
Skin-Derived TSLP Triggers Progression from Epidermal-
Barrier Defects to Asthma
Shadmehr Demehri1, Mitsuru Morimoto1, Michael J. Holtzman2, Raphael Kopan1*

1 Department of Developmental Biology and Division of Dermatology, Washington University School of Medicine, Saint Louis, Missouri, United States of America,

2 Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America

Abstract

Asthma is a common allergic lung disease frequently affecting individuals with a prior history of eczema/atopic dermatitis
(AD); however, the mechanism underlying the progression from AD to asthma (the so-called ‘‘atopic march’’) is unclear. Here
we show that, like humans with AD, mice with skin-barrier defects develop AD-like skin inflammation and are susceptible to
allergic asthma. Furthermore, we show that thymic stromal lymphopoietin (TSLP), overexpressed by skin keratinocytes, is
the systemic driver of this bronchial hyper-responsiveness. As an AD-like model, we used mice with keratinocyte-specific
deletion of RBP-j that sustained high systemic levels of TSLP. Antigen-induced allergic challenge to the lung airways of RBP-
j–deficient animals resulted in a severe asthmatic phenotype not seen in similarly treated wild-type littermates. Elimination
of TSLP signaling in these animals blocked the atopic march, demonstrating that high serum TSLP levels were required to
sensitize the lung to allergic inflammation. Furthermore, we analyzed outbred K14-TSLPtg mice that maintained high
systemic levels of TSLP without developing any skin pathology. Importantly, epidermal-derived TSLP was sufficient to
trigger the atopic march, sensitizing the lung airways to inhaled allergens in the absence of epicutaneous sensitization.
Based on these findings, we propose that in addition to early treatment of the primary skin-barrier defects, selective
inhibition of systemic TSLP may be the key to blocking the development of asthma in AD patients.
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Introduction

Allergic asthma is a chronic lung disease characterized by T-

helper2 (Th2)–mediated inflammation and airway obstruction in

response to allergen exposure [1]. Asthma is an increasingly

common disorder affecting more than 300 million individuals

around the world [2]. Atopic dermatitis (AD) is another prevalent

allergic disease, and 17% of children in the United States suffer

from this disorder [3]. In comparison to its 4–8% prevalence in the

general population, asthma develops in up to 70% of patients with

history of severe AD, a phenomenon referred to as ‘‘atopic march’’

[3]. It may be possible to prevent asthma in these at-risk

individuals by early diagnosis of AD and blockage of the atopic

march. To achieve this, it is critical that we understand the

mechanism triggering the development of asthma in AD patients.

A survey of the literature has identified several possible

mechanisms underlying the clinical link between AD and asthma.

These include: (a) a systemic immune system disorder leading to

excessive Th2 response at epithelial surfaces exposed to allergens

[4], (b) a barrier defect shared by both skin and lung epithelia that

leads to overstimulation of the immune cells by invading allergens

[5], or (c) systemic consequences of a skin-specific barrier defect

causing immune cells to mount an allergic inflammation at any

allergen-exposed epithelial surface [6]. Epidemiological data

supporting the third hypothesis include the observation that AD

tends to be the first manifestation of the atopic march [3]. Another

supportive observation relates to filaggrin, a skin cornified

envelope protein that is absent from the lung epithelia [7,8].

Although controversial [9], it seems that AD patients with filaggrin

loss-of-function mutations exhibit increased incidence of asthma

[10–12]. This is consistent with the third hypothesis, that loss of an

epidermal-specific barrier protein can trigger systemic atopy in

humans. Mechanistically, it is suspected that epicutaneous

sensitization with allergens underlies the development of airway

hyperreactivity in mice [13] and in humans with filaggrin

mutations [10,11]. However, it is unclear whether intrinsic skin-

barrier defects can trigger asthma in the absence of any

epicutaneous sensitization. If epicutaneous exposure is not

required, it will imply that systemic factor(s) produced by AD

skin may be involved in sensitizing the bronchial epithelia. Such

factors will be important as therapeutic targets in preventing

asthma.

To address this question, we studied mice lacking Notch

signaling in the skin. Skin keratinocytes are organized in highly

interconnected basal, spinous, granular, and cornified layers,

forming an elaborate barrier protecting the organism from the

outside environment. One of the major molecular regulators of

this structure is Notch signaling [14–16]. Notch is a transmem-

brane receptor interacting with ligands expressed on the surface of

neighboring keratinocytes [16,17]. Upon activation, sequential
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proteolysis of Notch releases its intracellular domain, which then

translocates into the nucleus, binds to RBP-j (the DNA-binding

partner of Notch), and activates downstream targets [17].

Keratinocyte-specific deletion of Notch signaling pathway com-

ponents impairs epidermal differentiation, resulting in skin-barrier

defects [15,16]. We have recently shown that Notch signaling loss

in the skin also triggers a severe neonatal B-lymphoproliferative

disorder (B-LPD; [15]). This systemic disease is directly caused by

elevated levels of thymic stromal lymphopoietin (TSLP) released

into the circulation by Notch-deficient keratinocytes failing to

differentiate [15]. TSLP, a general biomarker for skin-barrier

defects [15], is an interleukin-7 (IL-7)–like cytokine produced by

epithelial cells and is implicated in the pathogenesis of both AD

and asthma [18–22]. TSLP expression is sustained as long as

barrier defects persist [15]. Thus, the potentially high systemic

availability of skin-derived TSLP and its central role in promoting

asthma bring up the possibility that TSLP may be the factor

predisposing AD patients to asthma.

