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Group VIB Phospholipase A2 (iPLA2γ) is distributed in membranous organelles in which β-oxidation occurs, that is, mitochondria
and peroxisomes, and is expressed by insulin-secreting pancreatic islet β-cells and INS-1 insulinoma cells, which can be injured
by inflammatory cytokines, for example, IL-1β and IFN-γ, and by oxidants, for example, streptozotocin (STZ) or t-butyl-hydro-
peroxide (TBHP), via processes pertinent to mechanisms of β-cell loss in types 1 and 2 diabetes mellitus. We find that incubating
INS-1 cells with IL-1β and IFN-γ, with STZ, or with TBHP causes increased expression of iPLA2γ mRNA and protein. We prepared
INS-1 knockdown (KD) cell lines with reduced iPLA2γ expression, and they proliferate more slowly than control INS-1 cells and
undergo increased membrane peroxidation in response to cytokines or oxidants. Accumulation of oxidized phospholipid molecu-
lar species in STZ-treated INS-1 cells was demonstrated by LC/MS/MS scanning, and the levels in iPLA2γ-KD cells exceeded those
in control cells. iPLA2γ-KD INS-1 cells also exhibited higher levels of apoptosis than control cells when incubated with STZ or
with IL-1β and IFN-γ. These findings suggest that iPLA2γ promotes β-cell proliferation and that its expression is increased during
inflammation or oxidative stress as a mechanism to mitigate membrane injury that may enhance β-cell survival.

1. Introduction

Diabetes mellitus (DM) is the most common human endo-
crine disease and is reaching pandemic proportions in the
US and elsewhere [1]. DM represents a constellation of
disorders that are grouped into the major categories types 1
and 2 (T1DM and T2DM). T1DM is caused by autoimmune
destruction of insulin-secreting pancreatic islet β-cells [2, 3],
and inflammatory cytokines released by invading leukocytes
during insulitis are believed to participate in these processes
[4, 5]. Among them are IL-1β, which impairs insulin secre-
tion and inflicts islet injury [6], and IFN-γ, which greatly
potentiates the destructive effects of IL-1β [7]. These effects

are mediated in part by induction of nitric oxide (NO) syn-
thase expression and overproduction of NO [8–13], which
can induce apoptosis of cells by mechanisms that involve
generation of reactive oxygen species that cause oxidative
stress [13–15].

T2DM is thought to evolve after a period of initial
insulin resistance in which nearly normal glucose tolerance is
maintained by compensatory hypersecretion of insulin by β-
cells [16, 17]. At some point there is failure to sustain insulin
secretion at sufficiently high levels and glucose intolerance
and then overt DM ensue [18]. One contributor to the
eventual failure of β-cell compensation is a reduction in
β-cell mass by 50% or more, and this occurs at least in part
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by apoptotic β-cell death [16, 19]. Although many mecha-
nisms probably participate in these processes, production of
reactive oxygen species induced by metabolic stress has been
proposed to represent a final common pathway of injury
that ultimately results in β-cell failure [17, 20–29]. Among
supporting observations are that β-cells express low levels of
antioxidant defense enzymes compared to other tissues [30–
33] and that antioxidant compounds confer protection from
glucose toxicity to islets in vitro and against development of
T2DM in animal models in vivo [34, 35].

Beta cells must sustain a high level of metabolic activity,
which provides critical signals in the coupling of nutrient
sensing to insulin secretion [36–50], in order to meet the
unceasing demand for insulin biosynthesis and processing.
Prolonged overstimulation of β-cells may eventually con-
tribute to their failure as a consequence of stresses imposed
on the endoplasmic reticulum (ER) and mitochondria [51–
53]. Protein synthesis, including that of proinsulin, occurs
in ER, and nascent proteins must be properly folded, which
involves formation of disulfide bonds. This is an oxidative
reaction that requires a prooxidant environment to be main-
tained in ER. Sustained hyperstimulation can result in ER
stress and overproduction of reactive oxygen species (ROS)
that exceed ER reductive capacity, resulting in ROS leakage
from ER and cellular oxidative stress [54–57].

Mitochondrial metabolism is a major source of ROS pro-
duction via incomplete reduction of molecular oxygen in the
respiratory chain to yield superoxide anion (O2

•−) [58, 59],
and O2

•− production increases with metabolic activity [21,
60]. O2

•− is removed by superoxide dismutase (MnSOD)-
catalyzed dismutation to H2O2 that can be reduced to H2O
by catalase or by glutathione peroxidase and GSH. If gen-
eration exceeds removal, excess H2O2 can undergo Fe2+-
catalyzed conversion to •HO (Fenton reaction) or to O2

•−

and •HO (Haber-Weiss reaction). These ROS can injure
mitochondria by mechanisms that include membrane phos-
pholipid peroxidation [14, 61] and activation of stress path-
ways [27–29]. Mitochondrial phospholipid peroxidation can
precipitate cytochrome c release from the inner membrane
into the cytosol [14, 62–65], and this can initiate apoptosis
[66, 67]. Released cytochrome c interacts with caspase-9 in
formation of the apoptosome [68], which leads to activation
of the executioner caspases-3, -6, and -7 that dismantle the
cell [66, 69].

