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Background. ,e dried roots of the Astragalus propinquus Schischkin (RAP) plant, as a traditional Chinese medicine, has been
widely used to treat stroke, cerebral ischemia, qi deficiency, and hypertension. Buyang Huanwu decoction is traditionally used to
treat stroke in China for more than 200 years and has a significant effect on cerebral ischemia, and RAP is monarch medicine of
Buyang Huanwu decoction. ,erefore, this study was designed to observe the regulatory effect of RAP on transmembrane iron
transporters and ferroptosis-related factors in cerebral ischemia-reperfusion injury (CIRI) in rats.Methods. Middle cerebral artery
occlusion (MCAO) was used to block blood flow in the blood supply area of the middle cerebral artery in seventy male SD rats to
induce focal CIRI to establish a rat model of CIRI. RAP was administered to explore the regulatory effect of RAP on iron
transmembrane transport under the condition of CIRI. ,e infarct size was measured using 2,3,5-triphenyl-tetrazolium chloride
(TTC) staining, the pathological structure of brain tissue was observed by HE staining, and neuronal injury was evaluated by Nissl
staining after treatment.,en, changes in the iron transporters ferritin (Fn), ferritin heavy chain (FHC), ferritin light chain (FLC),
transferrin (Tf), transferrin receptor (TfR), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), transient
receptor potential canonical 6 (TRPC6), and ferroportin 1 (FPN1) were observed by immunohistochemistry staining (IHC) and
Western blotting. ,e expression of key factors of ferroptosis, including the membrane sodium-dependent cystine/glutamate
antiporter System Xc− (System Xc−) light chain subunit (XCT) and heavy chain subunit (SLC3A2), glutathione peroxidase 4
(GPX4), nuclear factor erythroid 2-related factor (NRF2), heme oxygenase-1 (HO-1), and iron-responsive element-binding
protein 2 (IREB2) in the brain tissues of rats was assessed byWestern blotting. RAP decreased the infarct size and neuronal injury
after CIRI in rats. Similarly, RAP treatment regulated the expression of iron transporters. As such, RAP was able to reduce the
expression of Fn, FHC, FLC, Tf, TfR, DMT1, and TRPC6 and increase the expression of FPN1 through a Tf/TfR-independent
pathway after CIRI in rats. Conclusion. RAP stimulation inhibited ferroptosis by regulating the expression of the key ferroptosis
factors XCT, SLC3A2, GPX4, NRF2, HO-1, and IREB2. In conclusion, RAP regulates transmembrane iron transport and
ferroptosis to improve CIRI.

1. Introduction

Ischemic stroke is a destructive brain injury and one of the
leading causes of death and physical disability worldwide
[1, 2]. Reperfusion is an effective treatment for cerebral
ischemia. However, the damage to ischemic brain tissue is

further aggravated when the blood restores perfusion, and
this process is defined as CIRI. Oxidative stress is involved in
the entire pathological process, and iron plays a key role in
CIRI.

Iron overload occurs resulting in DNA damage, lipid
peroxidation, neuronal apoptosis, and mitochondrial
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autophagy in CIRI [3]. Under normal conditions, iron enters
cells mainly through a Tf/TfR-dependent pathway. Cells
acquire iron from Tf [4], which binds iron with a high af-
finity to form a unique chelated form of iron. Transferrin
receptors (TfRs) are involved in the uptake of Tf-bound iron
from the plasma into cerebral endothelial cells; among these
receptors, TfR1 is essential for cellular iron uptake and is
widely distributed in neurons [5, 6]. Fn is the main iron
storage protein, which is composed of two subunit types, the
H- and L-chains [7]. Under iron overload conditions, Tf/
TfR-independent pathways become the major pathways by
which iron enters cells due to the oversaturation of the Tf/
TfR-dependent pathway [4, 8, 9]. Tf/TfR-independent iron
transmembrane transporters mainly include: DMT1, LTCC,
TRPC6, FPN1 [10–12].

Ferroptosis plays an important role in the occurrence
and development of ischemic stroke by affecting iron
metabolism and lipid peroxidation [13, 14]. ,e loss of
GPX4 activity is the main cause of ferroptosis.,e activity of
GPX4 is controlled by glutathione (GSH), and the avail-
ability of cysteine is essential for the synthesis of GSH. Cells
import cystine using System Xc−, which consists of XCTand
SLC3A2 and is mainly responsible for intracellular cystine
uptake [15, 16]. ,ere is increasing evidence that SLC3A2 is
also important in preventing excessive lipid peroxidation in
cells [16, 17]. Recent studies have shown that IREB2 and
HO-1 also play important roles in ferroptosis [18, 19].

,rombolytic and neuroprotective therapies are rec-
ommended for patients suffering from ischemic stroke.
,rombolytic therapy is one of the most effective treatment
measures, but it has strict time window restrictions and side
effects. Neuroprotective agents are considered to be the most
promising drugs, and the purpose of their treatment is to
reduce brain tissue injury and inhibit nerve cell death after
cerebral ischemia reperfusion. Edaravone is an antioxidant
free radical scavenger, but it has a single therapeutic target
and also causes various adverse reactions [20].

