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This study aimed to investigate the spatial and space–time distributions of cases of childhood acute leukaemia (CL) during 1990–
2000 over the whole French territory. A global spatial heterogeneity and a spatial autocorrelation were first considered using the
methods proposed by Potthoff and Whittinghill, Moran and Rogerson methods. The presence of space–time interaction between
the places of residence and the dates of diagnosis was investigated with the Knox’s test. Finally, the Kulldorff’s statistic permitted to
scan the whole territory in search for localised clusters. Two time periods were considered (1990–1994, 1995–2000). Overall, a
statistically significant spatial heterogeneity of a very small magnitude was observed in the incidence of CL over 1990–1994, but
neither over 1995–2000 nor over the whole time period. Moreover, a significant overdispersion of 5.5% was evidenced for 0–4 year
children living in isolated areas with more than 50 inhabitants per km2. Cases older than 10 years living in the same area at diagnosis
also tended to cluster within 6 months.
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The aetiology of childhood leukaemia is still little known with only
ionising radiation, certain genetic factors and chemotherapeutic
agents established as risk factors. For many years, the detection of
clusters and the space– time distribution of cases of childhood
leukaemia have been of great interest and widely studied,
particularly in Great Britain (Knox, 1964; Draper, 1991; Little,
1999; McNally and Eden, 2004).

Several hypotheses may explain spatial or space –time clustering
of childhood leukaemia, such as environmental hazards possibly
localised in space and time. In the 1980s a viral hypothesis
involving population mixing was proposed after two clusters of
childhood leukaemia were detected in isolated areas that had been
subject to an unusual population influx. An excess of childhood
leukaemia as a rare consequence of an underlying infection might
then have resulted from the increased level of contacts between
susceptible (more prevalent in rural areas) and infected individuals
(Kinlen, 1988). Many studies have supported this hypothesis (for a
review see (McNally and Eden, 2004)), though the nature of any
underling agent and the way it might be transmitted have not yet
been identified.

Two ecological studies on childhood acute leukaemia during
1990– 1998 have recently been carried over the whole French
territory. No evidence was found of any increased incidence of
childhood leukaemia around the 29 nuclear sites (White-Koning
et al, 2004) but a significant ecological association with the indoor
radon concentration was evidenced for acute myeloid leukaemia

(Evrard et al, 2005). A recent French cohort study also found a
positive association between the proportion of newcomers and the
incidence of childhood acute leukaemia, particularly in isolated
areas with a population density 450 inhabitants km�2 (Rudant
et al, 2005).

The present study, based on the French national registry of
childhood haematopoietic malignancies, aimed to investigate the
spatial and space –time distributions of cases of childhood acute
leukaemia over the whole territory during the period 1990–2000.

MATERIALS AND METHODS

Cases

The French national registry of childhood haematopoietic
malignancies has registered all cases of acute leukaemia and
lymphoma diagnosed from 1990 in children aged up to 14 years
old and living in metropolitan France at diagnosis.

All cases of childhood acute leukaemia registered with a date of
diagnosis between 1990 and 2000 were included in the present
study. The national registry was associated with an estimated
99.2% rate of cases ascertainment (Clavel et al, 2004).

Population and administrative units

Metropolitan France has a total area of 543 965 km2 and is divided
into 3687 cantons and 36 565 communes. The last census (1999)
indicated a total population of 58.5 million inhabitants, with about
18% of the population aged o15 years.

Since some communes have merged or split, administrative
boundaries may vary. For the present study, France was divided
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into 36 343 areas. Those areas reflect the current French communes
with the exception of a few mergers, and will therefore be referred
to as communes throughout. The expected number of cases (E)
over 1990–2000 varied from 1� 10�5 to 141.6 with an under-
15-year population (P0 – 14) in the range 1–287 636 inhabitants. The
3644 French cantons were also considered (E in 0.01–141.6 and
P0 – 14 in the range 22–287 636 inhabitants).

The age- and gender-specific populations between the two
censuses of 1990 and 1999 were estimated by applying a log– linear
diagonal interpolation method that took into account the numbers
of births, deaths and migrations each year (White-Koning et al,
2004). The main hypothesis underlying this method was the
stability of the migration rates between the two censuses. The
population estimates for the year 2000 were then equal to those of
1999.

To evaluate the influence of such estimates on the results, two
additional scenarios of population growth were implemented.
With the first one, the populations over the periods 1990–1994
and 1995– 2000 were constant and equal to the population of 1990
and 1999, respectively. In the second one the average population
between 1990 and 1999 was applied to each year from 1990 to 2000.

