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ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a major cause of respiratory failure in 

critically ill patients and common outcome of various lung interstitial diseases. Its 
mortality remains high, and no effective pharmacotherapy, in addition to artificial 
ventilation and transplantation, exists. As such, the administration of mesenchymal 
stem or stromal cells (MSCs) is currently investigated as a new therapeutic method 
for pulmonary fibrosis. Clinical trials on MSC-based therapy as a potential treatment 
for lung injury and fibrosis are also performed. MSCs can migrate to injured sites 
and secrete multiple paracrine factors and then regulate endothelial and epithelial 
permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial 
growth. In this review, recent studies on stem cells, particularly MSCs, involved 
in alleviating lung inflammation and fibrosis and their potential MSC-induced 
mechanisms, including migration and differentiation, soluble factor and extracellular 
vesicle secretion, and endogenous regulatory functions, were summarized.

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic, 
progressive, and irreversible lower respiratory disease 
characterized by diffuse alveolar inflammation and 
alveolar structural disorder, and this condition eventually 
leads to pulmonary interstitial fibrosis [1]. Its main 
pathological changes include severely damaged alveolar 
structure, numerous proliferated fibroblasts, and extensive 
extracellular matrix (ECM) deposition [2, 3]. Pulmonary 
fibrosis (PF) is a serious respiratory disease whose main 
clinical manifestation is progressive dyspnea, which 
results in respiratory failure and death. The incidence 
of IPF increases annually, its mortality is high, and its 
median survival is approximately three to five years after 
diagnosis, but these observations are poorer than those 
of many cancers [4-6]. However, IPF is quite difficult 
to diagnose, and no standard treatment is available for 
patients with IPF [7]. Current treatment mainly involves 
lung transplantation, mechanical ventilation, and oxygen 
therapy. Although pirfenidone and nintedanib elicit 
therapeutic effects on lung functional deterioration and 
disease progression in patients with IPF, these drugs 
fail to induce damaged tissue regeneration [8]. As new 

therapeutic agents for diseases, stem cells, including 
mesenchymal stem cells (MSCs), have been widely 
investigated [9]. In phase I clinical trials, MSCs are used 
as cell therapy for pulmonary diseases because these 
MSCs, which are a class of multipotent stem cells, can 
be transdifferentiated, cloned, and self-renewed in vitro 
[10, 11]. MSCs also help ameliorate inflammation and 
moderate the deterioration of PF [12]. 

PATHOLOGIC LESIONS OF IPF

IPF is an interstitial pulmonary disease characterized 
by dysfunction of epithelial cells, activation of fibroblasts, 
accumulation of myofibroblasts, and vast deposition of 
ECM [3]. Fibroblastic foci are important pathological and 
unique morphological hallmark lesions in IPF, in which 
fibroblasts and myofibroblasts are possibly involved 
in tissue remodeling and matrix deposition [13]. The 
pathologic degree of fibroblast foci is closely related to the 
prognosis of patients with IPF. Active fibroblasts in PF are 
formed via at least three mechanisms, namely, proliferating 
resident fibroblasts, epithelial-to-mesenchymal transition 
(EMT), and bone marrow (BM)-derived fibrocytes.
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Proliferation of resident fibroblasts

The proliferation and accumulation of resident 
fibroblasts play a significant role in IPF pathogenesis 
and constitute a key source of interstitial collagens 
in fibroblastic foci. Under the action of transforming 
growth factor-β (TGF-β), resident fibroblasts can be 
activated and differentiated into myofibroblasts, then 
accumulating in damaged lung tissues [3]. Intrapulmonary 
fibroblasts increase the expression of collagen genes and 
mesenchymal proteins, such as vimentin and α-smooth 
muscle actin (α-SMA), through Wnt/β-catenin signaling 
and take part in PF development [14]. Myofibroblasts, 
which express α-SMA, are the primary inducers of 
increasing the expression of lung collagen proteins and 
thus promote ECM deposition and the contractility of lung 
tissue [15]. 

Epithelial-mesenchymal transition 

Alveolar epithelial cell (AEC)-derived fibroblasts 
are another component in fibroblastic foci during PF 
through EMT, which involves sustained missing of 
epithelial markers, including E-cadherin, keratin, and 
continuously increased expression of mesenchymal 

markers, including N-cadherin, vimentin, α-SMA [16-
20]. The establishment of EMT is also implicated in the 
interaction of TGF-β with receptor tyrosine kinase (RTK) 
by activating the Ras/ERK/MAPK signaling pathway [17, 
21, 22]. TGF-β is a key factor in EMT process during PF 
development. A previous study provided direct evidence 
for the involvement of TGF-β in EMT process during PF 
by generating transgenic mice, in which type II AECs 
were labeled with β-galactosidase (β-gal) [16]. In the PF 
model of overexpressing TGF-β1, fibroblasts positive for 
vimentin were mostly β-gal-positive cells [16]. However, 
phenotypic changes are fully reversible after inducing 
factors are removed [18], and EMT contributing to lung 
fibrosis in vivo remains controversial [23]. Endothelial 
cells of pulmonary blood vessels are one of the major cell 
types of structural cells and implicated in maintaining 
homeostasis in lungs [24]. In vitro studies have reported 
that endothelial cells may act as a source of α-SMA-
positive mesenchymal cells and can produce type I 
collagen (Col I) [25, 26]. Hashimoto et al. demonstrated 
that endothelial cells can stimulate the production of a 
large number of fibroblasts in bleomycin (BLM)-induced 
PF model, and the underlying mechanism of EMT in 
endothelial cells is involved in Ras and TGF-β activation 
[27].