,e dried roots of plant Astragalus propinquus
Schischkin (RAP) is a traditional Chinese medicine (TCM),
also known as Huang Qi or Radix Astragali [21, 22]. Its plant
name has been checked with https://www.theplantlist.org.
RAP was first recorded in the earliest Chinese pharmacy
monograph “Shen Nong’s Herbs” with more than 2000 years
history [21]. According to Chinese medicine theory, RAP is
capable of raising yang qi and tonifying the spleen and lung
qi, thereby facilitating urination and reducing edema [23]. In
TCM, RAP has been widely used to treat stroke, cerebral
ischemia, qi deficiency, hypertension, and many other dis-
eases [24–27]. Buyang Huanwu decoction (BHD), a classic
TCM formula, was first created by Qingren Wang in the
book Correction of Errors in Medical Classics (Yi Lin Gai
Cuo) [28]. It has the effect of tonifying qi, promoting blood
circulation, and opening the meridians and collaterals. It has
been traditionally used to treat stroke in China for 200 years
and has a significant effect on cerebral ischemia [29, 30].
BHD consists of seven herbs: Astragalus propinquus
Schischkin (Huangqi) 120 g, Angelica sinensis (Oliv.) Diels
(Danggui) 6 g, Paeonia lactiflora Pall (Chishao) 4.5 g, Lig-
usticum striatumDC. (Chuanxiong) 3 g, Lumbricus (Dilong)

3 g, Prunus persica (L.) Batsch (Taoren) 3 g, and Carthamus
tinctorius L. (Honghua) 3 g, among which RAP is monarch
medicine, with a dosage of up to 120 g [30–33]. In this study,
we adopted the same dose of RAP in BHD.

Modern pharmacological studies show that RAP pos-
sesses a variety of chemical components, mainly including
Astragalus polysaccharides, saponins, flavonoids, and amino
acids. ,e 2020 edition of “Chinese Pharmacopoeia” takes
the content of calycosin and astragaloside as the quality
control standard for RAP [34]. Currently, the commercially
available dosage forms of RAP in China mainly include two
types, granule and injection. RAP granule is included in the
“Standards Issued by the Ministry of Traditional Chinese
Medicine” with standard number of WS3-B-2224-96, and is
a full-component extract of Astragalus propinquus
Schischkin dried roots [35]. RAP injection is a sterilized
aqueous solution prepared by extracting the dried roots of
Astragalus propinquus Schischkin. Compared with granule,
it has the characteristics of high absorption and availability
and rapid curative effect [36].

Experimental studies confirm that RAP and Astragalo-
side IV can alleviate brain tissues in ischemia-reperfusion
injured rats [37]. Astragalus polysaccharide upregulates
hepcidin and reduces iron overload in mice [38]. Moreover,
Astragalus polysaccharide treatment significantly reduces
apoptosis, regulates oxidative stress, and upregulates GSH
peroxidase activity [39]. Calycosin is an effective monomer
of RAP and can protect brain nerve cells from CIRI through
antioxidant, antiapoptotic, anti-inflammatory, and auto-
phagic activities [40, 41]. ,erefore, we hypothesized that
RAP has a neuroprotective effect on CIRI, which may be
related to its regulation of transmembrane iron transport
and improvement of ferroptosis in the brain.

In the present study, we first determined the neuro-
protective effect of RAP in CIRI model rats. ,en, we
clarified the mechanism of RAP in CIRI iron injury and
identified the molecular targets of RAP and its monomer
calycosin in transmembrane iron transport and ferroptosis.
In addition, we compared the difference in the efficacy of
granule and injection of RAP.

2. Materials and Methods

2.1. Ethics and Animals. All experimental procedures were
approved by the Ethics Committee of Hebei University of
Chinese Medicine (Shijiazhuang, China). In this study, 70
SD healthy male rats weighing 120–150 g were purchased
from Beijing Vital River Laboratory Animal Technology Co.,
Ltd. (license number: SCXK, Beijing, 2016-0006, ethics
number: DWLL2020080). All rats were housed with free
access to food and water at a constant temperature of
22± 2°C under a 12 h light/dark cycle with a relative hu-
midity of 40–60%. All animals were treated as humanely as
possible to alleviate the pain suffered during the experiment.

2.2. Establishment of an MCAO and Reperfusion Model in
Rats. ,e MCAO model was established according to
methods outlined by Longa [42]. ,e rats were anesthetized
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with 1% pentobarbital sodium (50mg/kg), and then the right
common carotid artery (CCA), external carotid artery
(ECA), and internal carotid artery (ICA) were bluntly
separated. ,e ECA was ligated, and then the proximal end
of the CCA and the ICA were clamped with arterial clamps.
A 45° incision was made in the ECA, and a round 4-0 single
wire bolt was gently inserted at the end of the head into the
ICA until slight resistance was encountered (18mm). After 2
hours of ischemia, the thread was gently pulled out to restore
cerebral blood circulation. In the sham group, only the skin
was cut open, and the right CCA was bluntly separated, after
which the incision was sutured without the ischemia-
reperfusion procedure.

2.3. Groups and Drug Administration. All rats were ran-
domly divided into 7 groups: the sham group, model group,
RAP granule group, RAP injection group, calycosin group,
edaravone group, and deferoxamine group. ,e CIRI model
was established in all groups except for the sham group. ,e
sham group and model group received a single intraperi-
toneal injection of 0.9% NaCl; the RAP granule group re-
ceived a stomach feeding of 2.5 g/kg/d RAP granule
(SHINEWAY Pharmaceutical Group Co., Ltd., Shi-
jiazhuang, China, 20071141); the RAP injection (SHINE-
WAY Pharmaceutical Group Co., Ltd., Shijiazhuang, China,
200827C1) group, calycosin (purity >98.00%, GlpBio
Technology Inc, Montclair, CA, USA, 20575-57-9) group,
edaravone (Jilin Province Boldere Pharmaceutical Co., Ltd.,
Jilin, China, 01–2000031) group and deferoxamine (purity
>98.00%, GlpBio Technology Inc, Montclair, CA, USA,
54078-29-4) group were intraperitoneally injected with RAP
(2mL/kg/d), calycosin (10mg/kg/d), edaravone (6.3mg/kg/
d), and deferoxamine (70mg/kg/d), respectively. ,ese
administrations were given 7 days prior to the operation and
3 days following reperfusion, as shown in Figure 1.