Statistical methods

Spatial and spatio-temporal methods have first been developed
more than 40 years ago (Moran, 1948; Knox, 1964; Naus, 1965;
Potthoff and Whittinghill, 1966). Since then some improvements
have been made, new approaches have emerged and several
methods are now widely used. These methods mainly differ from
each other in their objectives. Most of them permit to test for the
existence of global heterogeneity, in terms of overdispersion,
spatial autocorrelation or space –time interaction, while a few
others scan for potential places and periods with higher incidence
of disease, with no hypothesis a priori (tests for cluster detection).

In the present study, cases were located in space and time
according to their commune or canton of residence and date of
diagnosis.

Global spatial heterogeneity

Three methods were considered to test for the existence of a global
heterogeneity in the incidence of childhood acute leukaemia in
France.

The first one (Potthoff and Whittinghill, 1966) assumes that the
number of cases in each area is Poisson distributed under the null
hypothesis of no spatial heterogeneity and follows a negative
binomial distribution under the alternative hypothesis of over-
dispersion with a variance to the mean ratio equal to 1þ b. Based
on previous results (Rudant et al, 2005), this method was also
applied focusing on isolated communes with more than 50
inhabitants per km2. Isolated areas were defined as non attractive
communes, in terms of employment, that were included in a unit
either rural or urban with less than 5000 inhabitants.

The second method evaluates an autocorrelation index between
the incidence rates in the geographical units (Moran, 1948; Elliott
and Best, 2000). Two units were considered as neighbouring areas
if they are up to d kilometres apart. A limit of 40 km was first
considered as it insured that none of the areas had no neighbour.
To evaluate the stability of the results and to determine the scale at
which spatial autocorrelation may occur, three additional values of
d were considered hereafter (20, 30 and 50 km).

Finally, a global statistic that takes account of both within and
across areas variability was considered (Rogerson, 1999). This
statistic, based on Tango’s index, is a combination of an
autocorrelation term and the common w2 statistic of goodness-
of-fit that compares observed-to-expected regional counts. Neigh-
bouring areas were again defined with limits of 20, 30, 40 and
50 km.

As a result of being computer intensive, Moran’s and Rogerson’s
tests were applied at the canton level.

The statistical significance levels based on the one-sided tail
probabilities of the null distributions were obtained via Monte
Carlo simulations. Under the null hypothesis of no spatial
heterogeneity in the incidence rate of childhood acute leukaemia,
the total number of observed cases was randomly distributed
among the French areas according to a multinomial distribution
with parameters proportional to the expected numbers of cases.
The statistical significance was then estimated as the proportion of
simulations with a statistic greater than or equal to the value
observed on the real data. In all, 999 simulations were run.

A normal approximation was also considered to evaluate the
statistical significance level with Moran’s method (Cliff et al, 1973).

Space– time interaction

The Knox method (Knox, 1964) was used to determine whether the
observed number of pairs of cases both close in space and time
significantly differed from that expected under the null hypothesis
of no space-time interaction. In the present study, the closeness
was successively defined by the following spatial and temporal
limits: 0, 5, 10, 15, 20, 30 and 50 km; 1, 3, 6, 9 and 12 months. The
observed value of the statistic was then compared to its
distribution under the null hypothesis. This distribution was
obtained by considering 499 permutations of the time of
diagnoses, the places of residence being fixed.

Detection of clusters

The Kulldorff’s method permitted to scan the whole territory and
the whole time period in search for any particular area and/or time
period that may be associated with a higher incidence of disease
(Kulldorff and Nagarwalla, 1995). The whole territory was covered
by a circular moving window with variable radius and centred on
each geographic unit. In the present study, the greatest radius was
determined so that the window regrouped up to 10% of the total
population. The most likely cluster was then defined as the
geographical units included in the window of highest likelihood
ratio. A statistical test, under the null hypothesis that the
probability of being a case is the same outside and inside the
latter window, was then carried out. This method was applied over
1990– 2000, 1990–1994 and 1995–2000 separately.

Over 1990–2000, a space–time version of this test was also
considered using a cylindrical moving window, the basis and the
height of which represented the spatial and the temporal
dimensions, respectively. Up to 50% of the whole time-period
could have been included in the window.

The significance level was given by 999 Monte Carlo simulations.

Analyses

Three time periods (1990– 2000, 1990– 1994, 1995–2000), four age
groups (0–14 years, 0 –4 years, 5– 9 years, 10–14 years) and three
groups of diagnosis (AL: acute leukaemia, ALL, acute lympho-
blastic leukaemia and AML: acute myeloblastic leukaemia) were
considered.

All the analyses were mainly performed with the SASs and R
softwares, and tests for clusters detection were run in SaTScant
v3.0.5 (Kulldorff and Information Management Services, 2002).