Identifying a clear mechanism for the atopic march in the

complex network of genetic, immunological, and environmental

factors that contribute to AD has been a challenge to the field and

has resulted in much debate as to the right therapeutic approach

for preventing asthma [6]. To determine the mechanisms

underlying the progression from AD to asthma, we first generated

animals that lacked Notch signaling in a portion of their skin

surfaces by embryonic removal of RBP-j from keratinocytes using

the Msx2-Cre transgene (Msx2-Cre/+;RBP-jflox/flox or RBP-jCKO).

Msx2-Cre is ectopically expressed at embryonic day 9.5 (E9.5) in

clusters of ectodermal cells, resulting in a chimeric pattern of RBP-j

deletion in the skin [23]. The presence of unaffected skin surfaces

allowed RBP-jCKO animals to live for approximately 100 days on

average with a few surviving up to one year (Figure S1) [15,16],

presenting a model in which to determine whether a defective

skin-barrier could cause AD-like symptoms and render suscepti-

bility to asthma in the absence of epicutaneous sensitization. We

found that defective skin-barrier function in adult RBP-j–deficient

animals caused the development of an AD-like allergic inflamma-

tion and a subsequent susceptibility to asthma. To determine

whether TSLP is required for this susceptibility, we deleted the

TSLP receptor in RBP-jCKO mice and showed that this genetic

manipulation blocked the development of asthma in animals with

persistent AD-like pathology and inflammation. To ask if TSLP

overexpression by skin keratinocytes is sufficient, we used outbred

transgenic mice overexpressing TSLP in epidermal keratinocytes

and showed that epidermal-derived TSLP was sufficient to confer

a severe asthmatic phenotype even in the absence of any skin

defect. These findings establish that high systemic availability of

TSLP [15] can sensitize the lung to allergens, and provide a novel

molecular mechanism for the atopic march. Serum TSLP is thus

an important potential therapeutic target in preventing asthma in

AD patients.

Results

RBP-jCKO Mice Develop an AD-Like Skin Phenotype
The ablation of Notch signaling in skin keratinocytes by

removing RBP-j severely impairs the differentiation of basal layer

keratinocytes and maintenance of upper spinous and granular cell

layers [15,16]. Such a defect in epidermal stratification leads to an

aberrant skin-barrier function signified by transepidermal water

loss and penetration of dye through the defective barrier in RBP-j–

deficient mice at birth [15,16]. After birth, the persistence of

barrier defects in RBP-j–deficient skin is evident by the presence of

reactive epidermal hyperplasia, TSLP overexpression, and up-

regulation of antimicrobial peptides (Figure S2 and Table S1)

[15,16,24,25]. Defective skin-barrier function has been suggested

to be a hallmark of AD [6,7]. In agreement with this notion, the

impaired skin-barrier function in RBP-jCKO mice initiated an

inflammatory cascade culminating in the development of an AD-

like skin phenotype. The hyperplastic epidermis, acanthosis,

hyperkeratosis, parakeratosis, and mast cell infiltration were

evident in RBP-jCKO skin as early as 1 wk after birth, followed

by dramatic dermal mast cell accumulation, serum IgE elevation,

and systemic Th2 cell expansion in adult RBP-j–deficient animals

(Figure 1A–1C). Therefore, adult RBP-jCKO mice resemble

humans with AD to a degree that allows us to examine the

systemic consequences of an allergic inflammation in the skin.

AD-Like Skin Disease Predisposes RBP-jCKO Animals to
Allergic Asthma

The lungs of 10-wk-old mice with RBP-j–deficient skins were

normal and did not show any sign of allergic inflammation under

standard housing conditions; however, the longest-living mutant

animals (52 wk) did develop spontaneous lung inflammation

(Figure 1D). To determine whether this phenotype was a true

indicator of increased susceptibility to an asthmatic phenotype, we

used an ovalbumin (OVA)-induced model of allergic inflammation

with 5- to 7-wk-old RBP-jCKO mice. This protocol faithfully

mimics the development of asthma in humans [18]. OVA-treated

RBP-jCKO animals developed a more severe lung inflammation

compared with OVA-treated wild-type littermates (Figure 2).

Although the wild-type animals tolerated the intranasal OVA

challenge well, two out of ten OVA-treated RBP-jCKO mice died

during this procedure following a period of severe labored

breathing. In the surviving mutants, the number of bronchoalve-

olar lavage (BAL) leukocytes and the percentage of BAL

eosinophils were significantly higher compared with those of the

wild-type littermates (Figure 2A and 2B). The absolute number of

eosinophils was approximately 7-fold higher in the mutant mice.

In addition, IgE was detectable only in the BAL fluid of RBP-j–

deficient animals (Figure 2C). Histology of the lungs from OVA-

challenged RBP-jCKO and wild-type controls clearly confirmed

the existence of severe airway inflammation in RBP-jCKO mice,

including significant leukocyte infiltration around the airways and

Author Summary

Eczema (atopic dermatitis) is a common allergic skin
inflammation that has a particularly high prevalence
among children. Importantly, a large proportion of people
suffering from eczema go on to develop asthma later in
life. Although the susceptibility of eczema patients to
asthma is well documented, the mechanism that mediates
‘‘atopic march’’—the progression from eczema to asth-
ma—is unclear. We used genetic engineering to generate
mice with chronic skin-barrier defects and a subsequent
eczema-like disorder. With these mice, we were able to
investigate how skin-specific defects predisposed the
lungs to allergic asthma. We identified thymic stromal
lymphopoietin (TSLP), a cytokine that is secreted by
barrier-defective skin into the systemic circulation, as the
agent sensitizing the lung to allergens. We demonstrated
that high systemic levels of skin-derived TSLP were both
required and sufficient to render lung airways hypersen-
sitive to allergens. Thus, these data suggest that early
treatment of skin-barrier defects to prevent TSLP overex-
pression, and systemic inhibition of TSLP, may be crucial in
preventing the progression from eczema to asthma.