2.4. High performance Liquid Chromatography (HPLC)
Analysis. ,e RAP granule/RAP injection was evaluated by
high performance liquid chromatography (HPLC) analysis.
Briefly, HPLC-ELSD was performed using Agilent-1260
(Agilent, California, USA) equipped with ,ermo BDS
Hypersil C-18 (250mm× 4.6mm, 5 μm). ,e column
temperature was 30°C, the nebulizer temperature was 40°C,
the nitrogen flow rate was 1.6mL/min, and the injection
volume was 10 μL. ,e mobile phase was eluted with ace-
tonitrile (A) and 0.2% acetic acid solution (B) in the gradient
mode. ,e proportion of acetonitrile varied from 20% to
40% within 30min (0–20min, 20%–40% A; 20–30min, 40%
A) at a flow rate of 0.9mL/min.

2.5. Staining and Measurement of Brain Infarct Size. ,e
brain was cut coronally into five 2 mm-thick sections and
immersed in TTC for 20min at 37°C in the dark. ,en, the
brain slices were removed, the TTC staining solution was
discarded, and PBS was added to stop the staining. After
removing the brain slices, they were placed in a tissue fixing
solution, and photos were taken after fixing for 24 hours.

After the imaging was completed, Image-ProPlus 6.0
analysis software (Media Cybemetics, U.S.A.) was used to
measure the pixel area of each tissue in each picture and the
corresponding infarcted pixel area, using pixels as the
standard unit. ,en, the proportion of tissue infarcted area
(%) was calculated with the following equation:

Infarct size(%) �
infarcted pixel area
tissue pixel area

× 100. (1)

2.6. HE Staining. Paraffin slices were dewaxed in water and
then xylene twice, 5min each time, rehydrated in an alcohol
gradient of 100%, 95%, and 80%, 5min each time, and then
washed with tap water. ,e slices were immersed in he-
matoxylin for 3 minutes, followed by washing with tap water
2-3 times, and then in hydrochloric acid alcohol differen-
tiation solution, followed by washing with tap water. ,e
slices were incubated in blue solution for 5–15 s, followed by
washing with tap water, and then stained with eosin for 10 s,
followed by washing with tap water. ,e slices were then
incubated in 80% alcohol for 5min, 90% alcohol for 5min,
100% alcohol for 5min, and then xylene. ,e slices were
sealed with neutral gum, after which they were observed by
optical microscopy, and the images were collected.

2.7. Nissl Staining. ,e sections were immersed in xylene
two times for 15min each, placed into a series of ethanol
concentrations starting from 50% to 100% for 5min each
and then rinsed with distilled water 3 times. Subsequently,
the sections underwent Nissl staining according to standard
protocols. ,en, the pathological changes in the brain tissue
were observed under a microscope.

2.8. IHC and Western Blotting. In the present study, IHC
and Western blotting were carried out as described in our
previous study [43, 44]. For IHC, the paraffin-embedded
sections were dewaxed in xylene, rehydrated in a graded
alcohol series (100%, 95%, and 80%), and then washed 3
times with distilled water. Subsequently, the sections were
blocked with 3% H2O2 at 37°C for 10min and washed 5
times with PBS. ,en, the sections were heated in a mi-
crowave oven in sodium citrate buffer for 20min for antigen
retrieval and washed 5 times with PBS. ,en, the slices were
incubated with primary antibodies overnight at 4°C, using
the following primary antibodies: anti-Fn (1 :1000;
WG3336219F); anti-Tf (1 :1000; CC02161); anti-TfR (1 :
1000; 33r7946); anti-DMT1 (1 :1000; 89p5609); anti-LTCC
(1 :1000; 59v9215); anti-TRPC6 (1 :1000; AD112056); and
anti-FPN1 (1 :1000; 89a3321). ,e next day, the sections
were incubated with a secondary antibody at 37°C for 1 hour,
DAB for development of color, and hematoxylin for
counterstaining after washing with running water, and then
washed back to blue with running water. Finally, the stained
sections were observed under a light microscope.

For Western blotting, the brain tissues were homoge-
nized by using RIPA lysis buffer to extract total protein. ,e
proteins were separated by SDS-PAGE and then transferred
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from the gel to nitrocellulose membranes. ,e membranes
were blocked with 5% skim milk and then incubated
overnight at 4°C with the following primary antibodies: anti-
FHC (1 :1000; 32j4044); anti-FLC (1 :1000; 89P1630); anti-Tf
(1 :1000; CC02161); anti-TfR (1 :1000; 33r7946); anti-DMT1
(1 :1000; 89p5609); anti-TRPC6 (1 :1000; AD112056); and
anti-FPN1 (1 :1000; 89a3321). ,e membranes were then
washed 3 times with TBSTand incubated with the secondary
antibody for 1 hour. Protein band densities were scanned
and analyzed by using a computerized image analysis system
and ImageJ.

2.9. Ferroptosis Index Assessment byWestern Blot. ,e brain
tissues were homogenized by using RIPA lysis buffer to
extract total protein. ,e proteins were separated by SDS-
PAGE and then transferred from the gel to nitrocellulose
membranes. ,e membranes were blocked with 5% skim-
med milk and then incubated overnight at 4°C with the
following primary antibodies: anti-XCT (1 : 5000;
GR3337924-9); anti-SLC3A2 (1 :1000; 14e3479); anti-GPX4
(1 :1000; 78p5366); anti-NRF2 (1 :1000; 65m9929); anti-
IREB2 (1 :1000; WG3335638A), and anti-HO-1 (1 :1000;
BJ02265489). ,e membranes were then washed 3 times
with TBST and incubated with the secondary antibody for
1 hour. Protein band densities were scanned and analyzed by
using a computerized image analysis system and ImageJ.

