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Abstract: Congenital laryngeal paralysis (CLP) is an inherited disorder that affects the ability of the
dog to exercise and precludes it from functioning as a working sled dog. Though CLP is known to
occur in Alaskan sled dogs (ASDs) since 1986, the genetic mutation underlying the disease has not
been reported. Using a genome-wide association study (GWAS), we identified a 708 kb region on
CFA 18 harboring 226 SNPs to be significantly associated with CLP. The significant SNPs explained
47.06% of the heritability of CLP. We narrowed the region to 431 kb through autozygosity mapping
and found 18 of the 20 cases to be homozygous for the risk haplotype. Whole genome sequencing
of two cases and a control ASD, and comparison with the genome of 657 dogs from various breeds,
confirmed the homozygous status of the risk haplotype to be unique to the CLP cases. Most of the
dogs that were homozygous for the risk allele had blue eyes. Gene annotation and a gene-based
association study showed that the risk haplotype encompasses genes implicated in developmental
and neurodegenerative disorders. Pathway analysis showed enrichment of glycoproteins and gly-
cosaminoglycans biosynthesis, which play a key role in repairing damaged nerves. In conclusion,
our results suggest an important role for the identified candidate region in CLP.

Keywords: congenital laryngeal paralysis; Alaskan sled dog; Alaskan husky; GWAS; WGS; risk
haplotype; CFA18; ALX4; EXT2; TSPAN53I11

1. Introduction

Alaskan sled dogs (ASD), also known as Alaskan Huskies, were originally bred as
working dogs for hauling cargo-laden sleds over snow-covered arctic terrain [1]. Over the
years, they have evolved as highly aerobic mammals and elite endurance athletes through
selective breeding with pure-bred dogs and are used in modern sled dog racing [2,3].
Genetic disorders such as congenital laryngeal paralysis (CLP), which causes respiratory
distress, have a debilitating effect on the performance and survival of such elite runners.
The earliest incidence of CLP in ASD was reported in the year 1986 [4]. Since then, there has
been a paucity of information on the status of CLP in the ASD population in the literature.
In contrast, anecdotal evidence through communication with professional mushers in the
ASD community suggested CLP to be a commonly known condition, with unknown rates
of incidence, and breeders have noted it to be associated with blue eyes and white facial
markings [5]. We had previously published a clinical case series on CLP in 25 ASDs and
found all CLP cases had blue eyes and white facial markings [5].

Congenital Laryngeal paralysis is an inherited condition in dogs in which one or both
recurrent laryngeal nerves are impaired, typically by a degenerative process [6–9]. This
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results in the loss of proper functioning of the larynx causing insufficient abduction of
the arytenoid cartilages during inspiration resulting in upper airway obstruction [10,11],
resulting in breathing difficulties, exercise and heat intolerance, and increased risk of aspira-
tion pneumonia [12]. Respiratory distress, voice impairment (dysphonia), and inspiratory
stridor are the main clinical signs of CLP in dogs [5,13]. The affected dogs are known as
“Wheezers” within the ASD community due to the abnormal respiratory bruit or wheezing
sound commonly made by affected dogs [5]. The degree of respiratory distress is reported
to correlate with the degree of nerve impairment and whether the disease is unilateral
or bilateral [14]. Diagnosis of CLP is based on clinical signs and is confirmed through
laryngeal endoscopic inspection [15]. Affected dogs are surgically treated to improve
breathing through unilateral cricoarytenoid lateralization [16,17]. Interestingly, dogs may
spontaneously improve with age, however, they are generally unable to become elite-level
racing sled dogs [4,5].

Laryngeal paralysis has been reported in several dog breeds, including Alaskan mala-
mutes [18], Bull terriers [19], Bouviers des Flandres [9,20], Siberian huskies [21], Siberian
husky x Alaskan malamute crossbreds [7], Leonbergers [22], Dalmatians [23], Labrador
retrievers [12], Great Pyrenees [24], and Rottweilers [25,26]. In many of these dogs, la-
ryngeal paralysis is associated with juvenile-onset polyneuropathy, including esophageal
dysfunction [13,22,24–26]. The combination of laryngeal paralysis and polyneuropathy,
also known as laryngeal paralysis and polyneuropathy complex (LPPC), has variable ages
of onset [12]. Late-onset forms of LPPC are referred to as geriatric onset laryngeal paral-
ysis polyneuropathy (GOLPP) [27]. Though mutations in genes such as RAPGEF6 [13],
GJA9 [28], ARHGEF10 [29], CNTNAP1 [12], RAB3GAP1 [30], and NDRG1 [31] have been
found to be associated with canine laryngeal paralysis, they were identified in dogs suffer-
ing from polyneuropathy. However, CLP in the Alaskan sled dogs in our study was found
to be due to mononeuropathy of the recurrent laryngeal nerves without polyneuropathy [5].
Moreover, the association of several genetic loci, across breeds suggests that mutations
causing CLP might be breed specific and complex [12,13,28–31].