Skin-Derived TSLP Triggers Asthma
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blood vessels, extensive goblet cell hyperplasia in the large airways,

and distinct appearance of goblet cells in medium-sized airways

(Figure 2D). Considering that RBP-j is not deleted in the lung

(Figures S3 and S7), these data clearly show that the skin-barrier

defect can serve as a primary risk factor for development of asthma

in a normal lung.

TSLP Signaling Is Required for the Atopic March in RBP-j–
Deficient Animals

It is possible that atopic skin lesions are the essential components

downstream of skin-barrier defects that initiate systemic atopy in

RBP-jCKO mice [3]. If this hypothesis were true, Th2 cells

generated at the site of inflamed skin would migrate to other sites,

including lung mucosa, and release high levels of Th2-derived

cytokines, which would sensitize the lung airways to allergic

inflammation. This model, however, is challenged by findings that

show that Th2 cells generated in mouse models of AD specifically

home to skin [26]. In addition, it is unclear whether the presence

of AD lesions is required for initiation of the atopic march [11].

Skin-barrier defects led to systemic TSLP elevation [15], which

remained elevated in the serum of RBP-jCKO animals throughout

life (Figure S2). On the basis of these observations and that

localized TSLP overexpression in lung epithelium is capable of

inducing asthma [18,19,21], we have articulated an alternative

hypothesis: TSLP may be a systemic signal that sensitizes the

animals to allergen exposure in the lung. In that case, high

systemic levels of epidermal-derived TSLP should render RBP-

jCKO animals susceptible to the asthmatic phenotype upon

exposure to allergen.

To test this hypothesis we deleted the IL7Ra subunit of TSLP

receptor in RBP-jCKO animals (Msx2-Cre/+;RBP-jflox/flox;IL7ra-/-;

or RBP-jCKO;IL7ra-/- [27]). This strategy was chosen because

the TSLPR subunit of the TSLP receptor is linked to the RBP-j

locus. The inhibition of TSLP reception reduced the severity of

local AD-like inflammation in the skin of RBP-jCKO animals as

judged by the reduction of dermal mast cells in RBP-

jCKO;IL7ra-/- mice relative to their RBP-jCKO littermates

[28]. However, a significant elevation in mast cell number was still

detectable in RBP-jCKO;IL7ra-/- skin compared to wild type

(Figure 3A and 3B). In addition, epidermal hyperplasia and TSLP

overexpression that mark the presence of postnatal skin-barrier

defects persisted in aged RBP-jCKO;IL7ra-/- mice (Figure 3A

and Figure S4). Importantly, deletion of IL7Ra did not affect the

intensity of systemic Th2 response to allergic skin inflammation

Figure 1. RBP-jCKO mice lacking RBP-j (and thus, notch signaling) in skin keratinocytes develop a progressive, AD-like disease
culminating in aged animals with lung inflammation. (A) H&E and Toluidine blue staining of the skin documents severe AD-like changes in
RBP-j–deficient mice, including epidermal hyperkeratosis, parakeratosis, acanthosis, skin inflammation, and increased number of dermal mast cells
(insets) detectable as early as 1 wk after birth, which worsen as RBP-jCKO animals age (6 wk and 10 wk). Note that the keratin cysts formed in the
dermis of RBP-jCKO mice are due to the destruction of RBP-j–deficient hair follicles [42]. (B) The progression of skin inflammation is reflected in RBP-
jCKO serum IgE levels, which are dramatically elevated by 10 wk of age (10 wk; n = 4 for each group; *p,0.01). (C) Intracellular cytokine staining of
CD4+ T cells isolated from lymph nodes (mixture of inguinal and axillary) or spleen shows a robust interleukin (IL)-4-positive and interferon (IFN)-c-
negative Th2 cell presence in 10-wk-old RBP-jCKO animals, indicating the development of a full-blown AD-like allergic inflammation. Percentage of
cells in each quadrant is included (representative data are presented). (D) H&E and periodic acid-Schiff (PAS) staining of the lung do not show any
signs of inflammation in 10-wk-old RBP-jCKO animals; however, at 52 wk (1 y), the mutant mice develop lung inflammation. The pathology of RBP-
jCKO lung includes immune cell infiltration around the airways and blood vessels (arrowheads), goblet cell hyperplasia in the airways (arrow; insets),
and airway remodeling (representative pictures are presented; scale bar: 50 mm).
doi:10.1371/journal.pbio.1000067.g001

Skin-Derived TSLP Triggers Asthma
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and serum IgE levels remained elevated in RBP-jCKO;IL7ra-/-

mice (Figure 3C and 3D). This could be due to other cytokines/

chemokines made by defective skin barrier in RBP-

jCKO;IL7ra-/- animals [15], which together with exposure to

allergens/pathogens through the compromised skin, sustain a

robust systemic Th2 response even in the absence of TSLP

reception [28]. Therefore, RBP-jCKO;IL7ra-/- animals provide a

suitable system in which to determine if skin-barrier defects and

AD-like skin inflammation including a systemic Th2 response with

its consequences (e.g., elevated IgE) could confer susceptibility to

asthma in the absence of TSLP signaling.