2.10. Statistical Analysis. Statistical analysis of the data was
performed using SPSS (IBM SPSS Statistics v 26.0.0). All data
satisfying normality are expressed as the mean± SEM. ,e
differences among the multiple groups were evaluated by
one-way ANOVA, followed by LSD for comparison of two
groups.,e results were considered statistically significant at
P< 0.05 and at P< 0.01.

3. Results

3.1. HPLC Analysis of RAP Granule and RAP Injection.
,e RAP granule and RAP injection were evaluated by high
performance liquid chromatography (HPLC) analysis to identify
the presence of Calycosin-7-O-glucoside and Astragaloside A
according to their retention times (Figures 2(a) and 2(b)).

3.2. RAPAttenuates Ischemic Injury afterMCAO. To explore
the effect of RAP on CIRI, the cerebral infarction area in rats
after MCAO and after administration of various agents was
observed. As shown in Figures 3(a) and 3(b) and Table 1,
compared with the sham group, the cerebral infarction area
in the model group increased significantly (P< 0.01).
Compared with the model group, the area of cerebral in-
farction in the RAP granule group, RAP injection group, and
edaravone group decreased, especially in the RAP granule
group (P< 0.01). ,ese results show that RAP can alleviate
the brain injury caused by ischemia.

3.3. Results of HE Staining of the Hippocampal CA3 Region.
Under a pathological microscope, the hippocampal CA3
region of rats in the sham group was characterized by an
intact cellular structure and orderly tissue arrangement. In
the model group, the arrangement of the brain tissue was
disordered, the structure of the neurons was seriously
damaged, and some nerve cells were necrotic. ,e RAP
granule group, RAP injection group and calycosin group
showed effective reductions in neuronal injury, and the
tissue arrangement in these groups was significantly better
than that in the model group (Figure 4(a)).

3.4. Neuronal Apoptosis in the Hippocampal CA3 Region.
According to the results of the Nissl staining, the hippo-
campal CA3 region of the rats in the sham group was

Sham

Group

Deferoxamine

Adaptation 7 day Treatment

normal saline

Free access to food and water

Treatment

18 day15147

CIRI

Edaravone

Calycosin

RAP injection

RAP granule

Model

Figure 1: Diagram of the procedures using medication for treatment of CIRI.
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characterized by an intact cell structure, regular nuclear
morphology, clear nucleoli, and abundant Nissl bodies in
the cytoplasm (P< 0.01). However, after MCAO, the
arrangement of cells in the CA3 region of the hippo-
campus was loose, the cell bodies of some residual
neurons shrank, the nuclei were pyknotic, and the Nissl
bodies in the cytoplasm were decreased. After drug
treatment, the neuronal injury was improved, the number
of Nissl bodies in the cytoplasm was increased, and the
differences were most significant in the RAP granule
group and the RAP injection group (P< 0.05, Figure 4(b),
Table 2).

3.5. Expression of Iron Transporters in the Different Treatment
Groups. To verify the regulatory effect of RAP on trans-
membrane iron transport, IHC and Western blotting were
used to observe the changes in iron transporters (storage
proteins Fn, FHC, and FLC, transfer proteins Tf, TfR, DMT1,
TRPC6, and LTCC, and efflux protein FPN1) before and
after administration of the various agents.

3.5.1. IHC and Western Blot Results

(1) Effect of RAP on Fn, FHC, and FLC Protein Expression.
According to the results of the IHC, the expression level of Fn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Retention time (min)

20 21 22 23

1

2

24 25 26 27 28 29 30 31 32 33 34 35

(a)

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Retention time (min)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

(b)

Figure 2: ,e main active constituents of RAP granule and RAP injection. (a) RAP granule; (b) RAP injection.
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protein in the model group was significantly higher than that
in the sham group (P< 0.01). Compared with the model
group, the expression of Fn protein decreased in the RAP
granule group, RAP injection group, and calycosin group,
especially in the RAP granule group (P< 0.01, Figures 5(a)
and 5(b), Table 3). Western blot results in Figure 5(c) and
Table 3 show that compared with the sham group, the ex-
pression level of FHC protein in the model group was sig-
nificantly higher (P< 0.01). Compared with the model group,

the expression level of FHC protein in the RAP granule group,
RAP injection group, and calycosin group decreased, espe-
cially in the RAP injection group (P< 0.01). As shown in
Figure 5(d) and Table 3, compared with the sham group, the
expression level of FLC protein in the model group was
significantly higher (P< 0.01). Compared with the model
group, the expression level of FLC protein in the RAP granule
group, RAP injection group, and calycosin group decreased,
especially in the RAP granule group (P< 0.01).

(2) Effect of RAP on LTCC Protein Expression. As shown in
Figures 6(a1) and 6(a2) and Table 4, compared with the
sham group, the expression level of LTCC protein in the
model group increased (P< 0.01), and compared with the
model group, the expression level of LTCC protein in the
RAP granule group, RAP injection group, and calycosin
group decreased, especially in the RAP injection group
(P< 0.05).

(3) Effect of RAP on Tf Protein Expression. Compared with
the sham group, the expression level of Tf protein in the
model group increased (P< 0.01), and compared with the
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Figure 3: Effect of RAP on cerebral infarct size in rats after CIRI induced by MCAO determined by TTC staining. (a) One representative
image of each of the seven groups is shown; (b) Statistical results of cerebral infarct size in the seven groups (n� 5). ∗∗P< 0.01 vs. sham
group, #P< 0.05, ##P< 0.01 vs. model group.

Table 1: Effect on cerebral infarct size in rats after CIRI induced by
MCAO determined by TTC staining.