Figure 1: Properties of mesenchymal stem cells. Mesenchymal stem cells (MSCs), as a class of multipotent stem cells, possess 
multiple properties: (i) self-proliferation and differentiation potential; (ii) rich sources, e.g., bone marrow, adipose tissue, and placenta; (iii) 
low immunogenicity and transplantation in vitro; (iv) chemotaxis and homing function; and (v) immunomodulation and tissue repair. These 
characteristics are crucial for MSCs to be applied as a therapeutic modality in idiopathic pulmonary fibrosis (IPF).
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Bone marrow-derived fibrocytes

Experimental data have provided evidence that 
some fibroblasts in fibroblast foci can be derived from 
BM progenitor cells (BMPCs). The circulating peripheral 
blood-derived fibroblasts (called “fibrocytes”) have 
fibroblast-like properties and express CD45+ collagen 
I+ CXCR4+ [28, 29]. BM-derived fibrocytes can be 
chemotactically gathered to damaged lung tissue sites 
and play a key role in the establishment of fibrosis at the 
injured sites [28, 30, 31]. Clinical examination showed that 
fibrocytes increased in peripheral blood, bronchoalveolar 
lavage fluid (BALF), and lung tissues of IPF patients, 
and this phenomenon was associated with poor patient 
prognosis [32, 33]. Animal experiments also showed that 
lung fibrocytes began to increase on the second day after 
intratracheal administration of BLM, peaking on the eighth 
day, and still significantly higher than that of the control 
group until the 20th day [28]. The homing of circulating 
fibrocytes to fibrotic lung is dependent on the CXCL12/
CXCR4 biological axis. Treatment of mice with CXCL12 

antibody or CXCR4 antagonist with BLM-induced lung 
injury inhibited circulating fibrocytes from migrating to 
the damaged lung tissues and significantly attenuated lung 
fibrosis [28, 34-36]. Some studies indicated that mouse 
fibrocytes to traffic to lung via the CCL12/CCR2 axis in 
the FITC-induced PF model [37, 38] and via the CCL3/
CCR5 axis in BLM-induced PF [39]. 

ESSENTIAL PROPERTIES OF MSCS

BM can also generate mesenchymal stem cells 
(bone marrow-derived mesenchymal stem cells, BM-
MSCs), which have protective effects against the PF. 
Friedenstein et al. first discovered MSCs, which are a 
class of multipotent stem cells with self-proliferation 
and differentiation potential, in 1968 [40, 41]. MSCs can 
be obtained from different types of tissues, such as BM, 
adipose tissue, and umbilical cord blood, and BM-MSCs 
are the main sources for stem cell therapy [40]. Three 
criteria have been established for isolating and cultivating 
MSCs [42-44]: i) MSCs exhibit fibroblastic morphology, 
clonogene, and plastic adherence when cultured in 

Figure 2: Various differentiations of mesenchymal stem cells after homing to the injured lung. Mesenchymal stem cells 
(MSCs) home to lung in response to injury via chemokines and receptors (CXCL8, SDF-1, and CXCR4). On one hand, MSCs differentiate 
into type II AECs and ameliorate pulmonary fibrosis through canonical Wnt pathway (GSK-3β and β-catenin) and noncanonical Wnt 
pathway (JNK and PKC). On the other hand, MSCs differentiate into fibroblasts and promote pulmonary fibrosis by activating Wnt/β-
catenin signaling. Abbreviations: AECs: alveolar epithelial cells; CXCR4: C-X-C chemokine receptor type 4; CXCL8: interleukin-8; SDF-
1: stromal cell derived factor-1; JNK: c-Jun N-terminal kinase; PKC: protein kinase C; GSK: glycogen synthase kinase.
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standard tissue culture conditions; ii) differentiate into 
adipocytes, osteoblasts, and chondrocytes in vitro; and 
iii) express certain cell surface markers such as CD44, 
Sca-1, CD29, and CD90 but not CD45, CD34, CD14, and 
CD11b. Moreover, MSCs possess low immunogenicity, 
can be used for xenogenous transplantation, and are widely 
used in basic research and treatment of many diseases 
due to its immunomodulation and tissue repair function 

[45] (Figure 1). With further research development, MSC 
transplantation is increasingly used in the treatment of 
clinical diseases, such as lung diseases [45], hepatic failure 
[46], myocardial infarction [47], diabetes [48], sepsis [49], 
and acute renal failure [50].