It has been proposed that phospholipases A2 (PLA2) can
prevent or abort apoptosis by repairing peroxidized mem-
brane phospholipids [63–65, 70–76]. PLA2 enzymes catalyze
hydrolysis of the sn-2 ester bond of glycerophospholipids to
yield a free fatty acid and a 2-lysophospholipid, and at least
16 major groups within the PLA2 superfamily are recognized
[77, 78]. Among their proposed functions are the membrane
remodeling and the protection or repair of membranes from
oxidative damage [63–65, 70–72] in a sequence that involves
PLA2-catalyzed removal of oxidized fatty acid residues [73]
to yield a lysophospholipid that can be reacylated with an
unoxidized fatty acid to preserve membrane integrity [74].

A PLA2 is suited for such a role because oxidized fatty
acid substituents usually occur at the sn-2 position of phos-
pholipids where most polyunsaturated fatty acid (PUFA)
substituents, such as linoleate (C18:2) and arachidonate

(C20:4), are esterified [73, 74]. PUFA are especially suscep-
tible to oxidation because they contain bis-allylic methylene
moieties with a labile H atom that can be abstracted to yield
a carbon-centered radical that readily reacts with molecular
oxygen to form a fatty acid hydroperoxide [73]. Oxidization
reduces hydrophobicity of the sn-2 fatty acid substituent and
allows it to approach the hydrophilic phospholipid head-
group more closely [73]. This increases separation between
head groups, which causes the sn-2 ester bond to be more
accessible to PLA2. Liberated peroxy fatty acids can then be
reduced to alcohols by glutathione peroxidases after release
from phospholipids by PLA2 enzymes [75, 76].

Two members of Group VI PLA2 family have been sug-
gested to play such a role in repairing oxidized mitochondrial
membrane phospholipids [63–65, 70–72]. Group VIA PLA2

(iPLA2β) localizes to mitochondria in insulinoma cells and
protects against oxidant-induced apoptosis, and pancreatic
islets from iPLA2β-null mice exhibit increased susceptibility
to oxidant-induced apoptosis [63–65]. Oxidant-induced
lipid peroxidation and death of renal proximal tubule cells
(RPTC) is potentiated by the Group VI PLA2 inhibitor
bromoenol lactone (BEL) [71], and R-BEL, which selectively
inhibits Group VIB PLA2 (iPLA2γ), accelerates oxidant-
induced lipid peroxidation and renal cortical mitochondrial
injury [72]. Moreover, when small hairpin ribonucleic acid
(shRNA) adenovirus is used to reduce RPTC iPLA2γ expres-
sion, lipid peroxidation and sensitivity to apoptosis induced
by the oxidant tert-butyl hydroperoxide (TBHP) increase
[70].

The latter observations [70–72] suggest that iPLA2γ acts
to reduce lipid peroxidation and to protect against oxidant-
induced apoptosis in renal proximal tubule cells, and this
may reflect iPLA2γ-catalyzed removal of oxidized PUFA
residues from glycerophospholipids that are formed in mito-
chondria under conditions of oxidative stress. This could
permit the resultant lysophospholipid to be reacylated with
an unoxidized PUFA residue, which would restore functions
that are impaired as a result of membrane oxidation. In the
absence of iPLA2γ or when its activity is impaired, this repair
mechanism cannot operate fully, and this could result in
progressive mitochondrial injury that eventually triggers the
mitochondrial pathway of apoptosis [70–72].

Here we have conducted experiments to determine
whether iPLA2γ might play a similar role in insulin-secreting
β-cells because mitochondrial injury induced by oxidative
stress appears to be an important mechanism underlying β-
cell loss during the development of diabetes mellitus [16–
35]. Our studies involved preparation of iPLA2γ-knockdown
INS-1 insulinoma cell lines in which iPLA2γ expression is
reduced by stable expression of shRNA and comparing these
lines to control INS-1 cell lines for sensitivity to lipid peroxi-
dation and apoptosis induced by the inflammatory cytokines
IL-1β and IFN-γ and the oxidant agents TBHP [70] and
streptozotocin (STZ) [79].

2. Materials and Methods

2.1. Materials. Rainbow molecular mass standards, PVDF
membranes, and Triton X-100 were obtained from Bio-Rad
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(Richmond, CA, USA); SuperSignal West Femto Substrate
was from Thermo Fisher; Coomassie reagent and SDS-PAGE
supplies were from Invitrogen (Carlsbad, CA, USA); bovine
serum albumin (BSA, fatty acid free, fraction V) were from
MP Biomedicals (Solon, OH, USA); Streptozotocin (STZ)
and tert-butyl hydroperoxide (TBHP) were from Sigma (St.
Louis, MO, USA).

2.2. Cell Culture. INS-1 rat insulinoma cells that had been
stably transfected and mock-transfected INS-1 cells were
generated and cultured in RPMI 1640 medium containing
11 mM glucose, 10% fetal calf serum, 10 mM Hepes buffer,
2 mM glutamine, 1 mM sodium pyruvate, 50 mM β mercap-
toethanol, 100 units/mL penicillin, and 100 μg/mL strepto-
mycin, essentially as previously described [80]. The medium
was exchanged every 2 days, and the cell cultures were split
once a week. Cells were grown to 80% confluence and har-
vested after treatment as indicated in the figure legends or the
text of the Results section. All incubations were performed at
37◦C under an atmosphere of 95% air/5% CO2.