Our aim in this study was to identify the genetic loci associated with mono-neuropathic
congenital laryngeal paralysis in ASD.

2. Materials and Methods
2.1. Sample Collection and Phenotype Assignment

Fifty ASDs were sampled, including 23 male and 27 female dogs. Among these,
20 dogs showed clinical signs of laryngeal paralysis (11 male and 9 female dogs). Since the
study was about understanding the genetic basis of congenital laryngeal paralysis (CLP),
dogs aged two years or older with no reported breathing problems were designated as
controls. Dogs aged less than 1 year that were reported to be suffering from breathing
difficulties by owners were clinically examined and confirmed for laryngeal paralysis
before inclusion in this study as cases. Dogs that did not meet certain criteria, such as
missing medical records, age at first onset, diagnosis with other respiratory disorders, or
when clinical signs were observed only after more than 5 miles (8 km) of mushing, were
excluded [5]. Physical, neurological, complete blood count, serum biochemical analysis,
and orthopedic examinations were performed on all cases. Esophagrams were obtained
when possible, using previously described protocols [6].

2.2. DNA Isolation and Genotyping

Whole blood samples were collected in 5 mL EDTA tubes. Genomic DNA was isolated
from white blood cells using a two-step lysis and salt out method [32]. Each sample’s
quantity and quality were checked using a spectrophotometer (Epoch microplate spec-
trophotometer, USA). Thirty-five samples, including all the cases, were genotyped on
an Illumina Canine HD Beadchip containing 173,662 SNPs, while 15 samples were geno-
typed on a custom Illumina Canine HD chip through Embark Veterinary [33], containing
217,317 single nucleotide polymorphisms (SNPs).
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2.3. Imputation

Samples genotyped on the SNP chips were merged and filtered for quality using
PLINK ver 1.9 [34]. The following thresholds were applied for quality control; SNPs with
genotype call rate < 0.90, individual sample call rate < 0.90, minor allele frequency < 0.05,
and Hardy Weinberg equilibrium p < 1 × 10−5 were removed. After quality control,
66,597 SNPs and 50 dogs remained for analysis. Principal component analysis did not
show any population stratification, confirming there was no bias due to the choice of the
chip used for genotyping. These genotypes were imputed with Minimac4 ver 1.0.2 [35],
using a reference panel containing 61,065,811 SNPs from 660 dogs, including ASDs, modern
breeds, village dogs, and wild canids [36] (Supplementary File S1). The reference panel
was phased on a per-chromosome basis using Beagle ver 5.2 [37]. The reference panel was
converted to m3VCF format using minimac3 ver 2.0.1 [35] prior to their use for imputation
with minimac4 ver 1.0.2. The target dataset also included 3 dogs for which whole genome
sequence data was available. The dataset was then imputed on a per-chromosome basis
with default settings. The imputed individual chromosome data were then concatenated
using VCFtools 0.1.16 [38] and only bi-allelic SNPs were retained for further analysis. The
imputed dataset was tested for imputation accuracy based on genotype concordance and
imputation quality score [39]. The variants with a Minimac4 empirical R-squared ≥ 0.6
were retained for downstream analysis and the average genotype concordance rate between
imputed and true genotypes was 98.2%. This resulted in a final dataset with 1,054,074 SNPs
with an average empirical R-square of 0.96. The SNPs were annotated with the variant
effect predictor (VEP) tool [40].