Exogenous MSC transplantation has achieved the 
desired effects, and no transplant-related adverse reaction 
has been observed in lung-injury animals in some small 
clinical trials. However, its safety and efficacy in humans 
remain questionable due to the difference between 
animals and human and the small sample size of clinical 
trials. Concurrently, transplant-related adverse reactions 
have been observed in patients under clinical trials. In 

clinical research in which BM-MSCs were used for 
treating osteogenesis imperfecta (OI), one of six children 
patients who had undergone standard BM transplantation 
for severe OI had clinically significant toxicity [51]. 
Moreover, MSC-based treatments pose other risks, such 
as tumorigenesis due to weakened immune system and 
enhanced angiogenesis [52]. 

In recent years, research on the mobilization of 
endogenous stem cells from BM for tissue repair has 
attracted people’s attention [53, 54]. The BM acts as a 
repository for a variety of stem cell populations, which 
are mobilized at varying degrees into the peripheral 
circulation after damage [55]. Endogenous MSCs from 
BM can be mobilized and have the capability to proceed 
from the circulatory system to various, experimental, 
and damaged tissues, where they can promote to tissue 
repair and regeneration by secreting various paracrine 
factors and directly differentiating into different cells 
[54-57]. Research showed that approximately two EPCs 
exist in 107 mononuclear cells [58], whereas 0.5-5 MSCs 
exist in 105 mononuclear cells [59]. Rojas et al. reported 

Figure 3: Secretome of mesenchymal stem cells. After activation, mesenchymal stem cells (MSCs) can produce various growth 
factors (KGF, HGF, and EGF) to protect epithelium function. MSCs enhance endothelium barrier via NO, S1P, Ang-1, and VEGF and 
secrete anti-inflammatory cytokines, such as IL-1ra, IL-10, and TSG-6. Moreover, MSCs achieve immunomodulating function through 
chemokines and receptors (ICAM-1, VCAM-1, and CXCR3). These factors are crucial components for function regulation and tissue repair 
by MSCs. Abbreviations: KGF: keratinocyte growth factor; HGF: hepatocyte growth factor; EGF: epidermal growth factor; NO: nitric 
oxide; S1P: sphingosine-1-phosphate; Ang-1: angiopoietin-1; VEGF: vascular endothelial growth factor; TSG-6: TNF-α stimulated gene/
protein 6; PGE2: prostaglandin E2; IL-1ra: IL-1 receptor antagonist; IL-10: interleukin-10; IGF-1: insulin like growth factor 1; TGF-β: 
transforming growth factor-β; ICAM-1: intercellular adhesion molecule-1; VCAM-1: vascular cell adhesion molecule-1. 



Oncotarget102604www.impactjournals.com/oncotarget

that busulfan inhibited BM function before duplicating 
PF and aggravated the degree of PF in mice model 
[60]. The administration of N-acetylcysteine-pretreated 
human embryonic MSCs protects against BLM-induced 
lung injury [61]. Oncostatin M-preconditioned MSCs 
alleviated BLM-induced PF through paracrine effects of 
the hepatocyte growth factor (HGF) [62]. These results 
imply that normal BM function and/or trying to improve 
MSCs function play important roles in lung injury repair. 
Granulocyte colony-stimulating factor (G-CSF) promotes 
stem cell mobilization via downregulating the expression 
of stromal cell-derived factor (SDF)-1 and increasing 
CXCR4 in BM [63]. Studies found that transplantation 
of BM stem cells as well as mobilization by G-CSF 
promotes recovery after spinal cord injury in rats [64]. 
G-CSF had a protective effect against BLM-induced lung 
injury and fibrosis [65]. In newborn rat model of high-
oxygen induced-lung injury, G-CSF had a protective 
effect for alveolar growth restriction caused by high 
oxygen and improved the serum vascular endothelial 
growth factor (VEGF) level and promoted lung blood 
vessel growth [66]. However, other research showed that 
G-CSF enhanced BLM-induced lung toxicity through 
a mechanism that probably involved neutrophils [67], 
and serum concentrations of G-CSF was significantly 
higher in IPF patients than that of the control group [68]. 
Meanwhile, the number of BM-MSCs decreased in BLM 
induced-PF mice model [69]. SDF-1-TR1 and CXCR4 
mRNA expressions were significantly increased in BM-
MSCs of IPF patients compared with that of controls 
[70]. The protective effects of BM-derived mononuclear 
cells from donors of acute respiratory distress syndrome 
markedly decreased [71]. These results suggest that BM 
function diminishes in the development of lung injury.