2.3. Establishing iPLA2γ Knockdown INS-1 Insulinoma Cell
Lines Using siRNA and a Lentiviral Vector. Two hairpin-
forming oligonucleotides directed against iPLA2γ mRNA
were cloned into FIV H1 Lentivector according to instruc-
tions from the manufacturer (SBI System Biosciences,
Mountain View, CA, USA) by described procedures [80].
Targeting sequences within the synthetic oligonucleotides are
italicized and underlined below. The sequence of the first
was 5′-GATCCGCAAGAGTGAGTATTGATAACTTAA-
GAGAGTTATCAATACTCACTCTTGCTTTTTT-G-3′. The
second oligonucleotide was 5′-GATCCGGGCCATATT-
AGCATTCATGCTTCAAGAGAGCATGAATGCTAATAT-
GGCCCTTTTTTG-3′. Constructs that express the shRNAs
are designated FIVH1-iPLA2-1 and FIVH1-iPLA2-2. Cells
were selected with neomycin.

2.4. Immunoblotting Analyses. Cells were harvested and soni-
cated, and an aliquot (30 μg) of lysate protein was analyzed by
SDS-PAGE (8–12% Tris-Glycine gel, Invitrogen), transferred
onto Immobilon-P polyvinylidene difluoride membranes
(Bio-Rad, Richmond, CA, USA), and processed for immu-
noblotting analyses, essentially as previously described [81].
The primary antibody concentration for iPLA2γ (Sigma,
St. Louis, MO, USA) was 1 : 500. The secondary antibody
concentration was 1 : 10,000. The concentrations of other
antibodies are described in the figure legends. Immunoreac-
tive bands were visualized by enhanced chemiluminescence
(ECL).

2.5. Determination of INS-1 Cell Proliferation Rate. INS-1
cell proliferation rates were measured by two approaches, as
previously described [80]. One assay is based on fluorescence
enhancement when CyQuant GR binds to nucleic acids,
which reflects the amount of cell DNA [82]. Cells were
seeded onto 96-well plates (3 × 103 cells/well). Medium was
removed after 1 or 3 days, and cells were frozen (−20◦C).
DNA was measured with a CyQuant assay kit (Molecular

Probes, Inc., Eugene, OR, USA) with reference to a standard
curve. CyQuant GR solution (200 μL) was added to each well
and incubated (5 min, room temperature). Fluorescence was
measured on a microplate fluorimeter (excitation, 480 nm;
emission, 538 nm). A second assay is based on incorporation
of thymidine analog 5-bromo-2′-deoxyurindine (BrdU) into
DNA in proliferating cells [83]. Cells were seeded (104 cells/
well) and cultured (3 days) before assay with an enzyme-
linked immunoassay detection kit III (Roche Applied Sci-
ence) after BrdU labeling.

2.6. Lipid Peroxidation. Lipid peroxidation was quantitated
using a Cayman TBARS assay kit (Cayman Chemical, Ann
Arbor, MI, USA) according to the manufacturer’s instruc-
tions, as previously described [64, 84]. Lipid peroxides
derived from polyunsaturated fatty acids decompose to form
a complex series of compounds that include reactive carbonyl
species, such as MDA. Measurement of thiobarbituric acid
reactive substances (TBARS) by determining absorbance at
530 nm is used to assess the extent of lipid peroxidation [84].
Results are expressed as μmol/μg protein.

2.7. HPLC-ESI-MS/MS Analysis of Oxidized Lipids. Lipids
extracted from INS-1 cells were stored in sealed vials (under
N2 at −20◦C) to suppress artifactual oxidation, and extracts
were then analyzed by LC/MS/MS in a manner similar to that
previously described [85] on a Surveyor HPLC (Thermo-
Electron, San Jose, CA, USA) using a modified gradient [86]
on a C8 column (15 cm × 2.1 mm, Sigma Chemical Co., St.
Louis, MO, USA) interfaced with the ion source of a Thermo-
Electron Vantage triple quadruple mass spectrometer with
extended mass range operated in negative ion mode.
Tandem MS scans for precursors of m/z 295, m/z 319,
and m/z 343 were performed to identify glycerolipid
molecular species that contained singly oxygenated forms of
the polyunsaturated fatty acids (PUFA) linoleate (C18:2),
arachidonate (C20:4), or docosahexaenoate (C22:6), respec-
tively. The major oxylipid species identified was (1-stearoyl,
2-hydroxyeicosatetraenoyl)-sn-glycerophospho-ethanola-
mine [(C18:0/HETE)-GPE], and it was quantified by MRM
of 782.76 → 319.3, which is a transition that corresponds to
production of the HETE carboxylate anion from the [M-H]−

ion of the parent oxy-phospholipid species.

2.8. Assessment of Apoptosis by Flow Cytometry. INS-1 cell
apoptosis was determined using an Annexin-VFLUOS Stain-
ing Kit (Roche Applied Science, Indianapolis, IN, USA)
according to the manufacturer’s instructions, essentially as
previously described [64, 87]. Briefly, harvested cells were
washed with PBS and resuspended in Annexin-VFLUOS
labeling solution (100 μL). After incubation (10–15 min, 15–
25◦C), cells were transferred to fluorescence-activated cell
sorting (FACS) tubes and diluted 1 : 5 with buffer provided
in the kit. Fluorescence in cells was analyzed with a FACscan
flow cytometer (BD Biosciences, Sparks, MD, USA) at an
excitation wavelength of 488 nm, and data were processed
with WinMDI 2.9 software.
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2.9. Statistical Analyses. Results are expressed as mean ±
SEM. Data were evaluated by unpaired, two-tailed Student’s
t-test for differences between two conditions or by analysis
of variance with appropriate posthoc tests for larger sets,
as previously described [80, 81, 87]. Significance levels are
described in the figure legends, and a P value <0.05 was
considered to reflect a significant difference.

