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Abstract

Lane detection in complex road scenes is still a challenging task due to poor lighting condi-

tions, interference of irrelevant road markings or signs, etc. To solve the problem of lane

detection in the various complex road scenes, we proposed a geometric attention-aware

network (GAAN) for lane detection. The proposed GAAN adopted a multi-task branch archi-

tecture, and used the attention information propagation (AIP) module to perform communi-

cation between branches, then the geometric attention-aware (GAA) module was used to

complete feature fusion. In order to verify the lane detection effect of the proposed model in

this paper, the experiments were conducted on the CULane dataset, TuSimple dataset, and

BDD100K dataset. The experimental results show that our method performs well compared

with the current excellent lane line detection networks.

Introduction

Lane detection is a basic but still challenging task [1–5] in perceptions of autonomous vehicle,

which requires that algorithm can detect the lane lines from traffic scene image captured by

car cameras. Some recent works have defined lane detection as a pixel-intensive prediction

task [6–8]. Segmented lane lines are available for trajectory tracking control and positioning

vehicles in autonomous driving, then detected lanes can be used to judge the status of other

traffic participants. In addition, it is also a pivotal part of making highly precision maps and

crashing prediction [9–11].

Recently, the most studies about lane detection have been seen as the semantic segmenta-

tion tasks [6–8, 12], but they severely rely on labels which are sparse and fixed-width as super-

vision signals of fully convolution network to classify foreground (lane line) or background

pixel by pixel. Although some methods can segment lane lines accurately in some traffic condi-

tions with good weather and wide views, the realistic driving scenes are often complicated

and changeable. In traffic jam scenes, considerably blocked cars would cover the lane lines,

which makes fully convolution network tends to predict discontinuous or fuzzy lane lines.

Therefore, these situations bring great challenges to lane detection methods based on semantic

segmentation.

Nowadays, there have been several solutions proposed in complex road scenes to improve

lane detection accuracy. First, expanding the receptive field of fully convolution network to
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infer the characteristics of lane lines from "global perspective", such as ASPP of Deeplabv3

[13], and the backbone of fully convolutional networks is designed to be very deep for better

understanding the target globally, such as ResNet [14] and DenseNet [15]. Second, Increasing

the ability of messaging among neurons in the network to encode richer semantic context.

Third, using a multi-task network [16] architecture to predict more lane lines characteristics

and improve lane detection in adverse conditions. Fourth, training the model in high-quality

and large-scale datasets annotate unclear or obscured lane lines artificially, which makes the

network learns abundant features.

However, in complex road scenes, these lane detection methods above don’t perform very

well in accuracy. Semantic segmentation methods based on fully convolution network merely

generate black or white classification predictions for each pixel according to the one-hot mask.

This kind of models are easy to generate fuzzy segmentation results on the target boundary, as

well as, usually influenced by noises to cause misclassification. Thus, we introduce the distance

transform [17] mask as shown in Fig 1B, which is a continuous representation and each pixel

represents the minimum distance to a nearby line segment or boundary. Compared with the

one-hot mask (Fig 1A) used for classification, the gradient is smoother when model performs

back propagation by this method.

On the distance transform mask, Audebert et al. [16] introduced a cascaded multi-task loss

based on distance transformation to improve the effect of boundary segmentation. Hayder

et al. [18] used this mask instead of the one-hot mask to solve the problem of poor segmenta-

tion due to inaccurate object candidate frames. In [19], the authors transformed the regression

prediction into a distance segmentation mask task, to focus more on pixels near boundaries

and improve the segmentation results of target boundaries in satellite images. Although the

above methods have introduced distance transformation to overcome the boundary leaky

problem in semantic segmentation, they treat multi-task branches as independent tasks or

simply fuse feature maps.