2.4. Genome-Wide Association Study

All GWAS conducted in this study were performed using the mixed linear model
implemented in GCTA ver 1.91.4 [41]. The model included a genomic relationship matrix
estimated with the same genotypes to correct for genomic inflation [42]. Only autosomal
SNPs were used in the analysis. Genome-wide significance thresholds were based on
Bonferroni correction and were set at 9.487 × 10−9 (0.01/1,054,074) for the imputed SNP
GWAS, and at 1.50 × 10−7 (0.01/66,597) for the original dataset that had 66,597 SNPs.
Manhattan plots and QQ-plots were generated with the R package, CMplot [43]. Haplo-
types around significantly-associated loci were constructed with Beagle 5.2 [37]. Linkage
disequilibrium analysis between SNPs was performed with PLINK ver 1.9 [34]. All the
genome positions reported in this study refer to the CanFam3.1 reference assembly (acces-
sion number: GCF_000002285.3). The locus zoom plot was generated in R ver 4.2.0 [44] with
an open-source script (https://github.com/Geeketics/LocusZooms, accessed on 20 Apirl
2021). Genomic heritability (h2) was calculated as the ratio of additive genetic variance
(Vg) and phenotypic variance (Vp), and variance components were calculated using the
genome-based restricted maximum likelihood (GREML) method implemented in GCTA
ver 1.91.4 [41].

2.5. Gene-Based Association Study

A gene-based association study using Multi-Marker analysis of genomic annotation
(MAGMA) v 1.07 b [45] and the fastBAT option in GCTA ver 1.91.4 [46] was used for
identifying potential candidate genes associated with CLP. All SNPs from the GWAS
analysis were annotated to genes within 5 kb upstream or downstream, the resulting
genes and the summary statistics from the GWAS were used in the gene-based association
analysis. The annotation database (CanFam 3.1) was downloaded from Ensembl [40]
and included gene location with start and end positions for canine genes. While the
fastBAT method leverages linkage disequilibrium and summary level data from GWAS
and performs a set-based association analysis, MAGMA uses test statistics for individual
SNPs and calculates aggregated p-values at the gene level using a known approximation of
sampling distributions. KEGG Pathway enrichment analysis of the most significant genes
from the gene-based association study (p < 0.001) was performed using DAVID [47].

https://github.com/Geeketics/LocusZooms
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2.6. Whole Genome Sequence Analysis

Whole genome sequence data of 3 ASD (2 cases, 1 control) was generated in this
study. Illumina TruSeq fragment library with 400 bp inserts were prepared and the libraries
were sequenced on a HiSeq 3000 instrument at an average of 20.3 X coverage. A total of
1,730,731,093 reads were generated. The sequence data analysis, variant calling, functional
annotation, and prediction of functional effects were performed as described previously [48].
Briefly, the reads were aligned and mapped to the Canine reference assembly, CanFam3.1,
using the Burrows-Wheeler Aligner (BWA-mem) ver 0.7.17 [49]. The reads were then sorted
by co-ordinates using samtools ver 1.14 [50] and PCR duplicates were mapped with Picard
tools ver 2.26.5 (http://broadinstitute.github.io/picard/, accessed on 17 August 2021).
Local recalibration, realignment, variant calling, and quality filtering were performed
using the Genome analysis tool kit (GATK) ver 4.2 [51]. The SNPs were annotated using
SnpEff v5.1 [52]. SNPsift ver 5.1 [52] was used for filtering for non-synonymous variants
in the region of interest in the affected dogs. The Integrative Genomics Viewer (IGV)
2.11.6 [53] was used for visual inspection and screening for structural variants in the region
of interest in CLP-affected dogs. Sequences generated in this study are deposited in the
NCBI database; BioSample ids are given in Supplementary Table S1.

3. Results
3.1. Phenotype

Clinical presentations, CLP diagnosis, and phenotypes are described in detail by von
Pfeil et al., 2018 [5]. The dataset included 20 cases and 30 controls. Blue, brown, and
marble-eyed dogs were part of the data set. Marble-eyed dogs are dogs with two or more
color in their iris; this condition is referred to as heterochromia iridis. Eye color and sex
information for the dogs are given in (Supplementary Table S2). 16 of the 20 cases were
blue-eyed, while 20 controls had blue eye color.

3.2. Genome-Wide Association Study

The initial GWAS with 66,597 SNPs (30 Controls and 20 Cases) revealed regions on CFA
18 to be significantly associated with CLP (Supplementary Figure S1 and Table S3). Two SNPs
reached Bonferroni corrected genome-wide significance (18: 44849004; p < 4.54 × 10−7; & 18:
44849276; p < 6.8 × 10−7). Careful, manual examination of the region around the lead
SNP revealed that, on average, there is 1 marker per 18,000 bp, which was ~22% less
than the average of 1 marker per 14,450 bp on the Illumina Canine HD chip. There-
fore, we performed SNP imputation with a dataset that included the whole genome se-
quence of 660 dogs [36]. Post quality control of the imputed SNPs, the dataset included
1,054,074 SNPs. A GWAS with the imputed dataset (30 Controls and 20 Cases) revealed
a 708,795 bp region on CFA 18 to be significantly associated (p < 9.487 × 10−9) with CLP
(Figure 1, Supplementary Table S4).