We challenged the lung airways of age- and sex-matched RBP-

jCKO;IL7ra-/-, RBP-jCKO;IL7ra+/- (RBP-jCKO), IL7ra-/-,

and wild-type littermates with OVA. To prevent RBP-jCKO

lethality, all the animals in this experiment received intranasal

OVA challenges only twice. Despite this reduced exposure, RBP-

jCKO animals developed a severe asthmatic response, which was

absent in RBP-jCKO;IL7ra-/- mice (Figure 3E–3H). Histological

Figure 2. Five- to seven-wk-old RBP-jCKO mice develop a severe allergic lung inflammation in an OVA-induced murine model of
asthma. (A and B) There are more leukocytes (A) and a higher percentage of eosinophils (B) present in BAL fluid collected from OVA-treated RBP-
jCKO mice in comparison to their wild-type littermates (Msx2-Cre/+;RBP-jflox/+, RBP-jflox/flox, RBP-jflox/+), indicating a severe airway inflammation in these
mutant animals (M, macrophages; E, eosinophils; L, lymphocytes; N, neutrophils). (C) IgE reaches detectable levels only in BAL fluid from RBP-j–
deficient mice, further indicating the high intensity of OVA-induced allergic inflammation in the RBP-jCKO lung. (D) Comparing lung histology of RBP-
jCKO with wild-type littermates sensitized and challenged with OVA shows a significantly more intense lung inflammation in RBP-jCKO mice. H&E and
PAS staining shows greater immune cell infiltration around the airways and blood vessels (arrowheads), increased airway remodeling, goblet cell
hyperplasia (insets), and mucus overproduction in the mutant lung (representative pictures are presented; scale bar: 50 mm). ‘‘Controls’’ refers to RBP-
jCKO and wild-type animals treated with PBS instead of OVA (n = 4 for each group; *p,0.05, comparing the adjacent groups). These data are
confirmed in additional independent experiments.
doi:10.1371/journal.pbio.1000067.g002

Skin-Derived TSLP Triggers Asthma

PLoS Biology | www.plosbiology.org 4 May 2009 | Volume 7 | Issue 5 | e1000067



Skin-Derived TSLP Triggers Asthma

PLoS Biology | www.plosbiology.org 5 May 2009 | Volume 7 | Issue 5 | e1000067



analysis could not detect goblet cell hyperplasia or significant

inflammation around the airways and vasculature in RBP-

jCKO;IL7ra-/- lungs (Figure 3E). Total white blood cell count

and eosinophilia in BAL fluid from OVA-treated RBP-

jCKO;IL7ra-/- mice was indistinguishable from IL7ra-/- litter-

mates (Figure 3F and 3G). In addition, IgE was undetectable in

BAL fluid from OVA-treated RBP-jCKO;IL7ra-/- mice

(Figure 3H). These findings show that without a TSLP signal,

no progression from allergic skin inflammation to asthma is

observed, indicating that atopic march requires TSLP signals.

Airway Hyper-Responsiveness in RBP-jCKO Mice Is
Blocked by Inhibiting TSLP Signaling

Airway hyper-responsiveness is a hallmark of allergic asthma

[18]. To determine whether skin-derived TSLP could cause

airway hyper-responsiveness in RBP-jCKO mice, we used the

OVA-induced model of allergic inflammation and challenged the

lung airways of age- and sex-matched RBP-jCKO;IL7ra-/-, RBP-

jCKO, IL7ra-/-, and wild-type littermates twice with OVA.

Thereafter, we measured the total lung resistance of OVA-treated

mice at basal state (vehicle alone) or in response to increasing doses

of nebulized methacholine. As expected, OVA-treated RBP-

jCKO mice mounted a more severe airway resistance compared

with their wild-type littermates when exposed to low doses of

methacholine, and could not tolerate the higher doses of

methacholine (Figure 4). RBP-jCKO;IL7ra-/-, however, did not

develop any significant airway resistance even when exposed to

high doses of methacholine (Figure 4). These results confirm that

skin-barrier defects predispose animals to asthmatic phenotypes

and that TSLP is required for this predisposition.

TSLP Overexpression by the Skin Is Sufficient to Trigger
the Atopic March

Although we showed that TSLP signaling is necessary for the

development of asthma in RBP-j–deficient animals with chronic

allergic skin inflammation, it remains unclear whether other

factors associated with AD-like skin lesions contribute to this atopic

march. TSLP overexpression in mouse skin led to an AD-like

pathology on an inbred background [26]. However, we discovered

that on an outbred background, the same K14-TSLPtg mice [15]

maintained high serum TSLP levels under normal conditions

(approximately 450 pg/ml) without any skin or lung inflammation

(Figure 5 and Figure S5) [29]. Normal skin morphology and the

lack of mast cell hyperplasia evident in K14-TSLPtg mice confirmed

that in this outbred background and in the absence of skin-barrier

defects, TSLP overproduction was insufficient to attract mast cells

to the skin (Figure 5B). In addition, serum IgE levels and Th2 cell

numbers in the peripheral lymph nodes of K14-TSLPtg mice were

indistinguishable from the wild type, confirming the absence of

allergic skin inflammation in K14-TSLPtg animals that were not

exposed to any external stimulus (e.g., allergen exposure; Figure 5C

and 5D). Therefore, outbred K14-TSLPtg mice constituted a

Figure 4. Severe airway hyper-responsiveness among OVA-
treated RBP-jCKO mice is dependent on TSLP signaling. Age-
and sex-matched RBP-jCKO;IL7ra-/-, RBP-jCKO, IL7ra-/-, and wild-type
littermates are sensitized and challenged with OVA as in Figure 3.
Airway reactivity at the basal state (vehicle alone; V) and in response to
increasing doses of methacholine (2.5, 5, 10, 20, 40, and 80 mg/ml) is
monitored in OVA-treated animals using total lung resistance (RL; n = 4
for each group). OVA-treated RBP-jCKO animals mount a severe airway
hyper-responsiveness at 5 mg/ml of methacholine and do not tolerate
methacholine doses less than or equal to 10 mg/ml, developing fatal
labored breathing. OVA-treated RBP-jCKO;IL7ra-/-, IL7ra-/-, and wild-
type mice, on the other hand, show moderate response only to the
highest dose of methacholine (*p,0.01). Data are presented as mean +
standard deviation of percent increase in total lung resistance
compared to basal state (vehicle alone; V) in each group. These
measurements are confirmed in another independent set of experi-
ments.
doi:10.1371/journal.pbio.1000067.g004