Therefore, we propose the GAAN to solve the problems mentioned above, which allows the

model using the geometric distance information of the lane lines to guide segmentation and

enhance the network’s understanding of the semantic context information. Concretely,

GAAN adopts multi-task branches neural network architecture. The first branch, semantic

segmentation, is to predict the lane lines. The second branch is geometric distance embedding,

which is to predict the minimum Euclidean distance of boundary pixels from the center to the

lane line in regression. In each branch, we use an architecture which can autonomously select

required information for communication, and call it as AIP module.

Fig 1. (a) One-hot mask; (b) Distance transform mask.

https://doi.org/10.1371/journal.pone.0254521.g001
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Moreover, we design a GAA module on the tail of the two branches to obtain the features

with geometric distance information, then we fuse the final high-dimensional lane line fea-

tures, which leads to the result containing missing or wrong lane line features in the semantic

segmentation branch can be repaired and predicted correctly. Finally, the different level

semantic features in the encoder are fused by Skip Pyramid Fusion Up-sampling (SPFU) mod-

ule, which restores the prediction of lane boundary pixels better.

Materials and methods

Geometric distance transform label

As described in the previous section, essentially most lane detection algorithms based on

semantic segmentation are pixel-by-pixel classification tasks. However, if prediction between

predicted pixel and real label has just slight deviation, the penalty cost of the loss function to

the network is equal to wrong prediction. This "ignorance" is not fair. Hence the kind of hard

classification method is not beneficial for the segmentation of the lane boundary in complex

scenes. According to this, in this paper, it is recommended to predict the geometric distance

transformed labels to improve the semantic segmentation effect of the lane line in complex

scenes. The distance transformed label is a continuous representation that encodes each pixel

on the lane line.

Producing the masks is very simple and convenient, which only needs to be adjusted on the

original lane line labels. Specifically, we demonstrate the process of generating geometric dis-

tance transformed label in Fig 2. Firstly, the one-hot labels in lane datasets are sampled by

pixel coordinates of the central part in each lane line, and mark the sampled lane as the width

1 pixel line. Then we calculate the distance transformation based on one-hot labels and reveal

transformation result in the second step, which illustrates the minimum Euclidean distance

from each pixel to the nearby lane line. Moreover, we set a threshold τ to limit the range of the

distance transformation area to eliminate the influence of invalid value in regression, and τ is

related to the width of lane line in the label mask. However, the distance transformed label is a

continuously increasing distance from the center of the lane line to the boundary, which adds

redundant noise areas to the regression task. Finally, reversing the truncated distance mask, so

that the geometric distance is continuously reduced from the center of the lane line to the

boundary to 0, and the distance transformation mask dmask can be formulated as following:

dmask ¼ ðt � minðminðdpÞ; tÞÞ ð1Þ

where min(dp) is the minimum Euclidean distance from a certain pixel p to the nearby lane

line, τ is truncated threshold. Hence, the distance mask transforms the lane mask from a line

into the range area.

The geometric distance transformed mask described above has the following advantages

over the one-hot label mask:

Fig 2. Process of obtaining geometric distance transformation mask.

https://doi.org/10.1371/journal.pone.0254521.g002
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1. The lane line pixels on transformed label mask encodes the distance information to the

boundary, which contributes to improve the segmentation of the boundary.

2. Compared with the category information in the one-hot label mask, each pixel in the dis-

tance transformed label mask has specific distance information. The accurate information

may reduce the impact on redundant noise.

The framework of geometric attention perception network

In this section, an overview of end-to-end deep convolutional neural network designed to

detect lane lines in complex road scenes is demonstrated. As shown in Fig 3 is the framework

of GAAN consisted of 6 parts which include the backbone network, the semantic segmentation

branch, the geometric distance embedding branch, the AIP module, the GAA module, and the

SPFU module.

The backbone network maps the RGB images to the high-dimensional feature space and

the two branches behind the backbone network reconstruct the geometric distance embedding

and lane line semantic labels from shared high-dimensional features. The feature information

communication between the two task branches is performed by AIP module. The module

adaptively selects the feature information for fusion, and then GAA module combines distance

embedding features and semantic features. In short, this module fuses the two branches of fea-

ture map, which include long distance information and contextual semantics respectively.