3. Results

3.1. INS-1 Cell iPLA2γ Expression and the Influence of Inflam-
matory Cytokines and Oxidative Agents. INS-1 insulinoma
cells were found to express iPLA2γ mRNA and iPLA2γ-
immunoreactive protein by quantitative PCR and by Western
blotting, respectively (Figure 1), and also to exhibit iPLA2

activity (not shown). Incubation with the inflammatory
cytokines IL-1β and IFN-γ resulted in increased INS-1 cell
expression of iPLA2γ mRNA in a concentration-dependent
manner (Figure 1(a)), and expression of iPLA2γ immunore-
active protein exhibited a similar pattern (Figure 1(b)).

The major iPLA2γ-immunoreactive band (Figure 1(b))
migrated with an apparent MW of about 74 kDa on SDS-
PAGE and Western Blotting analyses of INS-1 cell lysates,
but other bands of variable intensity were observed with
apparent MW between 40 and 88 kDa (not shown), as previ-
ously reported [88, 89]. Although full-length iPLA2γ cDNA
encodes an 88 kDa protein, transcriptional and translational
regulatory mechanisms result in production of multiple gene
products of various sizes, and the major species often migrate
with apparent MW of 74–77 kDa [88, 89].

The increased expression of iPLA2γ mRNA induced by
IL-1β and IFN-γ was dependent on the incubation time
(Figure 1(c)). Incubation of INS-1 cells with the oxidative
agents streptozotocin (STZ) [79] (Figure 2(a)) or t-butyl-
hydroperoxide (TBHP) [70] (Figure 2(b)) also resulted in a
concentration-dependent increase in expression of iPLA2γ
mRNA (Figure 2) and protein (not shown).

These findings suggested the possibility that upregula-
tion of iPLA2γ expression might represent a compensatory
response to injurious agents in order to enhance β-cell sur-
vival in the settings of inflammation or oxidative stress. To
examine this possibility, effects of suppressing INS-1 cell
iPLA2γ expression were examined.

3.2. Establishing iPLA2γ-Knockdown INS-1 Cell Lines. INS-
1 cells were infected with FIV constructs containing inserts
that produced either scrambled RNA (control) or shRNA
directed against sequences in iPLA2γ mRNA. Selection of
neomycin-resistant cells resulted in isolation of two clones
that had stably incorporated knockdown constructs and
expressed less than 20% of the control cell iPLA2γ mRNA
content when analyzed by real-time PCR (Figure 3(a)) or
Northern blots (not shown) and reduced amounts of iPLA2γ
immunoreactive protein on Western blots (Figure 3(b)). The
iPLA2γ-knockdown (iPLA2γ-KD) cell lines also exhibited a
reduction in iPLA2 activity (not shown) that was comparable
in magnitude to the reduction in mRNA levels (Figure 3(a)).
The level of iPLA2γ expression was a stable property of

control and iPLA2γ-KD INS-1 cell lines that persisted on
serial passage in culture.

3.3. INS-1 Cell Line Proliferation Rates. Cell proliferation was
measured using an indicator that exhibits strong fluorescence
enhancement upon association with nucleic acids [82]. Iden-
tical numbers of cells of each INS-1 cell line were seeded at
time 0, and their growth rates were monitored for 72 hr. INS-
1 iPLA2γ-KD lines proliferated at rates that were significantly
lower than those for control INS-1 cells (Figure 4). Similar
results were obtained when proliferation was measured by
BrdU incorporation into DNA [83] and when seeding was
performed at different initial cell densities (not shown).

3.4. Lipid Peroxidation in INS-1 Cell Lines. Lipid peroxida-
tion was monitored by measuring TBARS [64, 84] in INS-1
cell lines incubated with IL-1β and IFN-γ or with the oxidant
agents STZ or TBHP under conditions similar to those in
Figures 1 and 2. Relative to cells incubated only with vehicle,
incubation with the cytokine mixture induced a significant
increase in lipid peroxidation in both control INS-1 cells
(1.60± 0.03-fold) and in iPLA2γ-KD cells (2.71± 0.47-fold),
and the level achieved in the latter (0.92 ± 0.16 pmol/μg
protein) significantly exceeded that in the former (0.54 ±
0.01 pmol/μg) (Figure 5). A similar pattern was observed
upon incubation with STZ, which induced a significant rise
in lipid peroxidation in control INS-1 cells (1.44 ± 0.04-
fold) and in iPLA2γ-KD cells (2.12 ± 0.09-fold), and the
level achieved in the latter (0.73±0.07 pmol/μg) significantly
exceeded that in the former (0.47±0.04 pmol/μg) (Figure 5).
Incubation with TBHP also induced a rise in the lipid
peroxide content of both control INS-1 cells (2.20 ± 0.09-
fold) and in iPLA2γ-KD cells (2.56 ± 0.15-fold), and there
was a nonsignificant trend for the level achieved in the latter
(0.86 ± 0.05 pmol/μg) to exceed that in the former (0.74 ±
0.03 pmol/μg).