Two hundred twenty-six SNPs reached genome-wide significance. The significant
SNPs on CFA18 explained 11.4% of the genetic and 24.21% of the phenotypic variance and
explained 47.06% of the heritability of CLP in ASD (Figure 2a).

A list of the top genome-wide significantly associated SNPs is given in Figure 2b. The
most significant SNP (18:44849004) was an intronic SNP, located in PRDM11 (PR-Domain
Containing Protein 11). Most of the significantly-associated markers were intergenic
and intronic variants with low to moderate impact (Supplementary Table S5). However,
among these, four markers were missense variants, of which one marker (18:45054697) was
predicted to be a deleterious variant (Sift score = 0.04). All four markers were located within
TSPAN18 (Tetraspanin 18) gene. Eighteen of the cases were homozygous for the deleterious
variant (Supplementary Table S6). A whole genome sequence analysis of two cases and a
control ASD confirmed the presence of this variant in the cases (Supplementary Table S7);
however, the functional significance of this variant is unknown.

http://broadinstitute.github.io/picard/
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A list of the top genome-wide significantly associated SNPs is given in Figure 2b. The 
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Figure 1. Manhattan plot showing the distribution of p-values from the GWAS with imputed SNP
data for CLP in ASD. The genome-wide significance was based on Bonferroni corrected p-value
threshold of 5% (p < 9.487 × 10−9; −log10 p-value = 8.02). Red points are SNPs that reached
genome-wide significance. The heatmap at the bottom of the plot shows the SNP density. The corre-
sponding quantile-quantile (Q-Q) plot showing the expected −log10 p-value against the observed
−log10 p-value, is given at the top. The scale color on the right gives the density of SNPs within a
window of 1 million bp.
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Figure 2. (a) Variance component estimates from genomic markers and their respective standard
error (s.e.) for CLP in ASD; (b) The top ten genome-wide significant SNPs associated with CLP in
ASD, their SNP effect, minor allele frequency, association p-value, functional consequence, and their
annotation with the nearest gene.

3.3. Linkage Disequilibrium and Associated Haplotypes

Linkage disequilibrium (LD) analysis revealed a high linkage of the lead SNP with
SNPs within 1 MB on CFA 18 (Figure 3). The most significant SNP (18:44849004) was in
complete LD (r2 = 1) with 18:44849276. These two SNPs were also the most significant
SNPs from the GWAS with 66,597 SNP chip data (Supplementary Figure S1). The region
of high linkage (r2 > 0.6) with the lead SNP encompassed 750 kb, spanning the region
18:44411803–45152544.
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GWAS results showed that most of the cases were homozygous for lead SNPs on
CFA 18. To define a risk haplotype, we visually inspected the phased haplotypes and
performed autozygosity mapping. We searched for a homozygous region with allele
sharing among cases around the lead SNP on CFA 18 and found a contiguous haplotype
encompassing a region between the two significant SNPs (18:44700683–45132398). The
haplotype included 220 SNPs and spanned 431 kb, covering most of the associated signifi-
cant region in the GWAS analysis (Supplementary Table S6). Eighteen of the 20 cases were
homozygous for the risk haplotype, including all the blue and marble-eyed dogs and one
brown-eyed dog (Table 1). Among the controls, all the blue-eyed and marble-eyed dogs
were heterozygous for the risk haplotype, none of the brown-eyed control dogs carried
the haplotype. None of the control dogs were homozygous for the risk haplotype. The
risk haplotype overlapped the previously identified duplicated region associated with blue
eyes (18:44791417–44890166) [33]. Whole genome sequence analysis confirmed the presence
of the duplicated region in both ASD cases, which were blue-eyed. No other structural
variants were identified in the region [33]. We then compared the ASD variants with the
whole genome sequence of 657 dogs from genetically diverse breeds and found that the
risk haplotype was homozygous only in the two ASD cases (Supplementary Table S7).