Final step, every feature map in the backbone network are restore by SPFU module, which can

combine with GAA module to gradually generate different resolution of the feature maps, so

as to use the loss function for supervision during training.

In our backbone network architecture, ResNet is appropriately modified to enhance its

expressed ability of lane features. As shown in Fig 3, we divide the backbone into 4 layers, where

the yellow parts in layer 1 and 2 are down-sampling layer with 2 step size, which is benefit for

Fig 3. The GAAN.

https://doi.org/10.1371/journal.pone.0254521.g003
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keeping the spatial information in the feature map. Then layer 3 and 4 use atrous convolution

(dilated convolutions) to capture a wider range of contextual semantic information.

Attention information propagation module

The information sharing and information propagation play a significant role in the network

with multi-task branches, while the sharing and propagating strategy between branches is diffi-

cult to manually adjust. Therefore, we introduce the AIP module to complete it, which selects

weight on each channel and automatically selects different branches to output feature maps in

a learnable way.

AIP module is located between the two up-sampling layers of the decoders. There are three

AIP modules between the two branches. The lane feature information extracted by the back-

bone is not only propagated in the relative task branch, but also share information from the

other task branch through AIP module which selects and fuses features from the current

branch and the other branch.

Concretely, as shown in Fig 4A, we display the first AIP module as an example. The first

layer in the semantic segmentation branch is the S-Up-Conv1 and the output feature map is

named S1. The first layer in the geometric distance embedding branch is the D-Up-Conv1 and

the output feature map is named D1. DCAB and SCAB are channel attention block of distance

embedding branch and segmentation branch respectively. The propagation of the attention

information can be defined as Eq 2, where α1 and α2 are the channel attention weight of feature

map S1 respectively, β1 and β2 are the channel attention weight of feature map D1. The channel

attention block (CAB) is shown in Fig 4B that we first calculate the global average pooling of

the input features to obtain a feature vector containing global context information, then calcu-

late 1x1 convolution and activation function for this feature vector. Besides we name shared

information are AIPMS2
and AIPMD2

, which will be sent to the subsequent layer.

AIPMS2
¼ S1 þ ða1S1 þ b1D1Þ

AIPMD2
¼ D1 þ ða2S1 þ b2D1Þ

ð2Þ

(

Although all AIP modules have the same structure, their parameters are irrelevant, which

makes information propagation more flexible between stages of the multi-task network.

Fig 4. (a) AIP module; (b) Channel attention block.

https://doi.org/10.1371/journal.pone.0254521.g004

PLOS ONE The geometric attention-aware network for lane detection in complex road scenes

PLOS ONE | https://doi.org/10.1371/journal.pone.0254521 July 15, 2021 5 / 15

https://doi.org/10.1371/journal.pone.0254521.g004
https://doi.org/10.1371/journal.pone.0254521


Furthermore, S1 is identity mapping information to the next up-sampling layer, which ensures

the propagation of the internal information of the branch and avoids the interruption of the

propagation during the network training process. This residual-like idea is also conducive to

the back propagation of the gradient.

Geometric attention-aware module

The geometric distance embedding branch predicts the continuous distance from the lane line’s

center to boundary by regression. This branch which extracts feature map with lane line geome-

try information to guide the results of semantic branch segmentation has higher tolerance than

the semantic segmentation task that is pixel-by-pixel classification. Therefore, we introduce the

GAA module locates in the end of the two task branches, which captures the context informa-

tion between long-distance lane lines from the high-dimensional feature distance of geometric

distance embedding. Information includes boundary distance context information, which is

more beneficial to the segmentation of the entire lane line and boundary pixels.

