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Lysine acetylation is an important and ubiquitous posttranslational modification conserved in prokaryotes and eukaryotes. This
process, which is dynamically and temporally regulated by histone acetyltransferases and deacetylases, is crucial for numerous
essential biological processes such as transcriptional regulation, cellular signaling, and stress response. Since the experimental
identification of lysine acetylation sites within proteins is time-consuming and laboratory-intensive, several computational
approaches have been developed to identify candidates for experimental validation. In this work, acetylated protein data collected
from UniProtKB were categorized into histone or nonhistone proteins. Support vector machines (SVMs) were applied to build
predictive models by using amino acid pair composition (AAPC) as a feature in a histone model. We combined BLOSUM62 and
AAPC features in a nonhistone model. Furthermore, using maximal dependence decomposition (MDD) clustering can enhance
the performance of the model on a fivefold cross-validation evaluation to yield a sensitivity of 0.863, specificity of 0.885, accuracy
of 0.880, and MCC of 0.706. Additionally, the proposed method is evaluated using independent test sets resulting in a predictive
accuracy of 74%.This indicates that the performance of ourmethod is comparablewith that of other acetylation predictionmethods.

1. Introduction

Lysine acetylation is a dynamic and reversible posttrans-
lational modification (PTM) that is highly conserved in
prokaryotes and eukaryotes. This process neutralizes the
positive charge on an amino acid and regulates DNA bind-
ing, protein-protein interaction, and protein stability [1, 2].
Lysine acetylation conjugates on 𝜀-amino group of lysine
residues and is regulated by a highly balanced enzyme system
containing lysine acetyltransferases (KATs, also known as
histone acetyltransferases HATs) and histone deacetylase
(HDACs). Furthermore, acetylation also occurs on 𝛼-amino
groups of N-terminal residues (N𝛼-lysine acetylation) [1, 3].
In addition, lysine acetylation is involved in diverse biological
consequences including transcriptional activity, cell survival,
and subcellular localization [4–7]. Most importantly, it has
been reported that aberrant lysine acetylation is linked to
many pathological diseases, such as cancer, neurodegen-
erative diseases, and metabolic diseases [8–12]. Following

the identification of nuclear KATs, a number of nonhistone
proteins have been identified as substrates, including DNA-
binding proteins (transcription factors), nonnuclear proteins,
and shuttle proteins from the nucleus to cytoplasm [1, 13, 14].
To date, over 2000 human acetylated proteins and 4000 lysine
sites have been identified by traditional experiments and
large-scale mass spectrometry-based proteomic analysis [15];
however, determining the acetylation substrate specificity of
KATs remains a challenge. Moreover, KATs responsible for
nonhistone proteins are still unclear.

Previous efforts on this area focus on the determination
of acetylation sites using conventional experiments and mass
spectrometry. These approaches are often time intensive,
expensive, and laborious. Using a birelative adapted binomial
score Bayes (BRABSB) and a support vector machine (SVM),
Shao et al. have developed a predictor for human lysine acety-
lation from short linearmotifs catalyzed by acetyltransferases
and captured linear/nonlinear correlation among residues
around target lysine residues [16]. Another tool, N-Ace,
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uses data clustering with specific subcellular localization
(e.g., histones, nucleus, cytoplasm, membrane, and mito-
chondrion) to distinguish the potential substrates catalyzed
by different localization of specific acetyltransferases [17].
Several computational tools for predicting acetylation sites
have been developed, such asNetAcet [18], PAIL [19], LysAcet
[20], and EnsemblePAIL [21]. However, the characteristic of
lysine acetylation between histone and nonhistone proteins is
still unclear.

In this study, we describe the features and capabilities of
AceK—a tool for identifying lysine acetylation on histone and
nonhistone proteins. Using a clustering method via maximal
dependence decomposition (MDD) [22], a large group of
aligned sequences is moderated into subgroups that capture
themost significant dependencies between positions. Further
evaluation was done, using fivefold cross-validation, which
shows that the SVM models trained with MDD-clustered
subgroups exhibit an improved predictive accuracy as com-
pared to the non-MDDclusteredmodels. Based on the output
of the model, we describe the different characteristics and
compositional biases of amino acids around acetylation sites
and nonacetylation sites on histone and nonhistone proteins.