3.5. HPLC-ESI-MS/MS Analysis of Oxidized Lipid Molecular
Species That Accumulate in INS-1 Cells Incubated with
Streptozotocin. To examine oxidized lipid molecular species
in INS-1 cells, LC/ESI/tandem mass spectrometric scanning
was used to detect parent ions that liberate an oxidized
polyunsaturated fatty acid carboxylate anion (Figure 6(a))
upon collisionally activated dissociation (CAD) [85].
Hydroxyeicosatetraenoate (HETE) (m/z 319.3) arising from
the oxidized analog of the glycerophosphoethanolamine
(GPE) species 18 : 0/20 : 4-GPE (oxy-analog m/z 782.76) was
found to represent the most abundant of the oxidized lipid
species in INS-1 cells (Figure 6(b)), which is consistent with
the facts that this is also the most abundant oxidized GPE
lipid in activated platelets [85] and that 18 : 0/20 : 4-GPE is
the most abundant GPE lipid in INS-1 cells [90] and rat islets
[91]. Figure 6(b) displays an MS/MS scan for parent [M-H]−

ion precursors over the range m/z 400 to m/z 2000 that yield
the HETE [M-H]− (m/z 319.3) upon collisionally activated
dissociation, and m/z 782.76 is the predominant parent ion
observed. Figure 6(c) is an expansion of that mass spectrum
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(c) Time course of cytokine effects on iPLA2γ mRNA

Figure 1: Influence of the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ) on iPLA2γ expression by INS-1 cells. Control
INS-1 cells were incubated with vehicle alone or with various concentrations of IL-1β and IFN-γ for 16 hr, and iPLA2γ mRNA levels were
then determined by quantitative PCR (panel (a)) and iPLA2γ protein levels by Western blotting (panel (b)), as described in Experimental
Procedures. In panel (c), control INS-1 cells were incubated with IL-1β (5 ng/mL) and IFN-γ (80 ng/mL) for various intervals (0, 8, 16, 24,
and 48 hr), at the end of which iPLA2γ mRNA levels were determined by quantitative PCR. In panels (a) and (c), mean values± SEM (n = 4)
are displayed, and an asterisk (∗) indicates a significant difference (P < 0.05) from the condition in which the concentration (panel (a)) or
time (panel (b)) parameter value was zero. The immunoblot in panel (b) is representative of four experiments.

over the range m/z 782.5 to 785.0 that illustrates the [13C]
isotopomer distribution of the [M-H]− ion.

The content of the oxylipid species (C18:0/HETE)-GPE
in INS-1 cells was quantified by LC/ESI/MS/MS MRM scan-
ning of the transition 782.76 → 319.5 (Figures 6(d)–6(g)),
and incubation with STZ was found to induce an increase in
the (C18:0/HETE)-GPE content of both control INS-1 cells
transfected with vector only (Figures 6(d) and 6(e)) and in
iPLA2γ-knockdown INS-1 cells (Figures 7(f) and 7(g)). Both
basal levels of (C18:0/HETE)-GPE and those achieved after

incubation with STZ for the iPLA2γ-knockdown INS-1 cells
exceeded those for control INS-1 cells (Figure 7(h)), and this
is consistent with the proposal that iPLA2β acts to excise oxi-
dized PUFA residues from phospholipids so that the resultant
lysophospholipid can be reacylated with an unoxidized fatty
acid substituent to restore the structure and function of the
parent phospholipid [63, 64].

Oxidized cardiolipin species were not observed directly
due to the relatively low abundance of the parent lipid among
all cellular lipids and the tendency of linoleate residues,
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Figure 2: Influence of the oxidant agents streptozotocin (STZ) and tert-butylhydroperoxide (TBHP) on iPLA2γ expression by INS-1 cells. Control
INS-1 cells were incubated with various concentrations of STZ (panel (a)) or TBHP (panel (b)) for 16 hr, and iPLA2γ mRNA levels were
then determined by quantitative PCR, as in Figure 1(a). Mean values ± SEM (n = 4) are displayed, and an asterisk (∗) indicates a significant
difference (P < 0.05) from the condition in which the concentration of the oxidant agent was zero.

which are the principal fatty acid substituents of cardiolipin,
upon oxidization to undergo chain scission reactions that
yield a variety of truncated sn-2 substituents rather than a
single-predominant species [92]. Similar behavior has been
observed for other polyunsaturated fatty acids [93]. Mito-
chondria contain substantial amounts of GPE lipids, how-
ever, and they undergo the largest fractional modification
of measured mitochondrial lipid classes upon induction of
apoptosis [94], which suggests that GPE lipid oxidation rep-
resents a surrogate marker for mitochondrial phospholipid
oxidation.

3.6. Apoptosis of INS-1 Cell Lines. Apoptosis was monitored
by determination of Annexin V binding by FACS [64, 87]
with INS-1 cell lines incubated with IL-1β and IFN-γ under
conditions similar to those in Figure 1. The inflammatory
cytokine mixture induced a robust increase in apoptosis
of both control INS-1 cells and iPLA2γ-KD cells, and the
percentage of apoptotic cells for the cytokine-treated condi-
tion was significantly higher for the latter (30.2± 0.5%) than
for the former (25.7 ± 0.9%) (Figure 7(a)). Incubation of
the INS-1 cell lines with the oxidant agent STZ also induced
a concentration-dependent increase in the percentage of
apoptotic cells that was significantly higher for iPLA2γ-KD
cells (12.1±0.9) than for control INS-1 cells (4.5±0.9) at the
highest STZ concentration (7.5 mM) tested (Figure 7(b)).