The first step of GAA module is to decouple the input geometric distance embedded fea-

tures to generate a spatial attention matrix, which simulates the spatial relationship between

any two pixels in the feature map. The second step is to compute multiplication between the

attention feature matrix and the semantic segmentation feature matrix. The third step is to

compute an element-wise sum operation on the result of second step, and obtain the final

information that reflects the long-range contextual geometric information.

The specific working process of this module is shown in Fig 5. Given the semantic segmen-

tation branch output feature A2RC×H×W, the output feature of geometric distance embedding

branch is decoupled through two 1x1 convolutional layers, and the shape of new features are

B2RC×H×W and C2RC×H×W, then we reshape features B and C to RC×N, where N = H×W is the

number of pixels. In addition, we perform a transpose operation on feature C, the result of

transpose computes matrix multiplication on the reshaped features B and C. Finally, we use

the SoftMax to calculate the spatial attention map S2RN×N, the calculation process is shown in

Eq 3:

Sji ¼
eðBi�CjÞ

PN
i¼1

eðBi�CjÞ
ð3Þ

Fig 5. The GAA module.

https://doi.org/10.1371/journal.pone.0254521.g005
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where Sji measures the influence of the spatial position ith on the position jth, and the more

similar feature representation of the two positions contributes to their greater correlation. At

the same time, the output of semantic segmentation branch is sent to the 1x1 convolution

layer to generate a new feature map D2RC×H×W, and reshaped it to RC×N. Then computing

matrix multiplication between features D and S, and reshaped the result toRC×H×W. Finally,

the result and feature A compute element-wise sum to obtain GAA module’s output

E2RC×H×W, for position jth is shown in Eq 4.

Ej ¼
XN

i¼1

ðSji � DiÞ þ Aj ð4Þ

It can be concluded from Eq 4 that each element on the feature map finally output by GAA

module is the weighted sum of the geometric distance and the semantic segmentation feature

map. Therefore, it has rich global context geometric features, and adaptively aggregates context

information through the spatial attention, which improves the continuity of lane lines’ prediction.

Skip Pyramid Fusion Up-sampling module

After the encoder and decoder, the image resolution is continuously changed, which would

lead to lose detail information in the feature map. In our network, for solving this case, SPFU

(Skip Pyramid Fusion Up-sampling) module is proposed to restore more lane line high-quality

detail information in the final semantic feature map. As mentioned in the previous content,

Fig 3, SPFU module uses the extracted image feature with different granularity levels through

skip connection. Thus, we choose the feature maps of some middle layers in encoder.

We show the first SPFU module named SPFU1 as an example. As shown in Figs 3 and 6, the

input of SPFU1 is the final feature map of GAA module and the backbone. After computing the

1x1 convolution and generating new feature maps, then we adjust the shape of feature maps so that

they can be contacted. Finally, we compute two 3x3 convolutions separately, one convolutional

result is to fuse features with the next backbone feature map for SPFU2, it is next-stage SPFU mod-

ule, another convolutional result is to supervise the semantic segmentation loss function.

Loss function

Most semantic segmentation methods use cross entropy to measure the difference between the

prediction and ground truth. However, cross entropy loss is more suitable for natural images

Fig 6. SPFU module.

https://doi.org/10.1371/journal.pone.0254521.g006
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with complete and large objects, and the lane lines are very long and thin in the lane datasets,

which contain a lot of background pixels that are not conducive to predicting targets. There-

fore, it is necessary to use a weighted cross-entropy loss function to supervise the semantic seg-

mentation branch training, because this loss can effectively control the influence of each

category of pixels to the cross-entropy loss function by setting different weights. Its definition

is shown in Eq 5:

Lseg A; Â
� �

¼ �
1

N

XC

i¼1

oi � Âi � logðφðAiÞÞ ð5Þ

where A2RH×W is the final output calculated by semantic segmentation branch, φ(.) is the

Softmax. After Softmax φ(.), the feature map A generates the lane line probability map. N is

the total number of pixels in the feature map. ω is the loss contribution weight of each predic-

tion category. Usually we set the background weight to 0.4 and the remaining lane line weights

to 1 in the CULane dataset.