Figure 3. TSLP signaling blockade rescues asthmatic phenotype of RBP-jCKO mice. (A) H&E and Toluidine blue staining of the skin shows
the persistence of epidermal hyperplasia, hyperkeratosis, parakeratosis, and acanthosis in 10-wk-old RBP-jCKO;IL7ra-/- skin. However, the local skin
inflammation and number of dermal mast cells (insets) are markedly reduced in RBP-jCKO;IL7ra-/- skin (representative pictures are presented; scale
bar: 50 mm [28]). (B) The quantitative analysis of mast cell infiltration in the dermis of RBP-jCKO;IL7ra-/- (R;I) shows that there is still more mast cell
accumulation in RBP-jCKO;IL7ra-/- compared to wild-type (Wt) and IL7ra-/- (I) skin. The bar graphs show the average number of mast cells in ten
random 1006 microscope fields (*p,0.001). (C) Serum IgE levels of 10-wk-old RBP-jCKO;IL7ra-/- mice are highly elevated and are comparable to
those of RBP-jCKO (Msx2-Cre/+;RBP-jflox/flox;IL7ra+/-, R) littermates (*p,0.01). (D) Intracellular cytokine staining shows a significant population of IL-4-
producing Th2 cells in inguinal/axillary lymph nodes and spleen of 10-wk-old RBP-jCKO;IL7ra-/- animals (representative data are presented). (E)
Comparing lung histology of 5- to 7-wk-old RBP-jCKO;IL7ra-/-, RBP-jCKO, IL7ra-/-, and wild-type littermates sensitized and challenged with OVA
shows a complete reversal of the intense RBP-jCKO lung inflammation in RBP-jCKO;IL7ra-/- mice. H&E and PAS staining shows the muted
inflammatory response around the airways and blood vessels (arrowheads), and lack of airway remodeling or goblet cell hyperplasia (insets) in RBP-
jCKO;IL7ra-/- lung (representative pictures are presented; scale bar: 50 mm). (F and G) The average number of leukocytes (F) and percentage of
eosinophils (G) in BAL fluid from OVA-treated RBP-jCKO;IL7ra-/- lung is lower than that of wild-type lung treated similarly, indicating that deletion of
IL7Ra rescues the allergic lung inflammation in RBP-jCKO mice (M, macrophages; E, eosinophils; L, lymphocytes; N, neutrophils). (H) IgE remains below
detection levels in BAL fluid from OVA-treated RBP-jCKO;IL7ra-/- mice, further confirming that the intense OVA-induced allergic inflammation in RBP-
jCKO lung is absent in RBP-jCKO;IL7ra-/- lung. To avoid death among RBP-jCKO cohort, all the animals in this study are challenged intranasally with
OVA twice. Although the asthmatic response among RBP-jCKO;IL7ra-/-, IL7ra-/-, and wild-type groups is minimal, a severe response is seen in RBP-
jCKO mice. ‘‘Controls’’ refers to RBP-jCKO;IL7ra-/-, RBP-jCKO, IL7ra-/-, and wild-type animals treated with PBS instead of OVA (n = 4 for each group;
*p,0.01, compared to wild-type cohort). These data are confirmed in additional independent experiments.
doi:10.1371/journal.pbio.1000067.g003
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suitable model in which to examine whether epidermal TSLP

overexpression alone would increase susceptibility to asthma upon

allergen exposure.

Next, we sensitized and challenged the lung airways of 5- to 7-

wk-old K14-TSLPtg mice and their age- and sex-matched wild-type

littermates three times with allergen. As seen in OVA-treated

RBP-jCKO animals exposed to three doses of intranasal OVA,

K14-TSLPtg mice developed a severe asthmatic response and

significant lethality, which were not seen in the control group

(Figure 6). Two out of eight OVA-treated transgenic mice died

during the intranasal challenge. Histological examination of lungs

from surviving K14-TSLPtg animals revealed pronounced airway

remodeling with goblet cell hyperplasia and inflammation around

the lung airways and vasculature (Figure 6A), which were negative

for TSLP expression prior to OVA treatment (Figures S6 and S7).

Total leukocyte count was less than 5-fold higher in BAL fluid

from K14-TSLPtg mice compared with similarly treated wild-type

animals (Figure 6B), which was mainly due to a severe BAL fluid

eosinophilia in the transgenic animals (Figure 6C). In addition, IgE

reached detectable levels only in BAL fluid from OVA-treated

K14-TSLPtg mice (Figure 6D), which also experienced significantly

higher serum IgE levels (Figure 6E) (1.6 mg/ml versus 0.18 mg/ml

in OVA-treated wild-type serum, p,0.05). Thus, K14-TSLPtg mice

developed an intense Th2 response upon allergen exposure. In the

airway reactivity test, OVA-treated K14-TSLPtg mice showed a

severe airway hyper-responsiveness to low doses of nebulized

methacholine, which was not seen among similarly treated wild-

type littermates (Figure 6F).

Figure 5. K14-TSLPtg mice exhibit no sign of skin or lung allergic inflammation under normal conditions. (A) Skin-derived TSLP
overexpression leads to high systemic TSLP levels in the serum of K14-TSLPtg mice (n = 10 for each group; *p,0.01). (B–D) Under normal conditions,
skin TSLP overproduction on an outbred C57BL/6-CD1 background does not elicit any allergic inflammation in K14-TSLPtg mice. Note the normal skin
histology (B), normal serum IgE levels (n = 10 in each group)(C), and normal number of peripheral IL-4-producing Th2 cells (D) in K14-TSLPtg mice at
postnatal day 120 (P120). (E) H&E and PAS stained lung sections of K14-TSLPtg animals confirm that no inflammation or airway remodeling occurred at
P120 (scale bar: 50 mm).
doi:10.1371/journal.pbio.1000067.g005
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Even though outbred K14-TSLPtg animals developed a severe

asthmatic phenotype, their skin retained its normal appearance

after OVA treatment, confirming that the lung inflammation did

not depend on a concurrent skin lesion (Figure S8). Although low

levels of TSLP were expressed in the trachea, the K14-TSLP

transgene was not expressed in the lung of K14-TSLPtg animals and

TSLP protein was not detectable in their BAL fluid (Figures S6

and S7). Therefore, these observations are most consistent with a

model in which systemic TSLP is sufficient to predispose mice to

allergic lung inflammation.