ROLES AND MECHANISMS OF MSCS IN 
PULMONARY FIBROSIS

MSCs are also used to treat PF [9]. BM-MSC 
transplant significantly reduced lung injury and fibrosis 
in the animal BLM-induced PF models [72]. In 2003, 
Ortiz reported that BM-MSC injection (5×105/mouse in 
200 µl of PBS) through the jugular vein immediately after 
challenge with BLM can significantly reduce PF [73]. In 
SiO2-induced IPF mice model, human mesenchymal stem 
cell (hMSC) transplantation directly replaced fibrosis 
with normal lung cells and reduced IPF symptom, such 
as collagen deposition and inflammation [74]. BLM-
induced lung injury and fibrosis were significantly 
reduced by injection of BM-MSCs by downregulating 
proinflammatory and angiogenic cytokines and nitric 
oxide metabolites after 4 days of BLM inhalation. [75]. 
Zhao et al. also proved the therapeutic effects of BM-MSC 
engraftment in BLM-induced lung damage in rats [76]. 
The cyclophosphamide alone did not improve PF and 
may even aggravate PF, but the combination with BM-

MSCs can protect against BLM-induced lung fibrosis in 
mice [77]. Moreover, data from MSC-based clinical trials 
support the safety of a single infusion of hMSC in patients 
with IPF [78].

Homing and migration

IPF is an epithelial-driven disease [79]. The recurrent 
injury and abnormal repair of AECs disturb normal 
epithelial-fibroblast interactions and play major roles in 
promoting the fibrotic process [80]. When type I AECs 
are damaged and/or missing, type II AECs experience 
hyperplastic proliferation and differentiation into type 
I AECs to blanket the uncoated basilar membranes [3]. 
Under pathologic conditions, the resident fibroblasts 
accumulate and differentiate into myofibroblasts under the 
action of TGF-β in these damaged areas. 

Some results suggested that BM-MSCs was 
homing to the lungs after damage, exhibiting epithelioid 
phenotypes and reducing inflammation and collagen 
deposition in BLM-induced animal models [73, 81]. 
Akram et al. found that hMSCs showed a strong migratory 
response to AECs injury in a 3D direct-contact wound 
repair model [82]. The migration of BM-MSCs are 
mediated by some chemotactic factors and their receptors. 
The chemokine SDF-1 is crucial for migration to injured 
tissues via interacting with its cognate receptor CXCR4 
on the cellular surface [83]. Xu et al. found SDF-1 
significanly promoted the chemotactic migration of BM-
MSCs, but this effect was mimicked by lungs extracts 
from mice after BLM treatment and was completely 
inhibited by a synthetic specific CXCR4 antagonist, that 
is, TN14003 [36]. SDF-1 and CXCR4 were increased in 
lungs of IPF patients compared to normal human lungs, 
and the concentration of SDF-1 in serum and BALF and 
the expression level of CXCR4 in lungs were elevated in 
BLM-induced animal models [36]. On day 7 after BLM 
challenge, the SDF-1α mRNA levels in the lungs increased 
significantly compared with saline groups and remained 
on day 14 [29]. SDF-1 expression was also increased in 
the lungs of patients with idiopathic interstitial pneumonia 
[84]. Another study showed chemokine CXCL8 
(interleukin-8) also promoted the migration of hMSCs 
[85] (Figure 2).

Differentiation

Furthermore, after homing to injured lungs, MSCs 
can differentiate into type II AECs and be involved in the 
renewal of the alveolar epithelium in vitro and in vivo 
[86-88]. MSC differentiation into type II AECs is mainly 
mediated by the Wnt pathway [89]. Liu et al. found that 
β-catenin and glycogen synthase kinase-3β (GSK-3β) 
in the canonical Wnt pathway were activated during the 
differentiation of mouse MSCs into type II AECs [86]. 
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Overexpression of β-catenin in mouse MSCs to activate 
canonical Wnt/β-catenin pathway further improved 
their protective effect against epithelial impairment and 
therapeutic effects for ARDS in mice [87]. Further studies 
indicated that Wnt5a contributes to MSC differentiation 
into type II AECs through noncanonical c-Jun N-terminal 
kinase (JNK) or protein kinase C (PKC) signaling in vitro 
[88] (Figure 2). 

However, MSCs playing a role in resistance to 
PF through differentiation into epithelial cells remains 
controversial. In HCl-induced ALI models, MSCs did not 
improve the pathologic changes of ALI and PF [90]. The 
researchers found that the activation of canonical Wnt/β-
catenin signaling induced most MSCs to differentiate into 
fibroblasts or myofibroblasts, and that block this signal 
after MSC transplantation ameliorated PF and improved 
pulmonary function in vivo. Tang et al. also showed 
that BM-MSCs induce α-SMA-positive myofibroblasts 
in a transplanted BM model [91]. MSCs, which were 
administered to mice during the fibrotic stage of radiation-

induced PF model, differentiated into fibroblast-like 
phenotype and aggravated the fibrotic lesion [92]. MSCs 
isolated from BLM-injured mice lungs were also more 
likely to differentiate into fibroblasts in vitro [93] (Figure 
2). 