Table 1. Segregation of the CFA 18:44700683–45132398 risk haplotype associated with CLP in ASD.

Putative Risk Haplotype (CFA 18:44502007–45132398)
CLP Status N Homozygous Alternative Heterozygous Homozygous Risk

Affected 20 2/20 0/20 18/20
Unaffected 205 9/40 21/40 0/40
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3.4. Annotation of Significant SNPs to Genes and Gene-Based Association Analysis

SNPs were annotated to the nearest genes and the most significant SNPs were within
or nearby PRDM11, SYT13 (Synaptotagmin 13), TP53I11 (Tumor Protein P53 inducible
protein 11), TSPAN18, CD82 (Cluster of differentiation 82), EXT2 (Exostosin Glycosyl-
transferase 2), ALX4 (ALX Homeobox 4), P2RY1 (Purinergic Receptor P2Y1), and ACCS
(1-Aminocyclopropane-1-Carboxylate Synthase) (Figure 2b, Supplementary Table S8). Gene-
based association analysis with MAGMA and fastBAT option in GCTA software identified
PRDM11, SYT13, TP53I11, ALX4, EXT2, and TSPAN18 as the most significantly associated
genes (p < 1 × 10−6) based on the number of SNPs that were significantly associated in
these genes from the GWAS analysis (Figure 3). Pathway enrichment analysis of the most
significant genes showed enrichment for the following terms or pathways; Cholinergic
synapse (cfa04725), Glycerolipid metabolism (cfa00561), Glycosaminoglycan biosynthesis,
and Glycoprotein (Table 2).

Table 2. Pathway enrichment analysis of the significant genes from the gene-based association analysis.

Term/Pathway Q-Value 1 Genes

Cholinergic synapse 0.002 GNG4, CREB3L1, KCNQ1
Glycosaminoglycan biosynthesis 0.010 EXT2, CHST1

Glycerolipid metabolism 0.010 DGKZ, PNPLA2
Glycoprotein 0.010 EXT2, CD82, CREB3L1, TSPAN18, PNPLA2

1 FDR corrected p-value.

4. Discussion

Congenital laryngeal paralysis is an inherited disease that negatively impacts the
survival and quality of life of the affected dog. The genetic basis of CLP in ASD has
not been explored previously, though the presence of CLP in the ASD has been known
for multiple decades. In the present study, we identified a 431 kb haplotype on CFA 18
as a major risk factor for CLP in ASD when in a homozygous state. The risk locus was
unambiguously mapped by GWAS. The identified risk haplotype (18:44700683–45132398)
overlapped the 98.6 kb duplication (18:44791417–44890166) previously identified to be
associated with blue eye color [33].

Several of the affected dogs also had white facial markings. The duplicated region
associated with blue eye color in dogs also partially explains facial markings [33]. As-
sociation between CLP and blue eyes has been reported in Siberian Husky X Alaskan
Malamute crosses and Husky cross breeds [4,7]. In O’Brien and Hendriks’ [4] 1986 report,
they mentioned that the CLP condition along with an associated white coat and blue eyes
had been known among sled dog owners since the 1960′s. Supporting this association
of blue eyes and white facial markings with CLP, the identified risk haplotype encom-
passes ALX 4, which plays an important role in pigmentation [54] and mammalian eye
development [55,56]. Several variants within the gene were significantly associated with
CLP in the GWAS analysis. All the blue-eyed cases, a brown-eyed case, and a marble-eyed
case in our study were homozygous for the risk haplotype, whereas the remaining two
brown-eyed cases did not carry the risk haplotype, suggesting that there might be addi-
tional genetic factors contributing to CLP. Moreover, the significant SNPs on CFA 18, which
included most of the SNPs in the haplotype, explained only 41.06% of the heritability of
CLP. However, the location of the major locus for blue eye color within the risk haplotype,
and the increased prevalence of the risk haplotype amongst blue-eyed ASD’s, suggests that
the causal variant is segregating at a higher frequency amongst blue-eyed ASD’s.