Discussion

This report describes the mechanism that mediates the

progression of a local allergic skin disease to a disseminated

allergic inflammation downstream of skin-barrier defects in mice.

We show that creating an intrinsic skin-barrier defect (by removing

Notch signaling specifically from some skin keratinocytes) results in

the sensitization of the lung airways to allergens. Similar to the

clinical cases, barrier-defective mice require a secondary insult by

allergens to expose their predisposition to asthma. Importantly, we

show that epicutaneous sensitization with a common allergen [3] is

not required to achieve this pronounced lung hyper-responsive-

ness. Therefore, RBP-jCKO animals demonstrate that skin-

barrier impairment provides a signal that promotes development

of a distant atopy in the lung, most likely by a systemic, diffusible

cytokine. We identified this signal to be TSLP, a central player in

the early stages of allergic inflammation [18–20] and a barrier-

defect–sensitive product of skin keratinocytes that is released prior

to development of an AD-like skin lesion [15]. In contrast to TSLP

overexpression by lung epithelia, which does not result in systemic

accumulation of this cytokine [18], overexpression of TSLP in the

skin results in high systemic availability [15]. Therefore, skin is

capable of acting as a signaling organ, driving susceptibility to

allergic inflammation in another barrier organ (i.e., lung) by

releasing TSLP.

Importantly, we were able to show that TSLP was necessary to

predispose RBP-j–deficient animals to the asthmatic phenotype.

Concomitant removal of IL7Ra subunit of the TSLP receptor in

RBP-jCKO mice prevented the atopic march despite persistent

AD-like pathology and elevated serum IgE levels. Complementing

this experiment is the observation that overexpression of TSLP by

skin keratinocytes leads to high serum levels of TSLP that are

sufficient to sensitize the lung airways to allergic inflammation in the

absence of any skin pathology. If the low levels of TSLP in the

trachea of K14-TSLPtg mice contribute to the phenotype, they do so

by adding to the already high levels of skin-derived serum TSLP.

Because TSLP can activate dendritic cells [30], T cells [31,32], and

myeloid cells [33], we speculate that its high systemic levels directly

prime these immune cells at distant sites (e.g., the lung) to mount an

intense allergic inflammation in response to a second stimulatory

signal (e.g., allergens in the lung airways); however, the specific

contribution of these immune cells to the atopic march downstream

of TSLP-mediated activation remains a subject for future

investigation. Of note, elevated TSLP expression is also reported

in psoriatic skin [34]; however, there is no evidence linking psoriasis

to predisposition to asthma. This phenomenon could be explained

by the dominance of Th1 response in patients with psoriasis and the

unresponsiveness of their immune cells to TSLP [34].

The findings outlined in this report have a potentially important

implication for human health. They provide a plausible explana-

tion of why a large number of AD patients develop asthma and

other allergic disorders later in life [35,36]. Because TSLP

overproduction is triggered by skin-barrier defects and faithfully

mirrors the severity of these defects [15], our data emphasize that

an early and aggressive treatment of the underlying skin-barrier

defects in AD-prone patients [10,11] may be more beneficial in

preventing asthma than treating the outbreaks of AD lesions [6].

Although serum TSLP levels in AD patients are yet to be

determined, high TSLP expression levels in human AD lesions

[37] suggest that this diffusible cytokine could also reach systemic

levels sufficient to trigger atopic march in AD patients. If indeed

serum TSLP levels are elevated in AD patients, our findings

suggest that an aggressive management of TSLP levels in these

patients will lower the incidence of asthma later in their lives.

Materials and Methods

Mice
Msx2-Cre/+;RBP-jflox/flox (RBP-jCKO), Msx2-Cre/+;RBP-jflox/flox;

IL7ra-/- (RBP-jCKO;IL7ra-/-), and K14-TSLP tg mice were

generated as previously described [15]. All animals were kept in

mixed C57BL/6 and CD1 outbred genetic background, which are

resistant to Th2-mediated inflammation [29]. Age- and sex-

matched mutant and wild-type littermates were used in each

analysis. All mice were maintained in the animal facility under

Washington University animal care regulations.

OVA Treatment
The allergic sensitization and lung airways challenge with OVA

was carried out as previously outlined [18]. In brief, wild-type and

mutant mice at 5–7 wk of age were sensitized on days 0 and 14 by

250 ml intraperitoneal injection of antigen solution containing

50 mg OVA (Sigma) dissolved in 1.3 mg aluminum hydroxide gel

(Sigma) and PBS. On days 21, 22, and 23, mice were intranasally

challenged with 150 mg OVA dissolved in 40 ml of PBS. Mice

cohorts designated as ‘‘controls’’ included the mutant and wild-

type animals that underwent the same regimen without OVA

antigen. On day 24, all the animals were humanely euthanized for

the analysis. To avoid mortality among RBP-jCKO animals, all

the age- and sex-matched littermates used in the rescue

experiments presented in Figures 3 and 4 were challenged only

twice with OVA. Note that RBP-jCKO;IL7ra-/- mice could

tolerate the repeated OVA intranasal challenge, but RBP-jCKO

mice developed severe responses after even two exposures. The

OVA experiments were conducted on male and female animals;