MSC-derived secretome

MSCs with therapeutic effects on injured lungs 
have been extensively investigated because of their 
low engraftment and differentiation after exogenous 
administration [94, 95]. Although MSCs can migrate to the 
damaged lung tissues and have differentiation function, 
these roles are insignificant. The mechanism of MSC 
resistance to PF mainly depends on the function of their 
paracrine factors and immune adjustment. Interestingly, 
MSC-derived conditioned medium (MSC-CM) can 
also exert their protective effects against BLM-induced 
lung injury and fibrosis [96]. In the BLM-induced rat 

Figure 4: Anti-inflammatory factors secreted by mesenchymal stem cells. The anti-inflammatory effects of the mesenchymal 
stem cells (MSCs) are largely explained by the cells being activated to secrete TSG-6, PGE2, and IL-1ra on resident macrophages. TSG-6 
suppressing the activation and translocation of the (NF-κB) complex to the nucleus and decreasing the secretion of the pro-inflammatory 
cytokines, namely, TNF-α, IL-1α, and IL-1β, is dependent on CD44 expression. PGE2 bind to EP2 and EP4 receptors on macrophages 
and change macrophages to the phenotype that secretes IL-10. IL-1ra secreted from MSCs inhibit the production of TNF-α through IL-1α-
activated macrophages. Abbreviations: TNF-α: tumor necrosis factor-α; IL: interleukin; TSG-6: TNF-α stimulated gene/protein 6; PGE2: 
prostaglandin E2; IL-1ra: IL-1 receptor antagonist; NF-κB: nuclear factor-κB.
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model, MSC-CM was proved to prevent PF because of 
reducing pulmonary inflammation, fibrosis score, collagen 
deposition, and cell apoptosis [96]. MSC-CM protected 
A549, namely human non-small-cell lung cancer epithelial 
cells, from BLM-induced apoptosis [96]. At present, 
one emerging concept is MSCs having paracrine roles 
in lung injury repair and regeneration. MSCs have been 
proposed to possess the capacity to secrete a broad range 
of bioactive molecules, such as growth factors, cytokines, 
and chemokines [97-99]. These bioactive molecules 
regulate local immune response to establish a regenerative 
microenvironment and subsequently inhibit inflammation 
and repair the injured tissues (Figure 3).
Growth factors

MSC-derived growth factors play essential roles 
in the repair of alveolar epithelial cells and pulmonary 
vascular endothelial cells and restoration or maintenance 
of lung permeability following injury [100]. Keratinocyte 
growth factor (KGF), the seventh member of the FGF 
family (FGF7), is an important epithelial-specific 
growth factor secreted by BM-MSCs [101]. KGF can 
decrease pulmonary edema, the expression of TGF-β 
and platelet-derived growth factor-BB (PDGF-BB), and 
the loss of type II AEC in BLM-induced PF [102]. BM 
stem cells expressing KGF via an inducible lentivirus 
protects against BLM-induced PF [103]. Intratracheal 
administration of MSC-CM one hour following injury 
decreased inflammation and prevented the influx of 
neutrophils and pulmonary edema by restoring lung 
protein permeability and increasing alveolar fluid 
absorption in the injured alveolus; however, blocking KGF 
expression by using a neutralizing antibody abrogated 
their therapeutic properties [101]. Another epithelial-
specific growth factors secreted by MSCs are HGF and 
epidermal growth factor (EGF) [100]. MSCs prerteated 
with hypoxia had better therapeutic effects in BLM-
induced PF and improved the survival rate of transplanted 
MSCs because of increasing HGF in part [104]. 
Oncostatin M strengthened the anti-lung fibrosis effect of 
MSCs through paracrine HGF [62]. Moreover, HGF gene 
knockdown in the MSCs significantly diminished the 
protective effects of MSCs on the injured lung, indicating 
that MSCs restored lung injury by maintaining HGF 
levels in the lung, and the HGF expression is required 
for MSCs to protect the injured lung [105]. BM-derived 
progenitor cells enhance endothelial junction integrity 
and endothelial barrier function to prevent the increase 
in pulmonary microvascular permeability and edema 
formation in mice following LPS challenge by paracrine 
sphingosine-1-phosphate (S1P) release and activation 
of Rac-1 and Cdc42 [106]. Angiopoietin-1 (Ang-1) is a 
known endothelial survival and vascular stability factor 
that reduces endothelial permeability and suppresses 
leukocyte-endothelium interactions by modifying 
adhesion molecules and cell junctions of endothelial cells 

[107]. MSCs promote therapeutic effects in injured mice 
by secreting Ang-1 [108]. Ang-1 was responsible for the 
beneficial effect of MSCs by preventing the formation of 
actin stress fiber and claudin 18 disorganization through 
NF-κB suppression [109]. MSCs directly reduced the 
nuclear translocation of NF-κB in pigs with acute lung 
injury induced by intravenous oleic acid [110]. VEGF 
secreted by MSCs was important to maintain alveolar 
endothelium barrier [111]. 
3.3.2. Anti-inflammatory cytokines