RESULTS

Global spatial heterogeneity

Spatial overdispersion The results for the Potthoff–Whittinghill
test for spatial heterogeneity are presented in Table 1a. No spatial
overdispersion was evidenced, whatever the period, the age group
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and the group of diagnosis. One may notice, however, a lower
statistical significance level for the 0– 14 age group for the period
1990– 1994, with a 1.2% overdispersion in the incidence of acute
leukaemia and particularly acute lymphoblastic leukaemia.

Focusing on isolated communes, a statistically significant spatial
overdispersion of 1.6% was evidenced in the 0– 14 year age group
over 1990–1994 (Table 1b). A greater effect (5.5%) was found in
isolated communes with a population density 450 inhabitants
km�2, while no overdispersion was observed below this limit.
Likewise, a 2.5% overdispersion, although nonsignificant, was
found among o4 year children living in isolated communes of
highest population density. No spatial overdispersion was detected
for children aged more than 5 years. No significant overdispersion
was found over the whole time period or 1995– 2000.

Overall, these results remained quite stable when the alternative
scenarios of population estimates were considered (results not
shown).

Spatial autocorrelation The analysis of spatial autocorrelation
was first conducted considering a limit of proximity of 40 km
(Table 2). A significant spatial autocorrelation in the incidence of
childhood acute leukaemia, although of a small magnitude
(I¼ 0.006), was found over the whole period 1990–2000 and
1990– 1994. No particular pattern emerged in any of the three age
groups. A similar effect was observed with 20 km (I¼ 0.006 and
I¼ 0.009 over 1990–2000 and 1990–1994, respectively), with,
however, a statistical significance level 40.05 over 1990–2000.

Results with AML differed slightly as a very small spatial
autocorrelation was observed over 1990–1994, but only for
children aged o4 years (I¼ 0.008 P¼ 0.02). No significant
autocorrelation was found with ALL (results not shown).

Overall, the statistical thresholds based on Monte Carlo
simulations were similar to those obtained with the normal
approximation, which illustrated the robustness of the statistic to a
possible non-normality (Cliff et al, 1973).

Table 1 Potthoff –Whittinghill test for the existence of a spatial heterogeneity in the incidence of childhood acute leukaemia in France 1990–2000. (a)
Spatial heterogeneity over the whole territory (36 343 communes) and (b) Spatial heterogeneity in isolated communes in relation to population density

Whole period 1990–2000 1990–1994 1995–2000

Age (years) No. cases b̂a (P-valueb) No. cases b̂ (P-value) No. cases b̂ (P-value)

(a) Spatial heterogeneity over the whole territory (36 343 communes)
All AL 0–14 4897 0.5% (0.23) 2236 1.2% (0.06) 2261 0.2% (0.38)

0–4 2471 0.1% (0.40) 1141 0% (0.40) 1330 �0.25% (0.60)
5–9 1435 �0.5% (0.75) 666 �0.25% (0.62) 769 �0.2% (0.49)

10–14 991 �0.4% (0.69) 429 �0.2% (0.45) 562 �0.2% (0.56)

ALL 0–14 3993 0.35% (0.32) 1831 1.2% (0.07) 2162 �0.1% (0.52)
0–4 2045 0.05% (0.40) 851 0.3% (0.28) 1094 �0.2% (0.54)
5–9 1208 �0.5% (0.73) 559 �0.4% (0.77) 649 0.03% (0.34)

10–14 740 �0.4% (0.67) 321 �0.6% (0.95) 419 �0.3% (0.62)

AML 0–14 837 �0.5% (0.74) 374 0.3% (0.18) 463 �0.4% (0.70)
0–4 395 0.01% (0.32) 179 0.6% (0.07) 216 �0.2% (0.48)
5–9 205 �0.3% (0.63) 94 �0.1% (0.47) 111 �0.2% (0.74)

10–14 237 �0.2% (0.47) 101 0.1% (0.13) 136 �0.15% (0.45)

1990–2000 1990–1994 1995–2000

No. cases b̂a (P-valueb) No. cases b̂ (P-value) No. cases b̂ (P-value)

(b) Spatial heterogeneity in isolated communes in relation to population density

0–14
Isolated communes 1469 0.1% (0.29) 700 1.6% (0.04) 769 �0.2% (0.41)
p50 inhab/km2 554 0.0% (0.28) 239 0.1% (0.27) 315 0.5% (0.14)
450 inhab/km2 915 0.5% (0.39) 461 5.5% (0.01) 454 �2.3% (0.92)