Group Dose (g·kg−1) Infarct size (%)
Sham 15.42± 4.90
Model 44.64± 7.73∗∗
RAP granule 2.5 g/kg 18.63± 5.41##
RAP injection 2 ml/kg 22.00± 6.76#
Calycosin 10mg/kg 29.55± 6.99
Edaravone 6.3mg/kg 23.96± 5.39#
Deferoxamine 70mg/kg 30.37± 7.06
Data are expressed as the mean± SEM, n� 5. ∗∗P< 0.01 vs. sham group.
#P< 0.05 and ##P< 0.01 vs. model group.
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model group, the expression level of Tf protein in the RAP
granule group, RAP injection group, and calycosin group
decreased, especially in the RAP granule group (P< 0.01,
Figure 6(b1), Table 5). Western blot results showed that the
expression level of Tf protein in the model group
(0.894± 0.04) was significantly higher than that in the sham
group (0.561± 0.05) (P< 0.01). Compared with the model

group, the expression level of Tf protein in the RAP granule
group (0.565± 0.08), RAP injection group (0.554± 0.07),
and calycosin group (0.673± 0.06) decreased, especially in
the RAP injection group (P< 0.01, Figure 6(b2)).

(4) Effect of RAP on TfR Protein Expression. As shown in
Figure 6(c1) and Table 5, compared with the sham group
(P< 0.01), the TfR protein expression level in the model
group was increased. Compared with the model group, the
TfR protein expression level of the RAP granule group, RAP
injection group, and calycosin group decreased, with the
RAP granule group decrease being the most significant
(P< 0.01). Western blot results showed that the expression
level of TfR protein in the model group (0.838± 0.08) was
significantly higher than that in the sham group
(0.569± 0.05) (P< 0.01). Compared with the model group,
the expression level of TfR protein in the RAP granule group
(0.450± 0.06), RAP injection group (0.469± 0.06), and
calycosin group (0.558± 0.08) decreased, especially in the
RAP granule group (P< 0.01, Figure 6(c2)).
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Figure 4: (a) Representative images of HE staining of the hippocampal CA3 area of the ischemic side in the rats (×400). (b) Representative
images of Nissl staining in the hippocampal CA3 region (×400). Black arrow: necrotic neuron. Scale bar� 100 μm. Statistical results of the
Nissl staining in the seven groups (n� 5). ∗∗P< 0.01 vs. sham group, #P< 0.05 vs. model group.

Table 2: Comparison of Nissl body counts in each group.

Group Dose (g·kg−1) Nissl body counts
Sham 8.40± 1.78
Model 3.20± 1.02∗∗
RAP granule 2.5 g/kg 7.40± 0.98#
RAP injection 2 ml/kg 7.40± 1.40#
Calycosin 10mg/kg 6.00± 0.84
Edaravone 6.3mg/kg 6.80± 0.66#
Deferoxamine 70mg/kg 4.60± 1.17
Data are expressed as the mean± SEM, n� 5. ∗∗P< 0.01 vs. sham group.
#P< 0.05 vs. model group.
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(5) Effect of RAP on DMT1 Protein Expression. As shown in
Figure 6(d1) and Table 5, compared with the sham group,
the DMT1 protein expression level in the model group was
increased (P< 0.01). Compared with the model group, the
protein expression level of DMT1 in the RAP granule group,
RAP injection group, and calycosin group was decreased,
and the difference was statistically significant in the RAP
injection group (P< 0.01). Western blot results showed that
compared with the sham group (0.612± 0.07), the expression
level of DMT1 protein in the model group (0.809± 0.05)

increased (P< 0.05). Compared with the model group, the
expression level of DMT1 protein in the RAP granule group
(0.594± 0.05), RAP injection group (0.635± 0.06), and
calycosin group (0.633± 0.05) decreased, especially in the
RAP granule group (P< 0.05, Figure 6(d2)).

(6) Effect of RAP on TRPC6 Protein Expression. As shown in
Figure 6(e1) and Table 5, compared with the sham group, the
expression level of TRPC6 protein in the model group in-
creased (P< 0.01), and compared with the model group, the
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Figure 5: Effect of RAP on the expression of Fn, FHC, and FLC after CIRI. (a) One representative image of each of the seven groups is shown
(IHC, ×400). (b) Statistical results of Fn protein expression in the seven groups (n� 5). (c) Statistical results of FHC protein expression in the
seven groups (n� 5). (d) Statistical results of FLC protein expression in the seven groups (n� 5). Scale bar� 100 μm. ∗∗P< 0.01 vs. sham
group; #P< 0.05 and ##P< 0.01 vs. model group.

Table 3: Effect of RAP on Fn, FHC, and FLC protein expression in rats with CIRI induced by MCAO.

Group Fn FHC FLC
Sham 52.238± 4.77 0.481± 0.07 0.620± 0.04
Model 79.32± 4.94∗∗ 0.933± 0.04∗∗ 0.938± 0.04∗∗
RAP granule (2.5 g/kg/d) 44.766± 6.42## 0.575± 0.07## 0.475± 0.09##
RAP injection (2ml/kg/d) 52.086± 4.86## 0.465± 0.11## 0.668± 0.09#
Calycosin (10mg/kg/d) 55.802± 3.18# 0.703± 0.08# 0.607± 0.08##
Edaravone (6.3mg/kg/d) 69.564± 7.00 0.562± 0.08## 0.612± 0.07##
Deferoxamine (70mg/kg/d) 54.046± 8.96## 0.523± 0.06## 0.505± 0.06##