In the geometric distance embedding branch, we want to predict the continuous distance

from the center line to the boundary for each lane line, which shows that it is not a classifica-

tion task but a regression prediction. Therefore, we use the MSE (mean square error) in

GAAN to measures the error between the geometric distance embedded branch prediction

result and the real label, this process is shown in Eq 6:

Ldt B; B̂
� �

¼
1

N

XC

i¼1

kBi � B̂ik
2

ð6Þ

where B2RH×W is the final output of geometric distance embedding branch, B̂i is the geomet-

ric distance mask dmask.

To sum up, the total loss function is shown in Eq 7:

Ltotal ¼ Lseg þ Ldt þ a
Xk

k¼1

Lsegk þ bLexist ð7Þ

where Lseg is the weighted cross-entropy loss function of the semantic segmentation branch,

Ldt is the mean square error loss function of the geometric distance embedding branch, Lsegk is

the semantic segmentation auxiliary loss function, which is used to supervise the feature map

output by the SKPFU module. Lexist is a binary cross-entropy used to supervise the existence of

lane lines, or it predicts whether lane lines exist in the image. α and β are hyperparameters.

Results

Datasets and evaluation

In order to verify the effectiveness of the GAAN in lane detection of complex road scenes,

experiments were conducted on the TuSimple dataset, the CULane dataset, and the BDD100K

dataset. Various detailed traffic scenarios are divided in order to evaluate the detection results

in different scenarios.

In above three datasets, the TuSimple dataset focuses on highway scenes, the CULane data-

set and the BDD100K dataset mainly focus on urban road scenes. The BDD100K dataset was

originally used for lane instance segmentation, which contains rich types of lane line and

annotates instance for the same type of lane lines. It can be seen from Fig 7 that the TuSimple

dataset, the CULane dataset and the BDD100K dataset all contain different complex road

scenes, where the green line is the labels of the lane line. In these examples, it is not difficult to
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find that characters of lane are unclear because trees’ shadow on the roadside and other

crowded cars in traffic scenes leading serious obstruction to lane‘s character, as well as, lighting

angle and insufficient lighting at night.

Table 1 is the detailed description of above three datasets containing complex road scenes.

The second column is the total number of frames in per dataset, and the third, fourth, fifth col-

umns are the number of images that are divided into training set, validation set, testing set in

the extracted frames. Besides the seventh column is road type of dataset and the eighth column

is the number of lane lines.

All experiments in this work were performed in the following environment: a workstation

containing two NVIDIA GEFORCE RTX 2080Ti, each 2080Ti is 11GB, the operating system

is Ubuntu 18.4, all experiments perform training and inference use the pytorch deep learning

framework.

In our work, we respectively reshaped the images of TuSimple, CULane and BDD100K to

368×640, 288×800 and 360×640 as input size. When training the GAAN, we use SGD opti-

mizer to train the model, the learning rate is set to 0.01, the learning rate update strategy is

ploy, the learning rate attenuation coefficient is 0.9, the BatchSize is set to 12. TuSimple’s train-

ing iterations are set to 1800, CULane and BDD100K are set to 60K respectively. The hyper-

parameters α, β in the final loss function are set to 0.1 respectively.

To test the performance of our model, we used Accuracy, False Positive (FP), and False

Negative (FN) on the TuSimple dataset as evaluation. The CULane dataset use F1-Measure, FP

and The BDD100K dataset uses Accuracy, IoU as evaluation respectively. The calculation

methods for these evaluation indicators are described in following:

FP ¼
Fpred

Npred
ð8Þ

where Fpred is the number of lanes with incorrect predictions, and Npred is the number of all

predicted lanes.