0–4
Isolated communes 733 0.2 (0.34) 355 0.3% (0.29) 378 �0.3% (0.53)
p50 inhab/km2 292 0.1% (0.34) 125 �0.5% (0.50) 167 �0.1% (0.34)
450 inhab/km2 441 0.5% (0.35) 230 2.5% (0.10) 211 �0.9% (0.64)

5–9
Isolated communes 423 �0.8% (0.86) 196 �4.3% (0.66) 227 �0.5% (0.63)
p50 inhab/km2 151 �0.7% (0.64) 64 �0.3% (0.17) 87 �0.4% (0.28)
450 inhab/km2 272 �1.3% (0.77) 132 �0.8% (0.64) 140 �0.6% (0.57)

10–4
Isolated communes 313 �0.2% (0.55) 149 0.0% (0.34) 164 �0.3% (0.48)
p50 inhab/km2 111 �0.3% (0.43) 50 �0.2% (0.11) 61 �0.3% (0.15)
450 inhab/km2 202 �0.1% (0.49) 99 0.5% (0.32) 103 �0.2% (0.40)

Isolated communes: non attractive communes, in terms of employment, that are included in a unit with less than 5000 inhabitants (Rudant et al, 2005). aFollowing (Alexander and
Boyle, 1996), the ratio of the variance to the mean of the number of cases in any area was equal to 1+b. bThe Statistical significance level was based on the one-sided tail
probability of the null distribution (1000 Monte Carlo simulations). cThe Statistical significance level was based on the one-sided tail probability of the null distribution (999 Monte
Carlo simulations).
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All these results also remained quite stable when an auto-
correlation estimate with weights inversely proportional to the
numbers of neighbours was considered and little variations were
observed with the alternative scenarios of population growths (not
shown).

Overall spatial heterogeneity Some overall spatial heterogeneity
in the incidence of childhood acute leukaemia was evidenced with
Rogerson’s statistic (Table 3). This result, found only in the first
subperiod 1990– 1994, was close to the statistical significance for
the 0 –14 year old children and more marked for the first age
group (P¼ 0.04). Some spatial heterogeneity in the incidence of
acute leukaemia for 0 –4 year children was also found when critical
limits of 30 or 50 km were considered to define the neighbourhood,
while no heterogeneity was observed with 20 km.

No significant heterogeneity was observed either over 1990–
2000 or 1995–2000.

A spatial heterogeneity was evidenced with AML, but only for
children older than 10 years (P¼ 0.04). No spatial heterogeneity
was detected in the incidence of ALL (results not shown).

These results remained quite stable when different population
estimates were considered (results not shown).

Space– time interaction

Overall, using Knox’s approach, no space-time interaction between
the place of residence and the time of diagnosis was found over

1990– 2000 (Table 4). However, an interaction seemed to exist for
0–4 year children within critical distances of 30 km and 3 months.
Similarly, children aged more than 10 years and living in the same
Commune at diagnosis tended to cluster within 6 months.

The analyses carried out on the two subperiods 1990–1994 and
1995– 2000 revealed two distinct patterns: over the first period a
space–time interaction at a small geographical scale (o5 km) and
a time limit around 9 months (6–12 months) was evidenced in the
last age group, while clustering was restricted to the youngest
children over 1995–2000 with a more significant effect within
critical limits of 20 km in space and from 9 to 12 months in time
(results not shown).

Detection of clusters

None of the analyses carried out on the French data led to any
significant result (Table 5). No particular area of the French
territory and/or time period between 1990 and 2000 was thus
identified with Kulldorff’s method as being associated with a
higher incidence of childhood acute leukaemia.

DISCUSSION

Spatial and space– time clustering of childhood leukaemia has
been studied in many countries, and the existence of an infectious

Table 2 Spatial autocorrelation in the incidence of childhood acute leukaemia in France (1990–2000) – Moran’s statistic I (Elliott et al, 2000)

Whole period 1990–2000 1990–1994 1995–2000

No. cases I Stata P-valueb No. cases I Stata P-value No. cases I Stata P-value

Age at diagnosis – d¼ 40 km
0–14 years 4873 0.006 1.78 0.04 2226 0.006 1.72 0.04 2647 0.002 0.69 0.26
0–4 years 2458 �0.004 �0.97 0.84 1136 �0.001 �0.29 0.63 1322 �0.002 �0.62 0.76
5–9 years 1427 �0.001 �0.10 0.56 662 �0.001 �0.14 0.56 765 0.001 0.24 0.38
10–14 years 988 0.001 0.50 0.28 428 0.004 1.31 0.11 560 �0.002 �0.39 0.65