Data are expressed as the mean± SEM, n� 5. ∗∗P< 0.01 vs. sham group. #P< 0.05 and ##P< 0.01 vs. model group.
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Figure 6: Effect of RAP on the expression of LTCC, Tf, TfR, DMT1, TRPC6, and FPN1 after CIRI. Representative IHC images (a1, b1, c1, d1,
e1, f1) (×400). Scale bar� 100 μm. Statistical results of the seven groups (a2, b2, c2, d2, e2, f2) (n� 5; ∗P< 0.05, ∗∗P< 0.01 vs. sham group;
#P< 0.05 and ##P< 0.01 vs. model group).
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expression level of TRPC6 protein in the RAP granule group,
RAP injection group, and calycosin group decreased, es-
pecially in the RAP granule group (P< 0.01). Western blot
results showed that compared with the sham group
(0.580± 0.08), the expression level of TRPC6 protein in the
model group (0.867± 0.08) increased (P< 0.05). Compared
with the model group, the expression level of TRPC6 protein
in the RAP granule group (0.494± 0.06), RAP injection
group (0.555± 0.04), and calycosin group (0.577± 0.06)
decreased, especially in the RAP granule group (P< 0.01,
Figure 6(e2)).

(7) Effect of RAP on FPN1 Protein Expression. As shown in
Figure 6(f1) and Table 5, compared with the sham group, the
expression level of FPN1 protein in the model group de-
creased (P< 0.01), and compared with the model group, the
expression level of FPN1 protein in the RAP granule group,
RAP injection group, and calycosin group increased, es-
pecially in the RAP granule group (P< 0.05). Western blot
results showed that compared with the sham group
(0.750± 0.07), the expression level of FPN1 protein in the
model group (0.447± 0.08) decreased (P< 0.05). Compared
with the model group, the expression level of FPN1 protein
in the RAP granule group (0.779± 0.08), RAP injection
group (0.784± 0.11), and calycosin group (0.924± 0.12)
increased, especially in the calycosin group (P< 0.01,
Figure 6(f2)).

3.5.2. @e Main Factors of the Ferroptosis Signaling Pathway
Include XCT, SLC3a2, IREB2, NRF2, HO-1, and GPX4.
GPX4 plays an important role in ferroptosis [45]

(1) Effect of RAP on Expression of the XCT Protein. As shown
in Figure 7(a), compared with the sham group (0.835± 0.04),
the expression level of XCT protein in the model group
(0.529± 0.10) decreased (P< 0.01), and compared with the
model group, the expression level of XCTprotein in the RAP
granule group (0.767± 0.07), RAP injection group
(0.853± 0.03), and calycosin group (0.857± 0.04) increased,
especially in the calycosin group (P< 0.01).

(2) Effect of RAP on Expression of the SLC3A2 Protein. As
shown in Figure 7(b), compared with the sham group
(0.766± 0.06), the expression level of SLC3A2 protein in the
model group (0.456± 0.06) decreased (P< 0.01), and com-
pared with the model group, the expression level of SLC3A2
protein in the RAP granule group (0.773± 0.07), RAP in-
jection group (0.847± 0.04), and calycosin group
(0.883± 0.09) increased, especially in the calycosin group
(P< 0.01).

(3) Effect of RAP on Expression of the GPX4 Protein. As
shown in Figure 7(c), compared with the sham group
(0.694± 0.05), the expression level of GPX4 protein in the
model group (0.466± 0.04) decreased (P< 0.05), and com-
pared with the model group, the expression level of GPX4
protein in the RAP granule group (0.719± 0.06), RAP in-
jection group (0.667± 0.06), and calycosin group
(0.784± 0.05) increased, especially in the calycosin group
(P< 0.01).

(4) Effect of RAP on Expression of the NRF2 Protein. As
shown in Figure 7(d), compared with the sham group
(0.605± 0.06), the expression level of NRF2 protein in the

Table 4: Effect of RAP on LTCC protein expression in rats with CIRI induced by MCAO.

Group Dose (g·kg−1) LTCC
Sham 86.134± 3.77
Model 105.292± 1.45∗∗
RAP granule 2.5 g/kg 90.89± 6.31#
RAP injection 2 ml/kg 90.22± 5.66#
Calycosin 10mg/kg 99.458± 0.88
Edaravone 6.3mg/kg 94.432± 4.23
Deferoxamine 70mg/kg 94.824± 1.87
Data are expressed as the mean± SEM, n� 5. ∗∗P< 0.01 vs. sham group. #P< 0.05 vs. model group.

Table 5: Effects on Tf, TfR, DMT1, TRPC6, and FPN1 in rats with CIRI induced by MCAO.

Group Tf TfR DMT1 TRPC6 FPN1
Sham 34.032± 2.21 62.834± 4.59 78.772± 9.21 47.284± 6.32 95.252± 3.03
Model 81.342± 7.09∗∗ 98.41± 1.10∗∗ 103.354± 0.97∗∗ 94.036± 2.62∗∗ 63.832± 6.10∗∗
RAP granule 50.776± 3.08## 49.764± 10.15## 86.286± 5.36# 56.57± 10.53## 81.296± 3.35#
RAP injection 62.93± 6.69# 63.328± 2.69## 71.254± 6.45## 67.334± 10.31# 80.212± 5.90
Calycosin 70.198± 8.62 66.638± 6.94## 88.046± 6.28 62.706± 8.00# 74.014± 5.21
Edaravone 55.828± 6.41## 66.584± 4.64## 96.762± 1.14 69.536± 13.00 83.408± 7.97#
Deferoxamine 74.832± 4.65 74.164± 9.22# 89.366± 3.83 66.376± 7.69# 80.142± 6.42
Results of the IHC data are expressed as the mean± SEM, n� 5. ∗∗P< 0.01 vs. sham group. #P< 0.05 and ##P< 0.01 vs. model group.
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model group (0.350± 0.07) decreased (P< 0.05), and com-
pared with the model group, the expression level of NRF2
protein in the RAP granule group (0.686± 0.04), RAP in-
jection group (0.702± 0.11), and calycosin group
(0.653± 0.09) increased, especially in the RAP injection
group (P< 0.01).