2. Material and Methods

2.1. Data Collection and Preprocessing. Protein sequences
were obtained from UniProtKB/SwissProt (v5715) disregard-
ing those without experimental evidence which are anno-
tated as “by similarity,” “potential,” or “probable” in the
“MOD RES” fields. From the collected data, lysine acetylated
sites were used as the positive data of training set, while
nonacetylated lysines were used as the negative data of
training set, respectively. A total of 200 and 3325 acetylation
sites on histone and nonhistone proteins, respectively, were
obtained as positive data (Table 1). On the other hand, 2729
and 72445 nonacetylation sites on histone and nonhistone
proteins, respectively, were obtained as negative data. In
order to avoid a biased prediction performance for a binary
classification between positive and negative data, the negative
training data was balanced with the positive training data.
A 𝐾-means clustering method based on sequence identity
[23, 24] was employed for acquiring a subset that represented
the whole negative dataset. The number of corresponding
positive data was set as the value of 𝐾 to denote an
equal number of samples to be obtained from the negative
set.

To form the independent testing set, experimentally
verified acetylation sites were extracted from another ver-
sion of UniProtKB/SwissProt (v2014 01) disregarding data
existing in v5715 of the same database. A total of 9 and 66
acetylation sites and 93 and 1737 nonacetylation sites from
histone and nonhistone proteins, respectively, were obtained
for the independent testing dataset. After the cross-validation
of training set, the independent test set was evaluated by
using the trained model with the highest accuracy. However,
the positive data of independent test set may include the
sequences that were homologous to training data. As for
classification, the prediction performance of the trained
models may be overestimated owing to the overfitting of a

training set. To prevent an overestimation in the predictive
performance, homologous sequences between training set
and independent test set were removed. With reference
to the reduction of the homology of the training set in
MASA [23], two acetylated protein sequences with more
than 30% identity were defined as homologous sequences.
Then, two homologous sequences were specified to realign
the fragment sequences using a window length of 2𝑛 + 1,
centered on the acetylation sites using BL2SEQ [25]. For two
fragment sequences with 100% identity, the acetylation site
on the homologue fragment sequence in the testing set was
discarded, leaving only the acetylation site on the training
set. Redundancy was also removed by retaining only one
record in the event of finding multiple records of the same
site position and accession number. Nonredundant negative
data were generated using the same approach. After the
removal of redundant data, 75 positive sequence fragments
and 1830 negative sequence fragments with cysteine residues
were obtained for independent testing.

2.2. Detection of SubstrateMotif. One of the aims of this study
is to investigate themotifs of acetylation sites based on amino
acid sequences. Due to the difficulty of detecting conserved
motifs for large sets of sequences, we appliedmaximal depen-
dence decomposition (MDD) [22] to cluster all sequences
of acetylation site into subgroups containing statistically
conserved motifs. MDDLogo, a tool implementing MDD,
has reported that the grouping of protein sequences into
smaller groups should be done prior to computationally iden-
tifying PTM sites [26–32]. MDDLogo adopts a chi-square
test 𝜒2(𝐴

𝑖
, 𝐴
𝑗
) to evaluate the dependence of amino acid

occurrence between two positions 𝐴
𝑖
and 𝐴

𝑗
surrounding

acetylation lysines. In order to extract motifs containing
conserved biochemical properties of amino acids, the 20
types of amino acids were categorized into five groups: polar,
acidic, basic, hydrophobic, and aromatic groups (Table 2).
A contingency table of amino acid occurrence between two
positions was then constructed (Figure 1(a)). The chi-square
test was defined as follows:
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sequences. If a strong dependence is detected (defined as the
value of 𝜒2 larger than 34.3, corresponding to a cutoff level of
𝑃 ≤ 0.01 with 16 degrees of freedom) between two positions,
then we proceeded as described by Burge and Karlin [22].
As illustrated in Figure 1(b), maximal dependence with the
occurrence of basic amino acids was observed at position
+3. Subsequently, all data can be divided into two subgroups:
one with the occurrence of basic amino acids in position
+3 and the other without the occurrence of basic amino
acids in position +3. MDD clustering is a recursive process
to divide the positive set into tree-like subgroups. When
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Table 1: Data statistics of training set and independent testing set.