One important pathogenesis of IPF is acute and/or 
chronic inflammation, which is also a key factor leading 
to the majority of IPF patients encountering recurrent lung 
injury [79]. Initially, IPF is known as an inflammatory-
driven disease associated with the interactions of 
mononuclear cells, fibroblasts and cytokines. In BLM-
induced PF models, the early acute inflammation is 
also important for the onset and progression of late PF 
[112]. Studies that used MSCs to treat inflammatory 
lung diseases reported that MSCs possess important anti-
inflammation effects, promoting lung tissue repair. For 
example, some researchers conducted phase I clinical 
trials to test the safety of MSCs on ARDS patients [113, 
114]. Zheng et al. reported the safety of intravenous 
administration of hMSCs in 12 patients with ARDS in 
a double-blind randomized single-center trial [115]. 
MSC transplantation relieved pulmonary inflammation 
and damage in both intravenous LPS/zymosan-induced 
extrapulmonary ALI and intratracheal LPS-induced 
intrapulmonary ALI [116]. MSC transplantation 
combined with appropriate antimicrobial therapy also 
obviously decreased the mortality of septic mice through 
downregulation of inflammation and inflammation-
related genes and upregulation the expression of genes for 
enhancing bacterial clearance [117]. 

MSCs can secrete cytokine modulators and 
contribute to their anti-inflammatory effects [118]. In a 
comparative multiplex analysis, MSC-CM attenuated 
lung inflammation and promoted an anti-inflammatory M2 
macrophage phenotype via insulin-like growth factor 1 
(IGF-1) secretion in LPS-induced lung injury [119]. MSC-
CM attenuated the influx of inflammatory cells within 
the alveolar space while reversing histological evidence 
of lung fibrosis through the restoration of MSCs in the 
lungs accompanied by the inhibition of T cell proliferation 
[120]. BM-MSCs decreasing the inflammatory response 
and preventing the lungs from developing fibrosis are 
attributed to cell activation to secrete interleukin-1 
receptor antagonist (IL-1ra) [121]. Yagi et al. found that 
hMSCs attenuated systemic inflammation in mice after i.p. 
injection of LPS through secreting soluble receptor-1 for 
TNF (sTNFR1), which binds to TNF-α and eliminates its 
action [122]. Lee et al. suggested that the alleviations of 
PF animals and IPF people after i.v. injection of MSCs in 
the tail were caused by MSCs activation to secrete TNF-α-
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stimulated gene/protein 6 (TSG-6), which is an significant 
anti-inflammatory gene and expressed in various kinds of 
cells [47, 123]. However, hMSCs with TSG-6 siRNA were 
ineffective, and the advantages of hMSCs were greatly 
magnified through i.v. administration of recombinant 
human TSG-6 (rhTSG-6) [118, 124]. hMSCs and rhTSG-6 
suppressed the Toll-like receptor 2/NF-κB signaling in the 
lung resident macrophages via directly interacting with 
CD44, then decreasing the produce of proinflammatory 
cytokines, TNF-α, and IL-1α [118, 125]. Jarvinen 
et al. demonstrated that BM-MSCs inhibited T cells 
activation by secreting prostaglandin E2 (PGE2), thereby 
stimulating alveolar macrophages secreting IL-10 [126]. 
PGE2 protects C57BL/6 mice lungs from BLM-induced 
PF and lung dysfunction [127]. The anti-inflammatory 
effects of PGE2 secreted by MSCs were dependent on the 
interaction of EP2 and EP4 receptors on macrophages [49, 
118, 128]. Overexpression of EP2 receptor significantly 
enhanced MSCs migrating to injured lung tissue and 
further reduced LPS-induced pulmonary vascular 
permeability by decreasing the levels of proinflammatory 
cytokines [129]. MSCs transformed classically activated 
macrophages (M1MΦ) into alternatively activated 
macrophages (M2MΦ), upregulating IL-10 and IL-6 [130-
132] (Figure 4).

However, MSCs ameliorated lung inflammation 
and fibrosis only when they were injected during the 
early stage of BLM-induced PF. If the fibrotic changes 
already exist, then MSCs do not have beneficial effects, 
and even worsen the lung injury and fibrosis. When 
MSCs were administered through tail vein on 7 day after 
BLM challenge, the inflammation had not been improved 
compared with the BLM model group [82]. It suggests 
MSCs play protective roles in the development of PF via 
influencing the early inflammatory process.
Immunomodulation