(5) Effect of RAP on Expression of the HO-1 Protein. As shown
in Figure 7(e), compared with the sham group (0.622± 0.03),
the expression level of HO-1 protein in the model group
(0.387± 0.08) decreased (P< 0.05), and compared with the
model group, the expression level of HO-1 protein in the RAP
granule group (0.587± 0.07), RAP injection group
(0.543± 0.06), and calycosin group (0.696± 0.06) increased,
especially in the calycosin group (P< 0.01).

(6) Effect of RAP on Expression of the IREB2 Protein.As shown
in Figure 7(f), compared with the sham group (0.469± 0.05),
the IREB2 protein expression level was increased in the model
group (0.781± 0.04) (P< 0.01). Compared with the model
group, the protein expression level of IREB2 in the RAP
granule group (0.554± 0.08), RAP injection group
(0.619± 0.08), and calycosin group (0.537± 0.07) decreased,
especially in the calycosin group (P< 0.05).

4. Discussion

Ischemic brain tissue injury is further aggravated after the
restoration of blood perfusion, otherwise known as CIRI,
and its pathophysiological process is a cascade reaction of
multiple linked factors and pathways.,e recovery of neural
function is helpful for alleviating CIRI [46]. Previous studies
have found that RAP contains a variety of active components
acting on the cardiovascular system and cerebral vascula-
ture, which can effectively restore nerve function damage
[37, 41, 47]. In this study, it was found that after 2 hours of
cerebral ischemia and reperfusion, the rats showed obvious
neurological damage: the size of cerebral infarction on the
ischemic side increased, the arrangement of brain tissue was
disordered, the structure of the neurons was seriously
damaged, and some cells were necrotic. However, RAP
treatment significantly reduced the incidence of cerebral
infarction on the ischemic side of rats after MCAO, the
arrangement of brain tissue was significantly better than that
of the CIRI group, and the neuronal damage was effectively
reduced, consistent with previous studies [37, 48, 49].

Traditional Chinese medicine, with its ability to affect
multiple targets and pathways, has prominent advantages in
the prevention and treatment of CIRI. RAP is a commonly
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Figure 7: Effect of RAP on the expression of XCT, SLC3A2, GPX4, NRF2, HO-1, and IREB2 after CIRI. Statistical results of the WB
experiments in the seven groups. Data are expressed as the mean± SEM, n� 5. ∗P< 0.05, ∗∗P< 0.01 vs. sham group; #P< 0.05, ##P< 0.01 vs.
model group.
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used Chinese herbal medicine for the treatment of cardio-
cerebrovascular diseases. Modern pharmacological studies
have shown that RAP contains a variety of active ingredients,
such as Astragalus polysaccharides, astragalosides, and
Astragalus flavonoids, which have antioxidant, anti-in-
flammatory, and antiapoptotic effects and can treat ischemic
cardio-cerebrovascular diseases. Two dosage forms, RAP
granules and RAP injection, are widely used to treat is-
chemic cerebrovascular diseases in the clinic [50, 51]. As an
effective component of RAP, calycosin has a neuroprotective
effect on CIRI in rats, protects the inherent antioxidant
function of cells, prevents excitotoxicity of nerve cells caused
by Glu, and has a strong ability to scavenge free radicals
[52–54]. In addition, our previous studies have shown that
astragaloside IV has a protective effect in liver injury caused
by iron overload [55].

Brain iron homeostasis is critical to the normal physi-
ological function of neurons. CIRI can lead to iron depo-
sition in neurons, which catalyzes the production of a large
number of free radicals, leads to a series of brain injuries
(such as oxidative damage, edema, and aggravation of in-
farction), and finally induces cell death [56–58]. Studies have
shown that iron overload aggravates CIRI injury [59] and
that the hippocampus is the region most sensitive to CIRI
[60]. Fn is responsible for storing excess iron in cells to avoid
the production of free radicals from free iron. Studies have
shown that the expression of the iron storage proteins
H-ferritin and L-ferritin increased significantly in the hip-
pocampus on the ischemic side of the brain [60, 61]. In this
study, we found that expression of the storage protein Fn
(FHC and FLC) increased significantly in the hippocampal
CA3 region of rats after 2 hours of ischemia and reperfusion,
and the expression levels of Fn, FHC, and FLC decreased
significantly after treatment with RAP, which was consistent
with a previous study. It is suggested that RAP can reduce
the content of the iron storage protein Fn (FHC and FLC) in
the brain and relieve brain injury after CIRI.

In the iron transmembrane transport system, the Tf/TfR-
dependent pathway plays an important role and is closely
related tomaintaining iron homeostasis in the brain. Tf is the
main iron transporter and requires receptor-mediated en-
docytosis to cross the blood–brain barrier [62–64]. TfR exists
in cerebral vascular endothelial cells and binds transferrin-
bound iron [63, 64]. Previous studies found that the ex-
pression of TfR increased after CIRI [65], and MCAO
stimulation increased the expression of TfR in the brain,
resulting in abnormal expression of iron-related proteins
and inhibiting the changes after administration [66]. In this
study, we observed that the expression of Tf and TfR in-
creased after 2 hours of cerebral ischemia and reperfusion,
while the expression of Tf and TfR decreased after treatment
with RAP, which was consistent with a previous study. ,e
results showed that RAP can reduce iron import in the brain
by inhibiting the high expression of Tf and TfR, promote the
balance of brain iron, and prevent the occurrence of brain
iron overload after CIRI.