Spatial limit of proximity d – Analyses in the whole age group (0–14 years)
20 km 4873 0.006 0.95 0.15 2226 0.009 1.47 0.05 2647 �0.001 �0.09 0.54
30 km 4873 0.002 0.47 0.31 2226 0.005 1.10 0.11 2647 �0.002 �0.46 0.68
40 km 4873 0.006 1.78 0.04 2226 0.006 1.72 0.04 2647 0.002 0.69 0.26
50 km 4873 0.003 1.04 0.16 2226 0.002 0.67 0.26 2647 �0.002 �0.42 0.65

aNormalized statistic [I�E(I)]/s(I) with E(I)¼�1/(n�1)¼�0.0003 (n¼ 3644 cantons). bThe statistical thresholds were evaluated with the one-sided tail probability of the
distribution of I under the null hypothesis (based on 999 Monte Carlo simulations). Bold highlights the main results, those associated to a P-value o5%.

Table 3 Overall spatial heterogeneity in the incidence of childhood acute leukaemia in France using Rogerson’s statistic (1999)

Whole period 1990–2000 1990–1994 1995–2000

No. cases RH0
a RObs

a (pb) No. cases RH0 RObs (p) No. cases RH0 RObs (p)

Age at diagnosis – d¼ 40 km
0–14 years 4873 0.74 0.90 (0.09) 2226 1.61 2.04 (0.06) 2647 1.36 1.36 (0.31)
0–4 years 2458 1.46 1.60 (0.25) 1136 3.16 4.05 (0.04) 1322 2.71 2.54 (0.63)
5–9 years 1427 2.51 2.21 (0.79) 662 5.42 4.94 (0.71) 765 4.69 4.50 (0.56)
10–14 years 988 3.63 4.14 (0.19) 428 8.39 9.54 (0.20) 560 6.41 6.67 (0.36)

Spatial limit of proximity d – Analyses in the 0–4 year age group
20 km 2458 1.47 1.65 (0.10) 1136 3.49 3.56 (0.12) 1322 2.74 2.58 (0.74)
30 km 2458 1.47 1.67 (0.12) 1136 3.17 3.86 (0.05) 1322 2.72 2.59 (0.65)
40 km 2458 1.46 1.60 (0.25) 1136 3.16 4.05 (0.04) 1322 2.71 2.54 (0.63)
50 km 2458 1.45 1.56 (0.32) 1136 3.14 4.05 (0.05) 1322 2.70 2.44 (0.70)

aRH0 and RObs refer to the value of the statistic expected under the null hypothesis of nonspatial heterogeneity and the observed value, respectively. bThe statistical thresholds
were evaluated as the one-sided tail probability of the distribution expected under the null hypothesis (999 Monte Carlo simulations). Bold highlights the main results, those
associated to a P-value o5%.
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agent involved in the aetiology of the disease has become a
privileged hypothesis.

A large variety of methods has been considered in several
countries and at different periods, which led to various representa-
tions of the spatial and spatial–temporal patterns of the childhood
leukaemia. Up to now, very few studies have however focused on the

spatial heterogeneity in the incidence of childhood acute leukaemia
at a large scale (Petridou et al, 1997; Alexander et al, 1998). The
national French registry of childhood haematopoietic malignancies,
with a high level of case ascertainment, constitutes a reliable data
set, which enables, among others, to carry out spatial and space–
time analyses over the whole territory.

Table 4 Space–time interaction between the dates and places of diagnosis of childhood acute leukaemia in France 1990–2000 (Knox, 1964)

Time t (months)

Age (y) Distance d (km) 1 3 6 9 12

0–14 0 0.94 (764) 0.95 (1804) 0.99 (3442) 0.99 (4970) 1.00 (6502)
5 0.98 (1458) 0.98 (3398) 1.00 (6330) 1.00 (9116) 1.00 (11884)

10 1.00 (4082) 0.99 (9448) 1.00 (17386) 1.00 (25260) 1.00 (32768)
15 1.01 (7252) 0.99 (16596) 1.00 (30604) 1.00 (44414) 1.00 (57826)
20 1.01 (10632) 1.00 (24456) 1.00 (44850) 1.01 (65066) 1.01 (84752)
30 1.01 (16568) 1.00 (38124) 1.00 (69784) 1.00 (101274) 1.01 (132026)
50 1.00 (25302) 1.00 (58470) 1.00 (107350) 1.00 (155570) 1.00 (202860)

0–4 0 1.04 (284) 0.93 (588) 1.00 (1162) 1.00 (1680) 1.00 (2196)
5 1.04 (476) 1.00 (1052) 1.04 (2012) 1.01 (2828) 1.01 (3680)