Data resource Acetylation sites
(positive data)

Nonacetylation sites
(negative data)

Training set UniProtKB
(v5715)

Histone 200 2729
Nonhistone 3325 72445

Independent testing set UniProtKB
(January 22, 2014)

Histone 9 93
Nonhistone 66 1737
Combined
nonredundant
dataset

75 1830
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Figure 1: The analytical flowchart of MDDLogo application. Panel (a) shows that the process of a contingency table is created and used
together with a chi-square test to obtain a maximal score for each position in a sequence. Panel (b) presents a tree-like visualization of
MDDLogo clustering on a set of sequences.

applying MDDLogo to cluster the sequences of a positive set,
a parameter, that is, the maximum-cluster-size, should be set.
If the size of a subgroup was less than the maximum-cluster-
size, the subgroup will not be divided any more. In order
to obtain an optimal minimum cluster size, MDDLogo was
executed using various values. For this investigation, each
subgroup resulting from MDDLogo was represented using
WebLogo [33] for determining if they presented conserved
motifs for the substrate specificity of acetylation or not.

2.3. Feature Extraction and Encoding. Support vector mach-
ine (SVM) was applied to develop the prediction models
for identifying lysine methylation sites on histones and non-
histone proteins, respectively [34]. Seven features were
taken into consideration into SVM models for a fragment
sequence, including 20Dbinary code (AA), BLOSUM62mat-
rix (B62), amino acid composition (AAC), amino acid pair
composition (AAPC), accessible surface area (ASA), position
weight matrix (PWM), and position specific scoring matrix
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Table 2: The amino acids group of MDDLogo used in this study.

Chemical properties Amino acids

Polar group
Glycine (G), serine (S), threonine (T),
cysteine (C), glutamine (Q), and
asparagine (N)

Acidic group Aspartic acid (D) and glutamic acid (E)

Basic group Lysine (K), arginine (R), and histidine
(H)

Hydrophobic group
Alanine (A), valine (V), leucine (L),
isoleucine (I), proline (P), and
methionine (M)

Aromatic group Phenylalanine (F), tyrosine (Y), and
tryptophan (W)

(PSSM). The 20D binary code (AA) is the most popular
coding method using orthogonal binary coding scheme
to transform each amino acid into 20-dimensional binary
vector. Here we added a vector to represent other specific
amino acid codes (e.g., 𝐵, 𝑍, and 𝑋). So the number of
the feature vector is 21 ∗ 𝐿, where 𝐿 is the window length
of the fragment sequence. Amino acid composition (AAC)
was obtained by converting a protein sequence into a 20-
dimensional feature vector, where each vector consists of
the composition of frequency of each of the twenty amino
acids. Amino acid pair composition (AAPC) was obtained
by converting a protein sequence from the frequency of
amino acid pairs. Each amino acid coordinates with its
adjacent residue, and therefore it can be transformed as a
vector with 400 (20 ∗ 20) dimensions. Accessible surface
area (ASA) refers to the surface area of a biomolecule that is
accessible to a solvent, as a way for quantifying hydrophobic
burial. Using the blocks substitution matrix (BLOSUM62),
the substitution scores were derived from the alignments of
amino acid sequences that had no more than 62% identity.
Position specific scoring matrix (PSSM) refers to a matrix of
score values generated from PSI-BLAST, which can represent
the multiple sequence alignment of proteins. The scores are
shown as positive or negative integers, and large positive
scores often indicate critical functional residues, which may
be the active site residues or residues required for other
intermolecular interactions.