Among the significantly associated genes from the gene-based association study were
EXT2, CD82, TSPAN18, ALX4, and TP53I11. These were among the spectrum of genes
found to be involved in Potocki Schaffer syndrome, which affects the development of
bones, nerve cells in the brain, and other tissues [57]. EXT2, ALX4, and TSPAN18 are
expressed in the neuronal crest, which gives rise to the craniofacial skeleton. MPPED2
(Metallophosphoesterase domain containing 2), located upstream of the risk haplotype, was
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significantly enriched in the fastbat gene-based association analysis. This gene is thought to
play an important role in nervous system development [58]. MPPED2, ALX4, and EXT2 are
associated with WAGR syndrome (Wilms’ tumor, aniridia, genitourinary anomalies, and
mental retardation), a developmental disorder [58,59]. TSPAN18 plays an important role in
the nervous system during cranial neural crest epithelial to mesenchymal transition [60,61].
Mutations in TSPAN18 have been linked to Schizophrenia [60,62]. PHF21A (PHD finger
protein 21A), which encodes a histone methyl reader protein (BHC80), regulates a huge
number of neuronal genes during embryogenesis [63,64]. Several variants within this gene
were found to be significantly associated with CLP in the GWAS analysis and are located
upstream of the risk haplotype. SYT13 (Synaptotagmin 13), a neuroprotective gene located
downstream of the risk haplotype, encodes vesicular trafficking proteins that are important
for synapsis and vesicle metabolism [65]. Overexpression of SYT13 was found to preserve
motor neurons and delay muscle denervation and improve survival and lifespan in mice
affected with amyotrophic lateral sclerosis and spinal muscular atrophy, which are lethal
neurodegenerative diseases [66].

Functional enrichment analysis showed the enrichment of glycoproteins and genes
involved in glycosaminoglycan biosynthesis. Glycoproteins play a critical role in the up-
keep and proper functioning of the nervous system. Axonal glycoproteins are required
for nerve polarity routing and repair [67]. In damaged nerves, axonal regeneration is
accompanied by the interaction between regenerating neurons and extracellular molecules
derived from surrounding neurons or glial cells. Glycosaminoglycans (GAG), which are
modified sugar residues, are found in the extracellular matrix and modulate numerous bio-
logical processes, such as interactions between proteins by binding to various extracellular
molecules, including growth factors and extracellular proteins [68]. GAGs play a critical
role in neurodegenerative diseases [68].

The presence of various genes implicated in developmental and neurodegenerative
disorders within the risk haplotype, the occurrence of the risk haplotype in a homozygous
state in only CLP-affected ASDs (18 out of 20 CLP-affected ASDs), and the absence of the
identified haplotype in the genome of 657 dogs from various other breeds not known to be
affected with CLP, suggests that the risk haplotype is the putative locus for CLP in ASD.

5. Conclusions

In summary, we identified a candidate region on CFA 18 to be associated with congeni-
tal laryngeal paralysis in Alaskan sled dogs. Through autozygosity mapping, we narrowed
the associated region to a 431 kb haplotype. Our results suggest that the frequency of the
risk haplotype is higher amongst ASD with blue eye color. The limitation of our study
was the small number of affected dogs and limited pedigree completeness. Many sled dog
owners actively breed against blue eyes and white facial markings, and only two additional
cases were identified in the past decade. A future follow-on study with a larger number of
samples with complete pedigree information is needed to functionally validate the results
and identify the causative allele. Despite the limitations, these results provide insights into
the genetic basis of CLP in ASD, and the information will be useful for ASD breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101808/s1, Figure S1: Manhattan plot, showing the
distribution of the p-values from the GWAS with 66,597 SNPs for CLP in 50 ASD. Points in red are
SNPs that were significant. Genome-wide significance was based on Bonferroni corrected p-values
threshold of 5%. The quantile-quantile (Q-Q) plot on the right shows the expected −log10 p-value
against the observed −log10 p-value. The scale color on the right of the Manhattan plot gives the
density of SNPs within a window of 1 million bp. Table S1: Sample name, breed information, and
accession numbers of 660 dogs and their whole genome sequence used in this study; Table S2: Eye
color and disease status of samples used in this study; Table S3: Summary statistics from the GWAS
with Canine SNP Chip data, the SNPs are ranked based on association p-values; Table S4: The
10,000 most significant markers sorted by p-value obtained from the GWAS with imputed SNP data;
Table S5: Functional annotation information of the most significant SNPs from the GWAS.; Table S6:
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Haplotype pattern at the identified risk loci on CFA18 in ASD cases and controls; Table S7: Haplotype
pattern from WGS data at the identified risk loci on CFA18 in the various dog breeds compared to the
ASD cases; Table S8: Summary statistics from the gene-based association analysis with GCTA fastbat
and MAGMA.
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