FN ¼
Mpred

Ngt
ð9Þ

Fig 7. Examples of three datasets. (a) TuSimple dataset; (b) CuLane dataset; (c) BDD100K dataset.

https://doi.org/10.1371/journal.pone.0254521.g007

Table 1. Information about datasets.

Dataset Frames Training Validation Test Resolution Type Lane

TuSimple 6408 3268 358 2782 1280×720 Highway 4, 5

CULane 133235 88880 9675 34680 1640×590 Highway, City 4

BDD100K 80000 60000 10000 10000 1280×720 Highway, City 8

https://doi.org/10.1371/journal.pone.0254521.t001
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where Mpred is the number of wrong predicted lane lines, and Ngt is the number of ground

truth.

Accuracy ¼
P

clipCclip
P

clipSclip
ð10Þ

where Cclip is the predicted lane pixels. Sclip represents the total effective lane line pixels.

Fmeasure ¼ 1þ b
2

� � Precision � Recall
b

2Precisionþ Recall
ð11Þ

where β = 1 and the Precision, Recall is shown in Eqs 12, 13 and 14 is IoU:

Precision ¼
TP

TP þ FP
ð12Þ

Recall ¼
TP

TPþ FN
ð13Þ

IoU ¼
TP

TP þ FP þ FN
ð14Þ

Experiments

Table 2 shows the lane detection F1-Measure of the GAAN on the CULane testing set. Com-

pared with the current other advanced lane detection algorithms on CULane dataset, we can

find that the proposed method performed very well among seven different complex road

scenes and the total testing set, where RD101-GAAN indicates that ResNet101 with deform-

able convolution [21] is used as the backbone network in the GAAN.

The reason why the GAAN can perform well in complex road scenes is that the geometric

distance embedding branch contains the geometric information of the lane boundary, which

can effectively guide the result of semantic segmentation through the GAA module. However,

the F1-Measure of the GAAN in the crowded scene is lower than GCJ [9] in Tables 2 and 3,

since GCJ designed a loss function about geometric relationship between driving area and lane

Table 2. F1-Measure of several methods on CULane dataset.

Scene

Method

normal crowd hlight shadow noline

SCNN [8] 90.6 69.7 58.5 66.9 43.4

GCJ [9] 89.7 76.5 67.4 65.5 35.1

SAD [4] 90.7 70.0 59.9 67.0 43.5

RD101-GAAN 93.2 74.5 68.1 73.3 47.6

https://doi.org/10.1371/journal.pone.0254521.t002

Table 3. F1-Measure of several methods on CULane dataset.

Scene

Method

arrow curve crossroad night total

SCNN [8] 84.1 64.4 1990 66.1 71.6

GCJ [9] 82.2 63.2 - 68.7 73.1

SAD [4] 84.4 65.7 2052 66.3 71.8

RD101-GAAN 87.4 70.9 2126 72.5 75.8

https://doi.org/10.1371/journal.pone.0254521.t003
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lines for supervision. That is, the segmentation result of the driving area has a strong correla-

tion with the lane lines, so that the lane lines can be inferred from the driving area. In addition,

since there is no ground truth in the Crossroad scene, only the FP evaluation index is counted.

In order to verify the effectiveness of the GAAN’s components, the ablation experiments

were performed by gradually adding components after the backbone network ResNet-50. As

shown in Tables 4 and 5, Only-Dt represents that there is only one distance embedded branch

in the network, and its lane line detection result is worse than Only-Seg which only uses

semantic segmentation branch. Seg-Dt represents that semantic segmentation branch and geo-

metric distance embedding branch are simultaneously trained and predicted, which has better

performance than when only using a single task branch. Later, we gradually add the AIP mod-

ule, GAA module and SPFU module on the basis of the Seg-Dt. It can be seen that with the

increase of components in the network, its F1-Measure has also gradually increased on each

scene of the CULane dataset, which illustrates that each component plays a positive role in the

performance of lane detection.