2.4. Model Construction and Cross-Validation. Here we ap-
plied LIBSVM [35] to implement the prediction model
for discriminating acetylated lysine sites and nonacetylated
lysine sites. A radio basis function (RBF) was adopted as
the kernel function. Gamma determines the RBF kernel
function, and cost controls the hyperplane softness. Gamma
parameter, which determines the RBF kernel function, and
cost parameter, which controls the hyperplane softness, were
tuned to yield the best performance. Prior to the construction
of a final model, the predictive performance of models
using different features was evaluated by performing fivefold
cross-validation. Firstly, the training data was divided into
five groups by splitting each dataset into five approximately
equal sized subgroups (Figure 2). During cross-validation,
one subgroup was regarded as the test set, and the remaining

four subgroups were regarded as the training set. Cross-
validation was repeated for five rounds, where each subgroup
is used as a test set once. The validation results were then
combined to produce a single estimation. The advantage of
performing a cross-validation evaluation is that all original
data are regarded as both training set and testing set, and each
dataset is used for testing exactly once [36].

Specificity (SP), sensitivity (SN), precision (PRE), accu-
racy (ACC), andMatthew’s correlation coefficient (MCC) are
utilized to evaluate the performance of classification.They are
defined as follows:

sensitivity (Sn) = TP/(TP + FN),
specificity (Sp) = TN/(TN + FP),
accuracy [37] = (TP + TN)/(TP + FP + TN + FN),
Matthew’s correlation coefficient (MCC) = (((TP ×
TN) − (FN × FP))
/√(TP + FN)×(TN + FP)×(TP + FP)×(TN + FN)),

where TP, TN, FP, and FN are the numbers of true positives,
true negatives, false positives, and false negatives [38]. The
value of MCC is one for a perfect prediction, zero for a
completely random prediction, and −1 for a perfectly inverse
correlation.

3. Results and Discussion

3.1. Amino Acid Composition Analysis. A web-based tool,
Two Sample Logo [39], was used to graphically represent
the sequence conservation of proteins by detecting and dis-
playing statistically significant differences in position-specific
symbol compositions between two sets of multiple sequence
alignments. Different residues at the same position were
scaled according to their frequency. To investigate the sub-
strate specificity of acetylated lysine sites, WebLogo [26] was
applied to generate the sequence logo of positive training
dataset presentingwith 15-mer flanking sequences. Two Sam-
ple Logo revealed that the most pronounced feature of acety-
lation sites in histones was the abundance of charged amino
acids, especially the positively charged lysine (K) at posi-
tions −7, −5 ∼ −3, +1, and +3∼+7, glycine (G) at positions
−7, −5, −3 ∼ −1, and +1, alanine (A) at positions −6, −3,
−2, +1, and +5 (𝑃 < 0.01, upper panel of Figure 3(a)).
The feature is significantly different between nonacetylation
sites on histones, which contain negatively charged amino
acids glutamate (E) at positions −3, +1, and +3 and leucine
(L) at −7 and +7 (𝑃 < 0.01, lower panel of Figure 3(a)).
Regarding the feature of nonhistone proteins, fewer notice-
able amino acids groups were displayed in acetylation set
compared to that on histone proteins (upper panel of Figure
3(b)). However, more positively charged amino acids (e.g.
K/R) were found to be located in distinct sequences. This
is in contrast to K/R residues found to be located around
nonacetylated lysines (lower panel of Figure 3(b)). In addi-
tion, amino acid composition around lysine acetylation sites
between histones and nonhistone proteins presented that K,
G, and A are more abundant in histone. However, negatively
charged amino acids D/E and the hydrophobic amino acid L
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Figure 2:The conceptual diagramofAceK.Themethodology of this study is composed of fourmajor parts: data collection and preprocessing,
substrate motif identification, feature investigation, and model learning and evaluation.
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Figure 3: Two Sample Logo presents the compositional biases of amino acids around acetylation sites compared to the nonacetylation sites on
histone and nonhistone sets.The significant amino acids around acetylated lysine residue are enriched from the positive dataset and presented
in upper panel (𝑃 < 0.01). Relatively, the high frequency of amino acids around nonacetylated lysine is depleted from the negative dataset
and presented in lower panel.

are more abundant in nonhistone protein. Results show that
there exist different patterns surrounding lysine acetylation
sites between histones and nonhistone proteins. This infor-
mation may be helpful for identifying lysine acetylation sites.
Therefore, we constructed different prediction models for
histone and nonhistone proteins.