10 1.03 (1238) 1.02 (2814) 1.02 (5174) 1.01 (7410) 1.00 (9604)
15 1.04 (2144) 1.02 (4860) 1.02 (8950) 1.01 (12774) 1.01 (16632)
20 1.02 (2954) 1.02 (6866) 1.02 (12572) 1.02 (18190) 1.02 (23682)
30 1.02 (4520) 1.02 (10418)* 1.01 (18972) 1.01 (27458) 1.01 (35832)
50 1.00 (6698) 1.00 (15496) 1.00 (28506) 1.00 (41236) 1.01 (53866)

5–9 0 0.81 (46) 0.95 (124) 1.00 (238) 0.95 (328) 1.00 (444)
5 0.95 (102) 1.00 (248) 0.99 (450) 0.97 (634) 0.98 (828)

10 0.99 (304) 0.97 (690) 0.98 (1266) 0.98 (1830) 0.98 (2372)
15 1.01 (542) 1.03 (1280) 0.99 (2256) 1.00 (3288) 1.02 (4316)
20 1.01 (820) 1.03 (1928) 0.97 (3332) 0.99 (4862) 1.00 (6410)
30 0.99 (1282) 1.02 (3050) 0.98 (5342) 0.99 (7784) 1.00 (10222)
50 0.98 (2040) 1.01 (4882) 0.99 (8720) 1.00 (12734) 1.01 (16562)

10–14 0 1.00 (20) 1.13 (52) 1.32 (112)* 1.20 (148) 1.15 (184)
5 0.85 (42) 1.03 (118) 1.15 (242) 1.12 (342) 1.09 (432)

10 0.86 (126) 0.92 (312) 0.96 (600) 0.98 (886) 1.00 (1168)
15 0.92 (250) 0.97 (608) 1.05 (1210) 1.05 (1746) 1.01 (2190)
20 0.96 (392) 0.98 (924) 1.00 (1734) 1.00 (2520) 0.99 (3226)
30 0.99 (648) 0.99 (1490) 0.99 (2750) 0.99 (3990) 0.99 (5162)
50 0.97 (982) 1.00 (2344) 1.00 (4288) 1.00 (6222) 1.00 (8084)

* Po0.05. These figures refer to O/E (O). O is the observed number of close pairs of cases (up to d kilometres and t months apart) among n(n�1)/2 possible pairs, n being the
total number of cases in the period and age group under consideration. E is the number of close pairs expected under the hypothesis of no interaction.The statistical thresholds
were evaluated as the one-sided tail probability of the distribution of O under the null hypothesis (499 Monte Carlo simulations). Bold highlights the main results, those associated
to a P-value o5%.

Table 5 Detection of clusters using the Scan statistic of Kulldorff and Nagarwalla (1995) – spatial and space-time analyses

1990–2000 1990–1994 1995–2000

0–14
years

0–4
years

5–9
years

10–14
years

0–14
years

0–4
years

5–9
years

10–14
years

0–14
years

0–4
years

5–9
years

10–14
years

Spatial analyses NS 25 88 3 32 512 13 9 6 37 1 1491 2
OS 9 13 4 5 44 4 4 2 8 2 65 2
ES 1.41 2.89 0.19 0.34 20.64 0.15 0.21 0.01 0.86 0.01 33.69 0.01
PS 0.81 0.62 0.92 0.77 0.44 0.61 0.92 0.81 0.30 0.94 0.09 0.92

Space-time analyses NST 3 150 1344 19
T 1992–93 1991–

95
1996–

99
2000

OST 5 17 50 3
EST 0.13 3.67 21.75 0.03
PST 0.46 0.57 0.29 0.98

This table gives, for each period and age group, a description of the area associated with the highest likelihood ratio (most likely cluster): the number of communes included in the
most likely cluster (NS, NST), the number of observed cases (OS, OST), the number of expected cases (ES, EST) and the period associated to the excess in the space– time analyses
(T). The spatial moving window was defined so that it contained up to 10% of the whole French population. In space-time analyses, up to 50% of the time period were covered.
The statistical significance levels (PS, PST) were obtained with 999 Monte Carlo simulations.
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The methods used to test for spatial heterogeneity involved
multiple testing. The use of several time periods, age groups and
parameters is, however, essential as it may give information on the
nature of the clustering present and may generate causal
hypotheses. The purpose of this study being mainly exploratory,
the usual threshold of 0.05 was used even if it may have increased
the overall risk of false positive results.

In the present study, the Potthoff– Whittinghill method
permitted to evidence a global spatial overdispersion, over the
first period only (1990–1994). However, as it was previously
observed in the large EUROCLUS study (Alexander et al, 1998) this
overdispersion was of a weak magnitude (1.2%).