Figure 6. OVA treatment reveals that K14-TSLPtg mice are prone to asthmatic phenotype. (A) Histological analysis shows severe
inflammatory cell infiltrates (arrowheads), airway remodeling, and goblet cell hyperplasia (arrow; insets) in the lung airways of 5- to 7-wk-old K14-
TSLPtg animals that are sensitized and challenged with OVA, but not in similarly treated wild-type littermates (scale bar: 50 mm). (B–D) BAL fluid
analysis shows more leukocytes (B), a higher percentage of eosinophils (C), and specific appearance of IgE in lung airways of OVA-treated K14-TSLPtg

mice (D), confirming the higher intensity of the asthmatic phenotype conferred by the TSLP overexpression in the morphologically normal skin (M,
macrophages; E, eosinophils; L, lymphocytes; N, neutrophils). (E) The severe allergic inflammation in OVA-treated K14-TSLPtg lungs leads to drastic
elevation of serum IgE in the animals. ‘‘Controls’’ refers to K14-TSLPtg and wild-type mice treated with PBS alone (n = 4 for each group; *p,0.05,
comparing the adjacent groups). (F) Total lung resistance (RL) measurements show that OVA-treated K14-TSLPtg lung airways are hyper-responsive to
increasing doses of nebulized methacholine as compared to OVA-treated wild types (V: vehicle-only basal measurement; n = 4 for each group;
*p,0.05). These findings are confirmed in additional independent experiments.
doi:10.1371/journal.pbio.1000067.g006
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however, within-sex analyses were performed to avoid any sex

effect on phenotypes observed.

Airway Reactivity Test
The airway responsiveness to aerosolized methacholine was

determined in OVA-treated animals by measuring total lung

resistance and dynamic compliance as previously outlined [38]. In

brief, mice were treated with OVA as described in the preceding

section (two intranasal OVA challenges for all mice in rescue

experiments (Figure 4) and three intranasal OVA challenges for all

mice in sufficiency experiments (K14-TSLPtg and wild type;

Figure 6)). The animals were then anesthetized for airway reactivity

test on day 24 post OVA sensitization. They were ventilated

through a tracheotomy and monitored for intrapleural pressure

using an oroesophageal tube. PBS (vehicle) or methacholine (Sigma)

in PBS were delivered at 3-min intervals using an in-line nebulizer.

The respiratory flow signals were collected between deliveries using

a pneumotach (SenSym SCXL004, Buxco Electronics). For detailed

description of the device, refer to [39].

Histology
Dorsal skin samples were harvested from the mice and fixed in

4% PFA at 4 uC overnight. Lungs were inflated through the

trachea to 25-cm water pressure with 4% PFA prior to excision

from the chest and fixation. These lungs were PFA-fixed for 24 hr

at 4 uC and embedded in paraffin. The paraffin-embedded tissues

were sectioned at 5–6 mm and stained with hematoxylin and eosin

(H&E), toluidine blue, or periodic acid-Schiff (PAS). For RBP-j

immunohistochemical staining, anti–RBP-j antibody (clone

T6709, Institute of Immunology) and biotinylated anti–rat

secondary antibody were used. HRP-conjugated streptavidin and

DAB substrate kit (Pierce) were used to visualize the signal.

Hematoxylin was used to counterstain the sections. For TSLP

immunostaining, paraffin-embedded tissue samples and biotiny-

lated anti-TSLP antibody (R&D Systems) were used. Sections

were counterstained with DAPI nuclear stain.

BAL Analyses
BAL fluid was collected by infusing the lungs of the anesthetized

mouse with 1-ml PBS through tracheal insertion of a Surflo catheter

(Terumo Medical). Leukocyte count in BAL fluid was determined

using a Hemavet 950 analyzer (Drew Scientific). BAL fluid was spun

down and the supernatant was stored for cytokine/immunoglobulin

analysis. The cell pellet was resuspended in PBS and used for

differential cell count after Giemsa staining on the slide.

ELISA
Serum TSLP levels were determined using Quantikine mouse

TSLP kit according to manufacturer’s instructions (R&D Systems).

Serum and BAL fluid IgE levels were measured using Mouse IgE

ELISA kit (Immunology Consultants Laboratory).

Flow Cytometry
Intracellular cytokine staining was conducted to estimate Th2

cell census as previously described [26]. Single cell suspensions

were prepared from spleen and lymph node samples and cultured

in presence of PMA (50 ng/ml), ionomycin (1 mg/ml) and

monensin (10 mg/ml) for 4 h. Cells were then stained with

phycoerythrin (PE)-cy7 conjugated anti-CD4 antibody (552775,

BD Bioscience Pharmingen). After fixation in 2% PFA and

permeabilization with 0.5% saponin, cells were stained with PE

conjugated anti-IL4 (554389) and APC conjugated anti-IFN-c
(554412) antibodies from BD Bioscience Pharmingen [40].

PCR
Conventional PCR for the RBP-j allele was performed on

genomic DNA isolated from skin and lung of adult RBP-jCKO

mice using KlenTaq10 (DNA Polymerase Technology) supple-

mented with 1.3 M final concentration of betaine (amplification

cycles = 32). The following primers were used to distinguish

between deleted (RBP-jD) and floxed (RBP-jflox) alleles of RBP-j:

Deleted allele: 59-TGTTTGCCACCAGAATCTGTTTGT-

TATTTGC-39 and 59-ATTTGCTTGAGGCTTGATGTTCTG-

TATTGC-39.

