, Supplementary Movie 1).
In our shared control strategy, the BMI commands provided
by the participant were augmented by the robot controller to
enable self-feeding (Supplementary Movie 1). The robot system
took inputs from the neural decoder with global offline decoding
accuracy of the neural signal at 67.6% (Figure 3), and online
target-reach performance of 85%. These are relatively low
decoding accuracies in absolute terms, but proved sufficient to
meaningfully customize task performance. While higher offline
decoding accuracies could possibly contribute to improved
performance during the bimanual self-feeding task, it is
important to highlight the value of online performance metrics,
such as task completion, when evaluating BMI systems for
improving function. These demonstrations highlight the value of
using neural decoders within an intelligent system, rather than
requiring the user to directly control all movements.
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While the participant used signals from both hemispheres
of the brain to perform the bimanual task, with each robotic
arm being controlled by the contralateral hemisphere, recent
research suggests the representations of both ipsilateral and
contralateral armmovements within the same hemisphere (Ames
and Churchland, 2019; Downey et al., 2020). It is possible to
control bimanual limbs using neural signals from the motor
cortex in one hemisphere, although control of the ipsilateral limb
is not always as proficient as the contralateral limb (Downey
et al., 2020). Importantly though, the shared control approach
presented here could be leveraged for BMI systems that rely on
motor recordings from the same hemisphere.

Despite the unequal number of electrodes contributing
to gesture decoding of each hand, we achieved comparable
accuracies across the two hands. However, the SUA and MUA
yield from the arrays in the motor cortex was comparatively
lower than from the arrays in the sensory cortex, as described
in our previous publication (Thomas et al., 2020). A higher yield
in the motor arrays may have resulted in a higher classification
accuracy. In addition, when extracting features to train the
decoder, we used multiple training samples corresponding to
the different phases of the gesture attempt, including movement
initiation, sustained movement attempt, and movement release.
This approach allowed us to maximize the number of trials
used to train the decoder and to ensure that the decoder does
not overfit to any single phase of gesture execution. However,
this also resulted in more variance among the training samples.
Nevertheless, the classifiers were still able to distinguish between
several of the gestures with accuracies ranging between 70 and
85% accuracy.

In our approach, the decoder was trained on attempted
execution of gestures rather than imagined execution of gestures,
which may have resulted in small muscle activations. Given the
participant’s injury level, imagined gestures would have required
active inhibition to avoid any physical movements. BMI users
with a complete spinal cord injury would not need to inhibit
movement while attemptingmovement control. As such, training
on attempted gestures ensured that the decoder did not learn or
depend on neural activity corresponding to inhibitory movement
control, which provided a better sense of the performance that
can be expected from our motor control approach.

We believe that the shared control technique reported here
could be applied to a wide range of ADLs. However, a number
of challenges remain. In this study, the positions of target
objects were known to the system. This design choice was
made to simplify systems integration and focus on shared
BMI control for this initial demonstration. Robot perception
algorithms are becoming increasingly performant and available
(Billard and Kragic, 2019). Future iterations of this system
would ideally dynamically estimate the position and orientation
of target objects in the environment (e.g., utensils, food, the
participant’s mouth) via cameras co-registered to the robot’s
coordinate system to provide obstacle avoidance and visual
servoing. Additionally, this system utilized multiple shared
control parameters (e.g., motion start/end poses, number of
DOFs controlled by the user, BMI input activity filtering),
which were manually tuned in this study but would ideally be

automatically calibrated to increase robustness and scalability to
other tasks. Depending on user preference, the robot’s verbal
interface announcing available DOFs could also be augmented
or replaced with a small display. Finally, the robot needs to have
knowledge of how to perform a range of tasks and an ability to
perform them safely and reliably under the proper context.

This work demonstrates important progress in neurorobotic
systems for improving user independence and functionality. In
particular, this shared control approach enables user input over
many of the steps in the self-feeding task while simultaneously
reducing the required DOF to effective complete the task
(Figure 2). Compared to other semi-autonomous control
approaches for reducing DOF control in assistive technologies
(Katyal et al., 2013; McMullen et al., 2014, 2020; Downey et al.,
2016), the shared control approach with the human-machine
team offers unique advantages in that it provides the user
with additional control over individual DOFs and allows for
modulation (i.e., relative positioning along varies DOF) during
the task. The reduced DOF in a complex, bimanual task is a
critical component for allowing a broad range of BMI users,
for whom high DOF control signals may not be possible, to
benefit from this approach. In essence, the shared control strategy
provides better scalability for a variety of BMI users.

Although preliminary, these results mark a critical step
in demonstrating the use of an intelligence-assisted BMI for
completing necessary, yet sometimes complex, activities of daily
living such as cutting and eating food by providing users with
shared control of high-DOF bimanual robotic systems.
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