Focusing on isolated communes, as defined in a recent French
study (Rudant et al, 2006), a somewhat stronger overdispersion
was observed in areas with a population density 450 in-
habitants km�2. This observation supports the hypothesis that
population density and geographical isolation, possibly combined
to a population mixing effect, may play a role in the incidence of
childhood acute leukaemia.

The EUROCLUS study evidenced the influence of population
density on the incidence of childhood acute leukaemia (Alexander
et al, 1999). An extra-Poisson variation was actually observed in
the areas with o500 inhabitants km�2 while the moderately
densely populated areas were associated with the highest incidence
rates. Similarly, in an analysis conducted in England, Scotland and
Wales a spatial heterogeneity attributed to isolated rural areas was
detected particularly in the incidence of ALL among young
children (Alexander, 1991). Likewise a spatial heterogeneity was
found in Greece, particularly in urban and semiurban areas
(Petridou et al, 1997). Although no overall extra-Poisson variation
was evidenced in the incidence of childhood leukaemia and non-
Hodgkin’s lymphoma in three metropolitan regions of the United
States, Muirhead observed an increase in the incidence rate with
the population density (Muirhead, 1995). Finally, a study on small
units in Hong Kong found a spatial heterogeneity in the incidence
of ALL among young children, with a more marked effect in the
presence of extreme population mixing (Alexander et al, 1997).

In a second step, Moran’s statistic permitted to detect a spatial
autocorrelation over whole time period and also over 1990–1994,
in the 0–14 year age group only. The observed effect was however
of a very small magnitude.

The Potthoff –Whittinghill test is the locally most powerful test
for the alternative of overdispersion, but its ability to detect the
presence of clusters depends on the size, the number and the
locations of the clusters (Alexander and Boyle, 1996). This
approach does not either take account of any spatial pattern of
the deviations between observed and expected values. It is thus
impossible to determine whether observed deviations are spatially
correlated or localised at random. Moran’s coefficient, on the
contrary, aims at detecting the presence of spatial autocorrelation
among neighbouring areas but does not take account of within
area deviations as the weight matrix usually contains null values on
its diagonal. Small areas, that are often contiguous, are likely to be
associated with extreme standardised incidence ratios (SIRs), even
under the null hypothesis, so that some spatial autocorrelation
could be observed due to the instability of the SIRs. This issue has
already been evoked and some improvements or new methods
have been proposed (Oden, 1995; Rogerson, 1999).

Rogerson’s statistic is a few changes apart from a combination
of the common w2 statistic of goodness-of-fit and an autocorrela-
tion term. Both within- and across-areas heterogeneity are thus
taken into account. A spatial heterogeneity in the incidence of
childhood acute leukaemia was found over the first subperiod but
more particularly, and significantly, for the 0 –4 year group.

The main drawback of Rogerson’s method, which is also a
limitation to the use of the Moran’s I, is the arbitrary choice of a
weight matrix. The neighbourhood was here first defined as two
areas being up to 40 km apart. To evaluate the stability of the

results, the analyses have also been conducted with 20, 30 and
50 km as a critical limit of proximity. The spatial heterogeneity
evidenced over 1990–1994 for the first age group was thus
ascertained with 30 and 50 km, but disappeared with 20 km. The
existence of a small spatial heterogeneity may be limited to a
neighbourhood of around 40 km. On the other hand, the
geographical scale at which the spatial heterogeneity was
investigated with Moran and Rogerson methods could have
diluted a spatial heterogeneity at a lower scale.

Some bias could also stem from the use of the loglinear
interpolation method to estimate the population at a small
geographical level. Nevertheless, the relative stability of the results
with the two population growth scenarios (described section
Material and Methods) limited the probability that the observed
effects could have been the consequence of errors in the
population estimates.

Spatio-temporal methods aim to determine whether cases that
occur close from one another in space also tend to be close in time.
Two different patterns specific to the periods emerged when
applying the Knox’s method on the French data. Over 1990–1994,
some space –time clustering between the places of residence and
the times of diagnosis was evidenced in the 10– 14 year age group.
Cases living 5 km apart actually tended to be diagnosed within a
short-time period (from 6 to 12 months).

A different pattern was identified over the second period (1995–
2000), as the space –time interaction was specific to the younger
age group.

Space–time clustering in the incidence of childhood leukaemia
has been extensively studied particularly in Great Britain. A
space–time interaction between dates and places of diagnoses of
ALL has often been reported within small temporal and spatial
distances (Glass et al, 1971; Draper, 1991; Gilman and Knox, 1991;
Gilman et al, 1999; Birch et al, 2000; Akhtar et al, 2005), especially
among young children (Glass et al, 1971; Gilman et al, 1999; Birch
et al, 2000). Birch et al also evidenced a space –time interaction
between the dates of diagnoses and the places of birth,
while McNally et al (2002) found a significant interaction between
both places and dates of birth for the precursor B-cell subtype
of ALL.