Floxed allele: 59-TGTTTGCCACCAGAATCTGTTTGT-

TATTTGC-39 and 59-AGGTACCTGGTACTAACTGTCTGG-

GACCG-39.

qRT-PCR
mRNA isolated from P4 epidermis and lung of RBP-jCKO and

wild-type littermates was used to perform qRT-PCR analysis as

previously described [41]. The primers used to amplify TSLP were:

59-CCAGGCTACCCTGAAACTGA-39 and 59-TCTGGA-

GATTGCATGAAGGA-39.

Statistical Analysis
The quantitative measurements were assessed using Student t-

test as the test of significance and presented as mean 6 standard

deviation in bar graph format. Our studies were conducted in

outbred cohorts of animals; therefore, we used nested ANOVA to

exclude any effect of between-family differences and make certain

the significant differences observed were solely attributable to the

gene removed (RBP-jCKO and RBP-jCKO;IL7ra-/-) or overex-

pressed (K14-TSLPtg).

Accession Numbers
The Genbank (http://www.ncbi.nlm.nih.gov/Genbank/) ac-

cession numbers for proteins discussed in this article are as follows:

RBP-j, NM_009035; TSLP, NM_021367.

Supporting Information

Figure S1 RBP-jCKO animals die prematurely due to their

severe skin phenotype (p,0.001 compared to wild-type life span,

log-rank test). A few mutant mice that survive up to one year (red

circles), however, develop spontaneous lung inflammation.

Found at: doi:10.1371/journal.pbio.1000067.s001 (78 KB TIF)

Figure S2 Serum TSLP levels in RBP-jCKO mice are highly

elevated. TSLP overproduction is evident in RBP-jCKO serum at

1 wk after birth, reaching extreme levels in the adult animals (n = 4

for each group; *p,0.01, comparing the mutants to the wild-type

littermates).

Found at: doi:10.1371/journal.pbio.1000067.s002 (55 KB TIF)

Figure S3 Lung epithelium is normal in RBP-jCKO animals.

(A) PCR analysis of DNA isolated from adult RBP-jCKO (Msx2-

Cre/+;RBP-jflox/flox) and wild-type (RBP-jflox/flox) skin and lung shows

that RBP-j locus is intact (i.e., RBP-j is not deleted) in the lung (D:

deleted allele; M: molecular marker; S: skin; L: lung). (B)

Immunohistochemical analysis for RBP-j protein confirms that

RBP-j is present in the lung airway epithelium. Skin sections

stained under the same condition are presented as controls (scale

bar: 50 mm).

Found at: doi:10.1371/journal.pbio.1000067.s003 (7.35 MB TIF)

Figure S4 Serum TSLP levels of 10-wk-old RBP-

jCKO;IL7ra-/- mice are highly elevated. This indicates that

skin-barrier defects caused by the loss of RBP-j in epidermal
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keratinocytes persist in the absence of IL7Ra (n = 5 for each group;

* p,0.01). Note that serum TSLP levels in RBP-jCKO;IL7ra-/-

mice are consistently and significantly higher than in RBP-jCKO

animals. We are currently investigating the underlying reason for

this surge.

Found at: doi:10.1371/journal.pbio.1000067.s004 (50 KB TIF)

Figure S5 The ear and skin of K14-TSLPtg mice appear normal

at P120. This emphasizes that in an outbred genetic background

(C57BL/6 and CD1 mix) these transgenic animals do not develop

any skin inflammation under normal conditions.

Found at: doi:10.1371/journal.pbio.1000067.s005 (1.3 MB TIF)

Figure S6 There is no TSLP overexpression detectable in K14-

TSLPtg lung airways or parenchyma. Because the K14 gene is

expressed in basal cells located in the trachea, we analyzed mRNA

levels by qRT-PCR on samples isolated from epidermis, trachea

and lung of K14-TSLPtg and wild-type mice. This analysis shows

that the K14-TSLP transgene is active in basal cells within the

trachea, but the overall levels are 200-fold lower than those made

by epidermal keratinocytes (***p,0.0000001 and *p,0.01

compared to wild type).

Found at: doi:10.1371/journal.pbio.1000067.s006 (145 KB TIF)

Figure S7 Lung epithelium does not overexpress TSLP in adult

K14-TSLPtg, RBP-jCKO, or RBP-jCKO;IL7ra-/- animals. Im-

munofluorescence staining for TSLP protein (red) confirms that

TSLP is overexpressed only in the epidermal keratinocytes of the

mutant mice. All sections are stained under the same conditions.

Dotted lines outline the basement membrane and asterisks

highlight the epidermal keratin cysts present in RBP-jCKO skin

(scale bar: 50 mm).

Found at: doi:10.1371/journal.pbio.1000067.s007 (5.3 MB TIF)

Figure S8 The skin of OVA-treated K14-TSLPtg mice remains

normal. H&E and toluidine blue staining of K14-TSLPtg and wild-

type skin show no significant signs of cutaneous inflammation in

the transgenic mice (scale bar: 50 mm).

Found at: doi:10.1371/journal.pbio.1000067.s008 (1.3 MB TIF)

Table S1 Major antimicrobial peptides are overexpressed in

postnatal epidermis of RBP-jCKO animals. This overexpression

indicates the persistence of the skin-barrier defect in RBP-jCKO

mice after birth [25]. Data are extracted from a microarray study

on P9 epidermis of RBP-jCKO and wild-type littermates as

previously described [15]. The fold increase of antimicrobial

peptide mRNA in RBP-j–deficient epidermis relative to wild type

is presented.

Found at: doi:10.1371/journal.pbio.1000067.s009 (37 KB PDF)
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After this manuscript was accepted for publication, similar observations

were reported by Zhang et al: Zhang Z, Hener P, Frossard N, Kato S,

Metzger D, et al. (2009). Thymic stromal lymphopoietin overproduced by

keratinocytes in mouse skin aggravates experimental asthma. Proc Natl
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