Multiple studies have determined that the production 
and deposition of extracellular matrix proteins in the 
process of PF are involved in various pathways, including 
growth factors, cytokines, and chemokines, associated 
with inflammation, cell transport, angiogenesis, and 
immunomodulation. Among these pathways, the role of 
humoral autoimmunity in IPF is an emerging subject of 
investigation. Autoantibodies are present in the plasma of 
>80% of IPF patients [133]. Autoreactive T-cells against 
lung antigens have been detected in the same studies. 
IPF patients show peripheral wastage of NK cells and 
imbalance of the Treg/Th17 axis [134]. A total of 40%-
60% of IPF patients may display an autoimmune response 
against type V collagen [col(V)] [135]. Anti-col(V) 
immunity is an important factor in IPF pathogenesis, 
and col(V)-induced tolerance downregulates TGF-β-
related signaling pathways and eliminates BLM-induced 
fibrogenesis [136]. A phase 1 study has been conducted to 
test the safety and study the effective application of IW001 

in the treatment of col(V) antibody-positive IPF patients 
[137]. Patients with IPF often have elevated serum levels 
of SP-A and SP-D, which possess significant innate 
immune function because of the capabilities to give rise 
to both pro-inflammatory and anti-inflammatory responses 
[138-140]. SP-D deficiency increased the numbers of 
macrophages and fibrocytes in lung tissues, the expression 
of profibrotic cytokines (TGF-β1 and PDGF-AA) in BLM-
induced PF. And intratracheal injection of SP-D relieved 
BLM-induced PF in SP-D-/- mice [141]. These studies 
support the hypothesis that autoimmune response to 
autoantibodies may play a vital role in the progression of 
disease for patients with IPF.

A number of studies have shown that MSC 
has a strong immunosuppressive effect through 
producing the abovementioned paracrine factors. 
However, the mechanisms by which MSCs mediate the 
immunosuppression are yet to be determined. MSCs 
produced a large number of chemokines (CXCR3 and 
CCR5 ligand chemokines) and adhesion molecules, 
including intercellular adhesion molecule (ICAM)-1 and 
vascular cell adhesion molecule (VCAM)-1[142, 143]. 
Then, immune cells aggregated near MSCs, which secreted 
high concentrations of nitric oxide (NO) and indoleamine-
2,3-dioxygenase (IDO) then suppressed T cells 
proliferation [144]. High concentrations of NO inhibited 
immune responses by suppressing phosphorylation of 
signal transducer and activator of transcription (STAT)5 
and promoting apoptosis of T cells [145]. Furthermore, 
MSCs secreted IL-6 in vitro, then induced B lymphocytes 
to produce IgG [146]. A research suggested that the IL-
6-dependent PGE2 production played a crucial role in 
the beneficial therapy of MSCs in experimental mouse 
arthritis model [147]. However, the expression of cytokine 
and chemokine receptors was decreased in aged BM-
MSCs and their protective roles were compromised due 
to impaired migration and anti-inflammatory response 
[148]. This result may be because aging can lead to 
significant alterations in extracellular matrix composition, 
inflammatory mediators, and chemokines and increased 
susceptibility to oxidative stress. 

Interestingly, research has shown that MSCs also can 
secrete TGF-β, which is a key profibrotic protein [149]. 
This MSC mechanism may explain why they aggravate 
BLM-induced lung fibrosis when administered to mice 
during the late fibrotic phase. This result is seemingly 
contradictory to the antifibrotic effects of MSCs. However, 
Liu et al. found that the supernatant derived from human 
BM-MSCs isolated from normal individuals expressed a 
high level of TGF-β1 and had a better therapeutic effect 
in reducing the mortality, inflammation, and fibrosis 
than that from MSCs derived from umbilical cord which 
secreted a low level of TGF-β1 [150]. In that study, 
TGF-β1 hypersecretion in BM-MSCs activated IL-6/
STAT3 signal pathway, then promoting Tregs proliferation 
and production of antifibrotic chemokine IFN-γ-inducible 
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protein 10. This study implies that TGF-β secreted by 
MSCs can modulate immune responses to ameliorate 
inflammation and fibrosis, and this mechanism may be 
important to MSC resistance to PF. Moreover, TGF-β1 can 
regulate immune homeostasis. T cells were abnormally 
activated and some proinflammatory cytokines were 
significantly increased in TGF-β1 deficiency mice [151]. 
IL-4 and/or IL-13 activated the STAT6 signal in BM-
MSCs, leading to an increase in TGF-β production, which 
was useful alone or in combination with regulatory T cells 
[149]. In the presence of pro-inflammatory cytokines such 
as IL-1β, IL-6, and IL-23, MSCs retained the ability to 
inhibit allogeneic T cell proliferation and secreted high 
levels of TGF-β and low levels of IL-4 [152]. Therefore, 
the timing of MSC administration is crucial to determine 
whether the cells will eventually have a favorable or 
adverse impact on PF development. The greatest benefit 
of MSCs occurs in the early inflammatory stages of PF.

Extracellular vesicles

Extracellular vesicles (EVs) are diminutive and 
orbicular membrane segments, including exosomes, 
microvesicles (MVs), and apoptotic bodies, as described 
by the recommendations of the International Society for 
Extracellular Vesicles [153]. EVs can be produced by 
various type cells as well as separated from body fluids 
in vivo, involving in cell-to-cell communication and 
mediating the phenotypic changes of receptor cells [154, 
155]. 