On the other hand, in a Swedish nationwide study cases of
childhood ALL diagnosed after the age of 5 years tended to cluster
when they were born in the same place and a few months apart
(Gustafsson and Carstensen, 1999, 2000). However, this interaction
was not evidenced with places and dates of diagnoses. This
difference with our result may be explained by the fact that only
one critical distance in space was considered in the Swedish study
(0 km) and the older age group was of a wider range (5–14 years
old). Based on Cuzick and Edward method, ALL cases aged more
than 10 years also seemed to exhibit some space –time clustering
in New-Zealand (Dockerty et al, 1999). To the authors’ knowledge
no other study has ever evidenced space– time interaction in the
incidence of childhood leukaemia restricted to more than 10-year-
old children.

Knox’s method is known to be subject to possible bias in case of
nonuniform population shifts over the time period (Besag and
Newell, 1991; Kulldorff and Hjalmars, 1999) and the probability to
detect space –time clustering due to population shifts increases
with the number of close pairs observed (Kulldorff and Hjalmars,
1999).

Based on the 1990 and 1999 censuses data, it appeared that 50%
of the French communes saw their population vary in a proportion
416%. It was also worth noting that more than 5000 pairs of cases
were often involved in the observed clustering for the first age
group (Table 4). Besides, even if some significant results have been
evidenced with particular parameters in this age group, the
magnitude of excess was weak and quite homogeneous over the
whole range of critical distances as it varied from 0.91 to 1.08.
Despite the concordance with the literature, these observations

Spatial and space-time clustering of childhood acute leukaemia

S Bellec et al

768

British Journal of Cancer (2006) 94(5), 763 – 770 & 2006 Cancer Research UK

E
p

id
e
m

io
lo

g
y



seriously question the space –time clustering found over 1995–
2000 among 0– 4 year children.

Last, whatever the period and the age group under considera-
tion, no particular cluster of childhood acute leukaemia was
evidenced with Kulldorff’s test. Similar results were found
in Sweden (Hjalmars et al, 1996). Over the last few years, the
number of localised childhood cancer clusters reported to the
health authorities has shown a tendency to increase in several
countries, among which France. However, hardly ever has an
environmental factor been hold responsible for the observed
excess of cases; such clusters were probably due to chance alone
(Bellec et al, 2005). Likewise, no excess in the incidence of
childhood leukaemia was evidenced over 1990–1998 around the 29
French nuclear installations (White-Koning et al, 2004). The
moving window method has also been applied on a smaller scale
but results were specific to some particular areas and less
homogeneous (Besag and Newell, 1991; Kulldorff and Nagarwalla,
1995; Akhtar et al, 2005).

The main drawback of Kulldorff’s test is the arbitrary choice of
the maximum population size of the moving window. In the
present study, this limit was fixed to 10% of the whole population
size so that the area included in the focused window was each time
smaller than the ‘outside area’. Despite this limitation, the scan
statistic is known to perform well in the detection of hot spots,
especially when the shape of the moving window fits that of the
cluster (Besag and Newell, 1991; Kulldorff and Nagarwalla, 1995;
Akhtar et al, 2005). A large recent simulation study also
highlighted the fairly good statistical power associated to this test
in several situations of hot spots (Kulldorff et al, 2003). The

methods based on moving windows are, however, poor at detecting
some types of clusters such as long and narrow clusters or clusters
due to airborne contamination or to a virus transmission (Besag
and Newell, 1991; Kulldorff and Nagarwalla, 1995).

Kulldorff’s method did not permit to evidence any cluster of
childhood acute leukaemia on the French territory. However,
because of its weak power to detect noncircular clusters, hot spots
may have been missed. Nevertheless, this exploratory study
permitted to detect the presence of a global spatial heterogeneity
in the incidence of childhood acute leukaemia over 1990–1994,
combined with a space– time interaction. Overall of a weak
magnitude, this heterogeneity was increased in isolated communes
with a population density 450 inhabitants km�2, particularly
among 0- to 4-year-old children. These findings were somewhat
compatible with the hypothesis that childhood leukaemia could be
a rare consequence of the transmission of a specific infectious
agent, particularly in isolated areas subject to unusual population
mixing (Kinlen, 1988). In light of our results, it was, however,
difficult to determine whether this phenomenon was specific to a
particular age group or diagnosis.

Future statistical models should permit to investigate further
and better understand these findings, especially the role played by
population density and population mixing.
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