In the computer vision task based on deep learning, the feature expression ability of the

encoder has a decisive influence on the extraction effect of the target feature by the entire neu-

ral network. Therefore, different encoders are explored for GAAN’s impact of detecting lanes.

As shown in Tables 6 and 7, using ResNet-50, ResNet-101, and ResNet-DConv-101 as the

backbone network for GAAN, where ResNet-DConv-101 is based on ResNet-101 network and

the grid convolutional replaced by the deformable convolution. As the complexity of the back-

bone network increasing, the network can better extract lane line features, and the better

results of lane detection in complex scenes.

In order to demonstrate the effect of each module in the ablation experiment on the lane

line detection intuitively and clearly, we show a lane image on the left side of the road occluded

by shadows and input to the trained GAAN with RetNet-50 backbone. The results are dis-

played as a heat map as shown in Fig 8. As we continue to add modules, the results can be seen

in the heat maps from left to right, the entire model has improved the ability to recognize the

Table 4. Ablation experiments of GAAN with different modules.

Scene

Model

normal crowd hlight shadow noline

Only-Dt 85.2 62.6 49.1 59.6 33.0

Only-Seg 88.5 66.2 57.3 65.4 37.9

Seg-Dt 89.4 67.3 58.5 66.0 38.7

Seg-Dt-AIPM 90.3 68.1 62.9 66.5 41.4

Seg-Dt-AIPM-GAA 91.0 69.5 63.4 67.6 43.3

Seg-Dt-AIPM-GAA-SPFU 91.7 73.0 65.6 69.4 45.0

https://doi.org/10.1371/journal.pone.0254521.t004

Table 5. Ablation experiments of GAAN with different modules.

Scene

Model

arrow curve crossroad night total

Only-Dt 79.5 53.3 1405 57.3 64.8

Only-Seg 82.1 61.1 1888 63.3 68.8

Seg-Dt 83.1 63.9 1728 64.8 69.3

Seg-Dt-AIPM 84.3 65.3 1815 65.0 70.4

Seg-Dt-AIPM-GAA 85.0 66.2 1492 66.3 71.6

Seg-Dt-AIPM-GAA-SPFU 85.3 66.9 1546 68.2 72.9

https://doi.org/10.1371/journal.pone.0254521.t005
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lane line features, especially the leftmost blocked lane line has increasingly clear inference. Fur-

thermore, the feature map output by the SPFU4 module fuses information from all levels of

the encoder, and the lane line noise is significantly reduced in the output result.

As shown in Fig 9, in order to qualitatively describe the ability of the GAAN to detect lane

lines in complex road scenes, we select three results from the CULane testing set to illustrate

our method’s advanced performance. In comparison, the GAAN performs better in detection

which lanes are covered by the car on the left side than SCNN, in that the GAA module can

capture the long-distance dependencies between pixels. In addition, the input images of row 2

Table 6. Ablation experiments of GAAN with different backbone.

Scene

Model

normal crowd hlight shadow noline

R-50-GAAN 91.7 73.0 65.6 69.4 45.0

R-101-GAAN 92.5 73.7 66.2 72.0 46.3

RD-101-GAAN 93.2 74.5 68.1 73.3 47.6

https://doi.org/10.1371/journal.pone.0254521.t006

Table 7. Ablation experiments of GAAN with different backbone.

Scene

Model

arrow curve crossroad night total

R-50-GAAN 85.3 66.9 1546 68.2 72.9

R-101-GAAN 86.1 68.4 1674 70.7 74.2

RD-101-GAAN 87.4 70.9 2126 72.5 75.8

https://doi.org/10.1371/journal.pone.0254521.t007

Fig 8. Heatmap of GAAN with different modules: (a) Input; (b) Seg; (c) GAA module; (d) SPFU.

https://doi.org/10.1371/journal.pone.0254521.g008

Fig 9. Comparison of GAAN and SCNN, (a) Input; (b) GT; (c) SCNN; (d) GAAN.