Notably, a number of studies showed that the 
paracrine benefits of MSCs were also mediated by EVs 
contained in MSC-CM except the abovementioned soluble 
factors [97]. Therefore, some researchers proposed that 
MSC-CM and/or MSC EVs can be used as treatment for 
acute lung injury and other inflammatory lung diseases. 
Recently, a research group found that MSCs secreted three 
types of EVs [156]. MSC-derived EVs also expressed 
MSC phenotypic markers, such as CD29, CD73, CD44, 
and CD105, and can be identified through conventional 
flow cytometry [157]. The microvesicles isolated from 
MSC-CM reduced the total cell count in BALF, alveolar 
macrophages ratio, inflammation, and fibrosis [158]. 

MSC-derived EVs can be an important tool for the 
clinical benefit of MSC treatment and may reduce risks 
associated with engraftment of MSCs [159]. Recently, 
Pachhler et al. proposed a good manufacturing practice-
grade standard protocol for exclusively human MSC-
derived EVs [160]. The characterization and establishment 
of MSC-derived EVs will help identify active components 
in therapeutic EVs for future clinical applications. 

MSC-derived extracellular vesicles may be an 
important tool for the clinical benefit of MSC treatment 
and may reduce the risk associated with transplanting 
MSCs.

Signal molecules regulated by MSCs

MSCs elicit their beneficial effects not only via 
these mechanisms but also via regulation of some 
signal molecules to improve the endogenous capability 
of lungs to resist damage. MSCs reduce the expression 
of matrix metalloproteinase (MMP9), tissue inhibitor 
of metalloproteinase-1, γ-interferon, and TGF-β1 to 
suppress lung inflammation and fibrosis [161]. MSCs also 
alleviate pulmonary damage and mortality in association 
with a reduce in macrophage inflammatory protein-2 
and TNF-α levels in BALF and high levels of IL-10 in 
plasma and BALF [162]. Ni et al. suggested that BM-
MSCs significantly ameliorate the BLM-induced PF 
by increasing the gene expression levels of NAD(P)
H: quinine oxidoreductase 1, gamma-glutamylcysteine 
synthetase, heme oxygenase-1, and nuclear factor 
erythroid 2-related factor 2 [163]. These results 
indicate that MSCs can promote lung resistance against 
inflammation and oxidative stress by regulating anti-
inflammatory and antioxidant factors.

Scientists are also actively looking for the 
endogenous mediators induced by MSCs for pulmonary 
homeostasis. The increasing expression of FoxM1 induced 
by BMPC treatment is a critical endogenous mediator 
against inflammatory lung injury [164]. Moreover, The 
endothelial FoxM1 is required for paracrine released 
by MSCs in S1P-mediated enhancement of endothelial 
barrier function [164]. MSCs were susceptible to 
oxidative stress after decreasing stanniocalcin, whereas 
stanniocalcin overexpression in MSCs alleviated oxidative 
stress [165]. STC1 plasmid transfected to MSCs enhanced 
the capability of MSCs to ameliorate the fibrosis by 
reducing oxidative stress, endoplasmic reticulum stress, 
and TGF-β1 production in AECs [165]. MSCs expressing 
stanniocalcin 2 (STC2) exhibit increased cell viability, 
improved cell survival, and increased pluripotency and 
self-renewal marker expression by activating p-AKT and 
p-ERK1/2 signal pathways under oxidative conditions 
[166]. Ahmad et al. proved that MSCs overexpressing 
the mitochondrial transport protein Miro1 promoted 
mitochondrial transfer from MSCs to damaged epithelial 
cells and rescued the epithelial injury [167]. These results 
suggest that FoxM1, stanniocalcin, and Miro1 may be 
essential factors that regulate the endogenous injury repair 
and mediate the effects of MSCs to ameliorate lung injury 
and PF. 

CONCLUSION AND PERSPECTIVES

In summary, MSC administration can be an effective 
therapy to alleviate BLM-induced lung injury and fibrosis. 
The mechanisms involve multiple biological effects of 
MSCs, including homing, differentiation, secretome, 
and promotion of lung endogenous antidamage ability. 
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However, a large proportion of studies have explore the 
early inflammatory stage rather than the late fibrotic stage. 
This is a major limitation that MSC administration is 
only used as a preventive measure but not as a treatment 
modality. Therefore, the timing of MSC administration 
is crucial. Some controversies on the effectiveness and 
safety of MSC administration for IPF have been presented. 
Thus, further research on the mobilization of endogenous 
MSCs from BM and its mechanisms should be performed. 
Recently, MicroRNAs are found to participate in IPF 
pathogenesis [168]. However, the role of MicroRNAs in 
improving the beneficial effects of MSCs is unknown. 
Hence, further research and clinical trials should be 
conducted. 
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