In addition, iron transport across cell membranes may
involve in Tf/TfR-independent pathways, such as DMT1,
LTCC, TRPC6, and FPN1. In the transferrin cycle, Tf binds

to TfR1 on the cell surface, followed by endocytosis and
acidification, resulting in iron release from transferrin. ,e
free Fe3+ is reduced to Fe2+ in the endosome and transported
to the cytoplasm through DMT1. In the iron overloaded
state, supersaturation of transferrin exists in the form of
nontransferrin bound iron (NTBI), and the uptake of NTBI
needs to be mediated by NTBI transporters such as DMT1,
LTCC, and TRPC6 [67]. Excessive intake of NTBI and lack
of effective excretion can lead to the production of reactive
oxygen free radicals [68]. In a study on nifedipine, an LTCC
blocker, it was found to stimulate DMT1-mediated iron
transport and reduce iron overload, indicating that LTCC
blockers could regulate DMT1-mediated iron transport [69].
Iron toxicity induced by brain iron overload can increase the
infarct size in MCAO rats [70]. ,e imbalance between iron
input proteins DMT1, LTCC, TRPC6, and output protein
FPN1 is considered to be the main trigger of brain iron
disorder after cerebral ischemia [57, 68, 71, 72]. In this study,
the expression of DMT1, LTCC, and TRPC6 increased after
2 hours of cerebral ischemia reperfusion in rats. After
treatment with RAP and deferoxamine, the expression of
DMT1, LTCC, and TRPC6 decreased. Deferoxamine can
reduce the size of cerebral infarction and decrease the level of
brain iron after MCAO in rats. RAP has an iron removal
effect similar to that of deferoxamine, suggesting that RAP
can effectively reduce iron deposition in neurons and can
alleviate CIRI by alleviating iron toxicity caused by brain
iron deposition after cerebral ischemia, which is consistent
with previous studies.

Moreover, one transporter, FPN1, capable of transfer-
ring iron out of cells, has been found in the brain thus far
[11, 12]. In this study, the expression of FPN1 in the hip-
pocampal CA3 region of rats stimulated by MCAO de-
creased, and the expression of FPN1 increased after
treatment with RAP and deferoxamine. It has been reported
that the increase in brain iron after CIRI is related to the
abnormal iron output mediated by FPN [13]. Tau knockout
can protect young mice from MCAO-induced brain iron
deposition and reduce CIRI. With increasing age, drugs to
promote iron efflux should be used to reduce CIRI. ,is
effect is consistent with the results of this study, suggesting
that RAP has a similar effect as deferoxamine by upregu-
lating the expression of FPN1, increasing brain iron efflux,
promoting brain iron metabolism balance, and ultimately
reducing CIRI.

Ferroptosis is a new type of iron-dependent programmed
cell death that is characterized by iron-dependent lipid
peroxidation [73]. Recent studies have found that ferroptosis
plays an important role in the occurrence and development of
ischemic stroke by affecting iron metabolism or lipid per-
oxidation. System Xc−, composed of XCT and SLC3A2, is
critical in ferroptosis [17, 74–76]. Studies have shown that
inhibition of XCT and SLC3A2 expression can promote tu-
mor cell lipid peroxidation and ferroptosis [76, 77]. In this
study, MCAOwas shown to stimulate a reduction in XCTand
SLC3A2 protein expression levels in rats. After treatment,
RAP showed a similar effect to deferoxamine and increased
the protein expression of XCT, SLC3A2, and GPX4. ,is
result is consistent with previous studies.
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In addition, iron metabolism is required for the accu-
mulation of lipid peroxides and the execution of ferroptosis
[78]. One study found that the ferroptosis inhibitor fer-
rostatin-1 could reduce iron and ROS accumulation and
downregulate the ferroptosis-related gene IREB2 to further
inhibit ferroptosis [79]. In this study, it was found that
compared with the sham group, the expression of IREB2
protein in MCAO rats increased and that the expression of
IREB2 protein decreased after treatment with RAP and
deferoxamine. ,is further indicates that RAP may activate
System Xc− (XCT, SLC3A2), enhance the activity of GPX4,
inhibit lipid peroxidation, downregulate the expression of
IREB2, regulate iron metabolism, and inhibit the occurrence
of ferroptosis. Previous studies have shown that the NRF2/
HO-1 pathway plays an important role in CIRI and fer-
roptosis [80, 81]. NRF2 is a gene related to ferroptosis that
plays an antioxidant role and inhibition of ferroptosis by
activating downstream antioxidant genes, such as HO-1 and
GPX4 [78, 82, 83]. HO-1 is a downstream signaling molecule
that regulates the expression of NRF2 after entering the
nucleus [84]. GPX4 is a gene mediated by the NRF2 tran-
scription pathway [85]. In this study, we found that the
protein expression of NRF2, HO-1, and GPX4 decreased
after MCAO stimulation. After treatment with RAP and
deferoxamine, the protein expression of NRF2, HO-1, and
GPX4 increased. It is suggested that RAP has an effect of iron
removal similar to deferoxamine, which can prevent fer-
roptosis after CIRI by regulating ferroptosis-related pro-
teins. ,is result is consistent with previous studies [80].
Based on the above research results, we found that RAP
granule was more effective than RAP injection on iron
transmembrane transporters, while calycosin has an obvious
effect on ferroptosis.

5. Conclusions

Generally, brain iron transmembrane transporters are in-
volved in the process of CIRI. RAP downregulated Tf, TfR,
Fn, FHC, FLC, DMT1, LTCC, and TRPC6, upregulated
FPN1, regulated the expression of iron transporters, and
played a role in the prevention and treatment of CIRI. We
also found that the key factors of ferroptosis were involved in
ischemic stroke. Calycosin inhibited the occurrence of
ferroptosis by regulating the expression of XCT, SLC3A2,
GPX4, NRF2, HO-1, and IREB2.
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