4. Discussion

Loss of insulin-secreting β-cells occurs in both type I and
type II diabetes mellitus (T1DM and T2DM), and apoptosis
is thought to be the major mechanism by which β-cell death
occurs [16, 19]. Lipid oxidation plays an important role in
initiating apoptosis [17, 20–29], and it has been suggested

that generation of reactive oxygen species results in car-
diolipin peroxidation in mitochondrial membranes, which
destabilizes the lipid bilayer and potentiates membrane per-
meabilization, cytochrome c release, and apoptosis [61–67].
Understanding the mechanisms that the β-cell uses to pro-
tect its mitochondrial membranes from oxidative injury
could yield insight into the pathogenesis of β-cell loss and
development of means to treat or prevent T1DM and T2DM.

Phospholipases A2 (PLA2) hydrolyze glycerophospho-
lipids to yield a free fatty acid and a 2-lysophospholipid
[77, 78], and PLA2 are thought to participate in signaling and
membrane-remodeling processes that include repairing of
oxidative damage to membranes in order to preserve
their functional integrity [70–74]. When lipid peroxidation
occurs, the oxidized sn-2 fatty acid substituent of phospho-
lipids becomes less hydrophobic and more accessible to phos-
pholipases [73]. The lysophospholipid that results from
PLA2-catalyzed removal of oxidized fatty acid substituents
can be reacylated with an unoxidized fatty acid to restore the
native structure and function of the parent phospholipid.

Two members of a lipase family [95] that has been des-
ignated Group VI PLA2 [96] or patatin-like phospholipase
domain-containing (PNPLA) proteins [97] may play such
a role in remodeling mitochondrial cardiolipin, and neither
enzyme requires Ca2+ for catalytic activity. Group VIA PLA2

(iPLA2β) was the first member of this family to be recog-
nized [98, 99] and is also designated PNPLA9. Group VIB
PLA2 (iPLA2γ) was recognized thereafter [88, 100] and is
also designated PNPLA8 [96, 97]. iPLA2γ, is expressed in
mitochondria and peroxisomes [89, 101, 102], which are
both membranous organelles that produce reactive oxygen
species, and iPLA2γ cooperates with iPLA2β in stimulated
phospholipid hydrolysis in some circumstances [103].

Mitochondria also contain iPLA2β, and observations in a
Drosophila model of the human Barth syndrome have raised
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that produced either scrambled RNA (control) or siRNA directed
against sequences in iPLA2γ mRNA (KD1, KD2). The relative
iPLA2γ expression levels in control INS-1 cells and in the iPLA2γ-
knockdown (KD) cell lines KD1 and KD2 were assessed by quanti-
tative PCR for mRNA (panel (a)) and by Western blotting analysis
for iPLA2γ-immunoreactive protein (panel (b)). In panel (a), mean
values ± SEM are displayed (n = 4). An asterisk (∗) denotes a
significant difference (P < 0.05) from the value for control INS-
1 cells. The immunoblot in panel (b) is representative of four
experiments.

interest in the possibility that iPLA2β participates in car-
diolipin remodeling [104]. Barth syndrome results from
mutations in the tafazzin gene, which encodes a mitochon-
drial phospholipid-lysophospholipid transacylase, and the
disorder is characterized by severe cardioskeletal myopathy,
low-cardiolipin content, and abnormal cardiolipin fatty acyl
composition [105]. Tafazzin-deficient Drosophila have sim-
ilar abnormalities in cardiolipin content and mitochondrial
function associated with monolysocardiolipin accumulation,
and this phenotype is suppressed by inactivation of the
iPLA2β gene, suggesting that iPLA2β contributes to mono-
lysocardiolipin formation [104].

Several observations indicate that iPLA2γ is also involved
in cardiolipin remodeling. Selective overexpression of
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Figure 4: Proliferation rates of INS-1 cell lines. Control INS-1 cells
(open circles) or the iPLA2γ-Knockdown cell lines KD1 (closed
circles) or KD2 (closed triangles) were seeded onto the wells of
microtiter plates (density 3 × 103 cells/well) and incubated for vari-
ous intervals (24, 48, or 72 hr), at the end of which cell number was
estimated based on DNA content by using a fluorescent indicator
as described in Experimental Procedures. Mean values ± SEM are
displayed (n = 4). An asterisk (∗) denotes a significant difference
(P < 0.05) from the value for the control INS-1 cell line at the
indicated time point.

iPLA2γ in mouse myocardium results in altered mitochon-
drial function associated with cardiac dysfunction [106,
107], and genetic ablation of iPLA2γ produces a deficient
mitochondrial bioenergetic phenotype [108] associated with
cognitive dysfunction and hippocampal abnormalities that
include mitochondrial degeneration and alterations in car-
diolipin content and molecular species distribution [109].
iPLA2γ-null mice also exhibit exaggerated high-fat diet-
induced changes in tissue cardiolipin content and composi-
tion and altered patterns of mitochondrial fatty acid oxi-
dation [110, 111]. Cardiolipin remodeling in myocardial
mitochondria that occurs during heart failure in rats also
appears to involve iPLA2γ [112].