3.2. Performance of Fivefold Cross-Validation. Two prediction
models, histone model and nonhistone model, were devel-
oped by using histones and nonhistone proteins. Various
SVM models were built with different features (20D binary
code, BLOSUM62, AAC, AAPC, ASA, PWM, and PSSM)
and their combinations. SVM models were evaluated by 30
runs of fivefold cross-validation, and the best performance
model was adopted as the final prediction model. In single
featuremodels, theAAPC shows the best performance, which
achieves accuracy of 0.8 andMCC of 0.483 in histones (Table
3). Relatively, BLOSUM62 presents the best performance
in nonhistone proteins achieving sensitivity (Sn), specificity
(Sp), accuracy (Acc), and MCC of 0.697, 0.723, 0.712, and
0.375, respectively. In addition to histone and nonhistone
models, a mixed model was also generated by the use of both
histones and nonhistone proteins. Using mixed analysis of
BLOSUM62 and AAPC, the performance model in nonhis-
tone proteins was improved to achieve a sensitivity of 0.706
and accuracy of 0.715 (Table 3). This demonstrates that our
method is helpful and effective for identifying lysine acetyla-
tion sites by classifying protein into histone and nonhistone.

3.3. MDD-Detected Substrate Motifs for Lysine Acetylation
Sites. To improve the detection of the conserved motifs
from a large-scale acetylation dataset, we further applied the
maximal dependence decomposition (MDD) to cluster all
200 and 3325 experimental acetylated peptide sequences in
histone and nonhistone protein sets, respectively. Here, five
subgroups of histone acetylation motifs and nine subgroups
of nonhistone acetylation motifs can be captured exhibiting

themost significant dependencies of amino acid composition
between specific positions (Tables 4 and 5).

In the analysis of histone acetylation, we evaluated all
of the acetylation sites and these 5 MDDLogo-clustered
subgroups for their predictive performance by fivefold cross-
validation. As shown in Table 4, H1 subgroup, which had
conserved polar amino acids G/S/T/N/Q at position −1
and hydrophobic amino acids A/L/V/I/M/P at position +2,
contained the highest predictive power at 0.930, 0.944, 0.942,
and 0.812 for sensitivity, specificity, accuracy, and MCC,
respectively. This motif was consistent with previous litera-
ture by structural study that G-AcK-X-P motif on histone H3
can be recognized by TetrahymenaGCN5 that is homologous
to human acetylase P/CAF [40]. In addition, H3 motif,
presenting known K-X

3
-AcK-X

3
-K motif at positions ±4 in

our study, was highly consistent with the proteomic study
for lysine acetylation of histone that displayed as the nuclear
sequence motif for lysine acetylation of histones [7, 41]. Sim-
ilar result also presented in H2 motif that higher frequency
of K/R/H at the position +3 located in nucleus. However, two
motifs in this study were not reported, suggesting they were
novel motifs for lysine acetylation of histone.

In the analysis of nonhistone acetylation, 6 of 9
MDDLogo-clustered subgroups had the conserved motifs
of positively and negatively charged amino acids (K/R/H
and D/E) at a specific position. In particular, 817 acetylated
peptides in the nH1 subgroup had positively and negatively
charged amino acids on conservedmotifs at the same specific
positions. We evaluated all of the acetylation sites and these
9 MDDLogo-clustered subgroups for their predictive perfor-
mance by fivefold cross-validation. As shown in Table 5, nH5
subgroup, which had a conserved F/Y/W at position −3, con-
tained the highest predictive power at 0.934, 0.964, 0.956, and
0.885 for sensitivity, specificity, accuracy, and MCC, respec-
tively. TheMDDLogo-extracted cluster showed a higher per-
formance than the combined MDDLogo-clustered motifs,
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Table 3: Fivefold cross-validation results on histone and nonhistone model trained with various features.