https://doi.org/10.1371/journal.pone.0254521.g009

PLOS ONE The geometric attention-aware network for lane detection in complex road scenes

PLOS ONE | https://doi.org/10.1371/journal.pone.0254521 July 15, 2021 12 / 15

https://doi.org/10.1371/journal.pone.0254521.t006
https://doi.org/10.1371/journal.pone.0254521.t007
https://doi.org/10.1371/journal.pone.0254521.g008
https://doi.org/10.1371/journal.pone.0254521.g009
https://doi.org/10.1371/journal.pone.0254521


and 3 are traffic scenes where crowded vehicles covered lane lines. The detection results of the

GAAN are also better than SCNN’s, because our method suffers less redundant noise and the

pixels of the same lane lines predicted are more consistent.

As shown in Table 8, we evaluated the GAAN on the TuSimple dataset and compared it

with other networks that performed well on the dataset.

The labels of BDD100K are different from the TuSimple and the CULane. BDD100K labels

the lane lines that can be seen in the image, instead of focusing only on the 4 lane lines on the

left and right sides of the current lane in the same direction. Thus the dataset contains the dis-

tribution of samples with different numbers of lane lines, which leads the lane detection results

are greatly influenced. Therefore, the ability of the network model’s learning and generaliza-

tion can be effectively verified on BDD100K dataset. As shown in Table 9, it illustrates the eval-

uation results of the GAAN on the BDD100K dataset.

As shown in Fig 10, it displays the lane detection results of GAAN and SCNN on the

BDD100K dataset. We selected night scenarios that lane lines are not visible in the testing set.

Moreover, BDD100K dataset requires detected lane lines are relatively dense, thus it is more

Table 8. Evaluation of GAAN in TuSimple dataset.

Method Accuracy FP FN

LaneNet [5] 96.38 0.0780 0.0244

SCNN [8] 96.53 0.0617 0.0180

EL-GAN [20] 96.39 0.0412 0.0336

ENet-SAD [4] 96.64 0.0602 0.0205

RD-101-GAAN 96.75 0.0576 0.0173

https://doi.org/10.1371/journal.pone.0254521.t008

Table 9. Evaluation of GAAN in BDD100K.

Method Accuracy IoU

ResNet-101 [11] 34.45 15.02

SCNN [8] 35.79 15.84

ENet-SAD [4] 36.56 16.02

RD-101-GAAN 37.68 16.75

https://doi.org/10.1371/journal.pone.0254521.t009

Fig 10. The results of GAAN and SCNN in BDD100K: (a) Input and GT; (b) GAAN; (c) SCNN.

https://doi.org/10.1371/journal.pone.0254521.g010
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challenging to accurately distinguish the nearby lane lines. From the visualized probabilistic

graph of detected lane, we can see that GAAN missed fewer pixels of the lane lines, and the

detection results of the lane line which near the driving lane line is better.

Discussion

In this paper, we have proposed GAAN, a multi-task branches architecture neural network to

further improve the ability of lane detection in complex scenes. The one called geometric dis-

tance embedding branch can learn the distance features from lane lines’ center to boundary,

and the other one called semantic segmentation branch can learn multi-scale semantic fea-

tures. We use the AIP to adaptively select the complementary information between the two

branches for communication and use GAA module to combine the two branches. Conse-

quently, the SPFU is used to fuse the multi-scale features of each stage’s encoder. Experiments

were conducted on the CULane dataset, TuSimple dataset, BDD100K dataset and the results

show that our method has the better performance compared with several advanced lane detec-

tion methods.

In addition, lane detection is an indispensable part of autonomous driving, so it has high

requirements on the real-time performance and accuracy of the algorithm, as well as, it needs

to control the amount of model parameters to be deployed on the device. Therefore, the fur-

ther research in future, we must consider that the model of the lane detection method requires

real-time detection, and use model compression related technology or a lightweight backbone

network to reduce model parameters.
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