iPLA2β and iPLA2γ cooperate in effecting certain cell
fate decisions [113], and both enzymes may participate in
determining whether a cell survives or succumbs to oxidative
injury via their roles in cardiolipin metabolism. In β-cells,
stimuli that induce apoptosis cause iPLA2β to redistribute
from cytosol to mitochondria [63–65, 92, 114–119]. Stau-
rosporine, for example, stimulates INS-1 cell mitochondrial
superoxide production, and this results in mitochondrial
membrane peroxidation, cytochrome c release, and apopto-
sis [63–65]. Staurosporine-induced membrane peroxidation
and apoptosis in β-cells are attenuated by overexpressing
iPLA2β and amplified by its pharmacologic inhibition or
genetic ablation [63–65]. This may reflect a role for iPLA2β
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Figure 5: Influence of inflammatory cytokines and oxidant agents
on lipid peroxidation of INS-1 Cell Lines. Control INS-1 cells (light
bars) or iPLA2γ-Knockdown INS-1 cells (dark bars) were incubated
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IFN-γ (80 ng/mL) or with STZ (5 mM) or TBHP (50 μM) for 16 hr,
and lipid peroxidation was then determined by the TBARS assay, as
described in Experimental Procedures. Mean values ± SEM (n = 4)
are displayed, and an asterisk (∗) indicates a significant difference
(P < 0.05) from control INS-1 cells. An (X) indicates a significant
difference (P < 0.05) from the vehicle-treated condition.

to excise oxidized cardiolipin fatty acid residues to generate
monolysocardiolipin species that can be reacylated to restore
the native structure [63–65].

Pharmacologic [120] observations suggest that iPLA2γ
may play a similar role in cardiolipin remodeling [112], and
this is consistent with the abnormalities in cardiolipin con-
tent and composition that result from genetic manipulation
of iPLA2γ expression [108–110]. In renal proximal tubular
cells, pharmacologic inhibition or molecular biologic sup-
pression of expression of iPLA2γ increases susceptibility to
oxidant-induced lipid peroxidation, mitochondrial dysfunc-
tion, and cell death [70–72]. These observations prompted us
to determine whether iPLA2γ might play a similar role in β-
cells, given the importance of β-cell loss via oxidative injury
in the development of diabetes mellitus [20–35].

Our findings indicate that iPLA2γ could participate in
maintaining the aggregate mass of β-cells by promoting
their proliferation and by protecting them from oxidative
membrane injury induced by inflammatory cytokines or
by oxidant agents that leads to apoptosis. Our iPLA2γ-
knockdown (KD) INS-1 cell lines exhibited significantly
lower growth rates than control INS-1 cells did. The inflam-
matory cytokines IL-1β and IFN-γ increased INS-1 cell
iPLA2γ expression, and a similar response occurred when
INS-1 cells were incubated with the oxidant agents STZ and
TBHP. Those findings suggest that iPLA2γ may be upregu-
lated as a compensatory repair mechanism in response to
agents that injure β-cells, and this is consistent with the
observations that iPLA2γ-KD INS-1 cells were also more

sensitive than control cells to injury from inflammatory cyto-
kines and oxidative agents. These findings in β-cell lines are
consistent with the increased sensitivity to oxidant-induced
lipid peroxidation and apoptosis of renal proximal tubular
cells with reduced iPLA2γ expression [70] and suggest that
iPLA2γ plays a role in repairing oxidized membranes and
mitigating oxidant-induced cellular injury.

The mechanisms by which cytokines and oxidant agents
increase the expression of iPLA2γ have not yet been deter-
mined experimentally, but the accumulation of iPLA2γ
mRNA suggests that increased transcription is involved.
Current experiments to examine potential mechanisms are
focused on three possibilities. One is that the redox sensitive
transcription factor NFκB is activated via ROS-mediated
inactivation of its inhibitory subunit IκB [121–124] and that
NFκB stimulates transcription of the iPLA2γ gene directly or
indirectly. NFκB activation is known to contribute to β-cell
injury induced by cytokines [125] under conditions similar
to those employed in the studies described here. Two is that
transcriptional activation of the iPLA2γ gene might occur via
p38 MAPK-dependent pathways, since stimuli that induce β-
cell ER stress and apoptosis result in p38 MAPK activation
[87], and ROS-induced p38 MAPK activation contributes to
apoptosis in other cells [126, 127].

Three is that ROS-induced oxidation of cellular phos-
pholipids yields agonistic ligands for the transcription factor
PPARγ, as previously reported [128], which then activates
transcription of the iPLA2γ gene. It is of interest in this
regard that conditions that result in differentiation of 3T3L1
fibroblasts to adipocytes lead to increased expression of
PPARγ and in transcriptional upregulation of iPLA2γ and
iPLA2β and that siRNA directed against either enzyme blocks
differentiation [113].

The presence of oxidized phospholipids in INS-1 cells
treated with oxidant agents in the studies described here was
determined by performing LC/MS/MS scans of lipid extracts
for precursors of m/z 295, m/z 319, and m/z 343 in order
to identify glycerolipid molecular species that contained
singly oxygenated forms of the polyunsaturated fatty acids
(PUFA) linoleate (C18:2), arachidonate (C20:4), or docosa-
hexaenoate (C22:6), respectively. The major oxylipid species
identified was (stearoyl, hydroxyeicosatetraenoyl)-glycero-
phosphoethanol-amine [(C18:0/HETE)-GPE], and it was
quantified by MRM of the transition 782.6 → 319.3, which
corresponds to production of the HETE carboxylate anion
from the [M-H]− ion of the parent oxy-phospholipid species.
Minor species were observed at other m/z values but were
not further characterized because of the low signal obtained
from the limited amount of lipid contained in the quantities
of INS-1 cells with which it was practical to work.