Dataset Training features Sn Sp Acc MCC

Histone

20D binary code 0.725 0.743 0.740 0.370
BLOSUM62 0.745 0.758 0.756 0.400
Amino acid composition (AAC) 0.750 0.761 0.386 0.407
Amino acid pair composition (AAPC) 0.790 0.802 0.800 0.483
Accessible surface area (ASA) 0.645 0.663 0.660 0.236
Position weight matrix (PWM) 0.700 0.721 0.718 0.329
Position-specific scoring matrix (PSSM) 0.710 0.724 0.721 0.339

Nonhistone

20D binary code 0.698 0.714 0.710 0.366
BLOSUM62 0.697 0.723 0.712 0.375
Amino acid composition (AAC) 0.619 0.640 0.635 0.226
Amino acid pair composition (AAPC) 0.628 0.660 0.652 0.253
Accessible surface area (ASA) 0.562 0.620 0.605 0.159
Position weight matrix (PWM) 0.606 0.625 0.602 0.200
Position-specific scoring matrix (PSSM) 0.665 0.695 0.688 0.319
BLOSUM62 + AAPC 0.706 0.718 0.715 0.377

A total of 3525 lysine sequences were applied in positive and negative data. Sn, sensitivity; Sp, specificity; Acc, accuracy;MCC,Matthew’s correlation coefficient.

Table 4: The five MDDLogo-clustered subgroups and their performances of fivefold cross-validations from 200 acetylation sites in histone
dataset.

MDDLogo
cluster Frequency plot of sequence logo Number of

positive data Sn Sp Acc MCC Reference
(PMID)

H1

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

43 0.930 0.944 0.942 0.812 10485713

H2

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

29 0.931 0.938 0.937 0.799 22902405

H3

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

28 0.929 0.936 0.935 0.793 16916647

H4

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

22 0.909 0.918 0.917 0.745 —

H5

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

78 0.897 0.910 0.908 0.722 —

All data

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

200 0.915 0.926 0.924 0.764 —

Combined MDDLogo-clustered motifs 200 0.915 0.926 0.924 0.764 —
Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Matthew’s correlation coefficient.

which achieved a sensitivity, specificity, accuracy, and MCC
of 0.863, 0.885, 0.88, and 0.706, respectively. This analysis
indicates that the acetylated sequences in a large-scale dataset
can be alternatively clustered by MDD method in order to
significantly enhance the signal of amino acids motif and
improve the performance of the predictive model.

Similar to nH5 subgroup, nH4 motif from nonhistone
dataset also contained a conserved F/W/Y at the position −2
and Y at the position +1 flanking on the acetylated lysines that
had comprehensively identified the acetylome in different
sublocalization fractions and presented the distribution in
nucleus and cytoplasm [5]. In addition, our analyzed data was



8 BioMed Research International

Table 5: The nine MDDLogo-clustered subgroups and their performances of fivefold cross-validations from 3325 acetylation sites in
nonhistone dataset.

MDDLogo cluster Frequency plot of sequence logo Number of
positive data Sn Sp Acc MCC Reference

(PMID)

nH1

4

3

2

1

0
Bi

ts
CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

817 0.847 0.858 0.855 0.655 22902405

nH2

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

285 0.860 0.894 0.885 0.715 22902405

nH3

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

570 0.884 0.899 0.895 0.742 22902405

nH4

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

495 0.911 0.948 0.939 0.841 19608861

nH5

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

137 0.934 0.964 0.956 0.885 —

nH6

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

275 0.891 0.898 0.896 0.746 22902405

nH7

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

141 0.894 0.929 0.920 0.796 —

nH8

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

121 0.884 0.920 0.911 0.775 22902405

nH9

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

484 0.771 0.794 0.788 0.514 —

All data

4

3

2

1

0

Bi
ts

CN −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

3325 0.863 0.885 0.880 0.706 —

Combined MDDLogo-clustered motifs 3325 0.863 0.885 0.880 0.706 —
Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Matthew’s correlation coefficient.