Although C18:0/HETE-PE is the most abundant oxidized
phospholipid observed here, it is probably not the only oxi-
dized species formed under these conditions. Oxidized lipids
represent only a tiny fraction (substantially below 1%) of
their unoxidized precursors, and all but the most abundant
species will likely fall below the limit of quantitation, even if
present in the mixtures, when the amount of membrane lipid
available for analysis is limiting. In addition, other phos-
pholipid oxidation products, for example, those that contain
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Figure 6: Continued.
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Figure 7: Influence of inflammatory cytokines and streptozotocin (STZ) on apoptosis of INS-1 cell lines. In panel (a), control INS-1 cells or
iPLA2γ-knockdown INS-1 cells (iPLA2-KD) were incubated with vehicle only (light bars) or with IL-1β (5 ng/mL) and IFN-γ (80 ng/mL)
(dark bars) for 16 hr, and the percentages of apoptotic cells were then determined by FACS as described in Experimental Procedures. In
panel (b), control INS-1 cells (light bars) or iPLA2γ-Knockdown INS-1 cells (dark bars) were incubated with vehicle alone or with varied
concentrations of STZ (5 mM or 7.5 mM) for 16 hr, and the percentages of apoptotic cells were then determined as in panel (a). Mean
values ± SEM (n = 4) are displayed. An asterisk (∗) indicates a significant difference (P < 0.05) between control cells and iPLA2γ-KD cells.
An (X) indicates a significant difference (P < 0.05) from the vehicle-treated condition.
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esterified hydroperoxy- or ketofatty acid derivatives [129],
would not have been detected by the approach used here,
which would also have failed to detect esterified short chain
substituents arising from PUFA oxidation [130]. Moreover,
neither the regio- nor the stereospecificity of oxygenation
was determined in our studies because of the limited amount
of oxidized lipid available for characterization, and it is
possible that C18:0/HETE-PE consisted of several distinct
isomers, as reported for other cells [85].

Nonetheless, we think that C18:0/HETE-PE represents a
reasonable marker for phospholipid oxidation in our exper-
iments for several reasons. First, oxidized species of PE are
much more abundant in stimulated monocytes and platelets
than are oxidized species of other phospholipid head group
classes, including PC, PI, PS, or PG [131], and C18:0/HETE-
PE is the most abundant oxidized diacyl-phospholipid under
those conditions [85, 131, 132]. Second, the precursor C18:0/
C20:4-PE is the most abundant PE species in INS-1 cells [90,
91]. Moreover, mitochondria contain substantial amounts of
PE lipids, and they undergo the largest fractional modifica-
tion of measured mitochondrial lipid classes upon induction
of apoptosis [94], which suggests that PE lipid oxidation
serves as a surrogate marker for mitochondrial phospholipid
oxidation.

The LC/MS/MS measurements reported here indicate
that INS-1 cell C18:0/HETE-PE content rises upon incuba-
tion with an oxidant agent and is higher in cells in which
iPLA2γ expression level has been knocked down compared
to control cells. This is compatible with a role for iPLA2γ in
remodeling of oxidized phospholipids that involves excision
of oxidized PUFA residues to yield lysophospholipid species
that can be reacylated with unoxidized fatty acyl-CoA molec-
ules. This would regenerate the native phospholipid structure
and restore its normal function, thereby mitigating the effects
of oxidative insults that might otherwise induce apoptosis.

5. Conclusions

Group VIB Phospholipase A2 (iPLA2γ) is distributed in
mitochondria and expressed by insulin-secreting pancreatic
islet β-cells and INS-1 insulinoma cells that are susceptible
to oxidative injury by inflammatory cytokines, for example,
IL-1β and IFN-γ, and by oxidizing toxins, for example,
streptozotocin (STZ) or t-butyl-hydroperoxide (TBHP), via
processes relevant to β-cell loss in types 1 and 2 diabetes
mellitus. We demonstrate here that INS-1 cells incubated
with IL-1β and IFN-γ, with STZ, or with TBHP increase their
expression of iPLA2γ mRNA and protein and that INS-1
knockdown (KD) cell lines with reduced iPLA2γ expression
proliferate more slowly than control INS-1 cells and undergo
increased membrane peroxidation when incubated with
cytokines or oxidants. Accumulation of the oxidized phos-
pholipid species (1-stearoyl, 2-hydroxyeicosatetraenoyl)-sn-
glycerophosphocholine was demonstrated in STZ-treated
INS-1 cells by LC/MS/MS scanning, and the levels in iPLA2γ-
KD cells exceeded those in control cells. iPLA2γ-KD INS-1
cells also exhibited higher levels of apoptosis than control
cells when incubated with STZ or with IL-1β and IFN-γ.
Together, these observations suggest that iPLA2γ promotes

β-cell proliferation and that its increased expression during
inflammation or oxidative stress may serve to mitigate mem-
brane injury and thereby to enhance β-cell survival under
these conditions.
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