also highly consistent with the previous studies [41], includ-
ing the nH1 motif that higher frequency of K/D/E/R at the
position +3 located in nucleus, cytoplasm,mitochondria, and
ER-Golgi, nH2 motif (F/V at position +2 in mitochondria),
nH3 motif (D/E at position −1 in cytoplasm and mitochon-
dria), nH6 motif (K/R at position +5 in nucleus and ER-
Golgi), and nH8 motif (K/R at position −6 in nucleus and
ER-Golgi). We also found that KXE motif was consistent
with previous studies in nonhistone proteins and nH2 motif

was KXE motif (E/D/F/Y/W at position +2) in Table 5. In
addition, twomotifs in this study were not reported, suggest-
ing that there were novel motifs for lysine acetylation of
nonhistone.Therefore, this study can help us to find out some
potential motifs for regulation of protein localization.

3.4. Independent Testing and Comparison with Previous Ap-
proaches. The independent dataset generated from UniPro-
tKB/Swiss-Prot was used to evaluate our prediction models
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Figure 4: Comparison of independent testing performance between
our method and four available online acetylation site prediction
tools. Independent testing reveals that AceK outperforms the four
available online acetylation site prediction tools with sensitivity
(Sn) of 0.73, specificity (Sp) of 0.74, accuracy (ACC) of 0.74, and
Matthew’s correlation coefficient (MCC) of 0.2.

and was also employed to evaluate previous approaches.
Using all acetylation sites in the independent dataset, the per-
formance of AceK achieved a sensitivity of 0.73, a specificity
of 0.74, an accuracy of 0.74, and the MCC of 0.20 (Figure 4).
To further demonstrate the effectiveness of our method, the
independent testing set was also used to compare ourmethod
with 4 other published websites for acetylation prediction: N-
Ace, PAIL, LysAcet, and EnsemblePAIL. The result indicates
that the prediction power yielded by ourmethodwas superior
to that by the other 4 prediction tools, especially in sensitivity
and MCC.

3.5. Implementation of Web Server. A web server, AceK, was
constructed for identifying the lysine acetylation sites on
histones and nonhistone proteins. For this implementation,
AAPC feature was utilized for the histone model, and mixed
features between BLOSUM62 and AAPC were employed for
the nonhistone model. As shown in Figure 5, AceK web
server provides user-friendly interface and prediction results
page. Users can submit the protein sequence in FASTA format
and select a protein type for identifying potential lysine
acetylation sites. The independent testing dataset used in
our study is also provided on the website. The web server is
available at http://csb.cse.yzu.edu.tw/AceK/.

4. Conclusion

This is the first study to identify the potential lysine acetyla-
tion sites on histone and nonhistone proteins. We not only

Figure 5: AceK web interface. The AceK website allows users to
submit a single or several sequences in FASTA format and responds
with a results page containing the downloadable predicted results.

demonstrated that the histone and nonhistone models had
better predictive performances than the mixed model but
also showed that our models exhibit significantly improved
prediction sensitivity, specificity, accuracy, andMCCof lysine
acetylation sites compared to previous approaches. Using
AAC of flanking regions of lysine acetylation sites, we found
that highly conserved sequence existed among histones,
enriched with positively charged amino acids in distinct
location. However, the negatively charged amino acids are
more abundant surrounding acetylation sites of nonhistone
proteins. A Two Sample Logo was constructed to display
compositional biases between acetylation and nonacetylation
sites in histone and nonhistone model. MDDLogo-clustered
method also enhanced the performances of fivefold cross-
validations compared to all acetylation sites without group-
ing. In addition, AceK web server was developed using the
SVM models with AAPC feature for the histone model,
BLOSUM62, and AAPC features for the nonhistone model.
In this study, we provide reliable predictions and characterize
the various features of these lysine acetylation sites of both
histone and nonhistone proteins.We believe that thismethod
will be helpful in identifying lysine acetylation and could be
extended to provide the further information for the substrate
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specificity of nonhistone proteins in different subcellular
localizations in the future.

Availability

The proposed method is implemented as a web-based
resource, which is now freely available to all interested users
at http://csb.cse.yzu.edu.tw/AceK/. All of the datasets used in
this work are also available for download on the website.
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