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Lupus is a systemic autoimmune disease typified by uncontrolled inflammation,

disruption of immune tolerance, and intermittent flaring – events triggerable by

environmental factors. Preclinical and clinical studies reveal that consumption of the

marine ω-3 highly unsaturated fatty acids (HUFAs) eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) might be used as a precision nutrition intervention to lessen

lupus symptoms. The anti-inflammatory and pro-resolving effects of ω-3 HUFAs are

inextricably linked to their presence in membrane phospholipids. The ω-3 HUFA score,

calculated as [100 × (ω-3 HUFAs/(ω-3 HUFAs + ω-6 HUFAs))] in red blood cells (RBCs),

and the Omega-3 Index (O3I), calculated as [100 × ((DHA+EPA)/total fatty acids)] in

RBCs, are two biomarkers potentially amenable to relating tissue HUFA balance to

clinical outcomes in individuals with lupus. Using data from three prior preclinical DHA

supplementation studies, we tested the hypothesis that the ω-3 HUFA score and the O3I

inversely correlate with indicators of autoimmune pathogenesis in the cSiO2-triggered

lupus flaringmodel. The three studies employed both low and high fat rodent diets, as well

as more complex diets emulating the U.S. dietary pattern. The ω-3 HUFA scores in RBCs

were comparatively more robust than the O3I at predicting HUFA balances in the kidney,

liver, spleen, and lung. Importantly, increases in both theω-3 HUFA score (>40%) and the

O3I (>10%) were strongly associated with suppression of cSiO2-triggered (1) expression

of interferon-regulated genes, proinflammatory cytokine production, leukocyte infiltration,

and ectopic lymphoid structure development in the lung, (2) pulmonary and systemic

autoantibody production, and (3) glomerulonephritis. Collectively, these findings identify

achievable ω-3 HUFA scores and O3I thresholds that could be targeted in future human

intervention studies querying how ω-3 HUFA consumption influences lupus and other

autoimmune diseases.
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INTRODUCTION

Systemic lupus erythematosus (lupus) is a prototypic,
multifaceted autoimmune disease characterized by uncontrolled
inflammation, disruption of self-tolerance, and intermittent
episodes of disease flaring often triggered by environmental
factors (1). Lupus-associated autoimmune pathogenesis elicits
irreversible damage in the kidney and other organs, sometimes
culminating in death. The overactive immune response in lupus
is typically managed with glucocorticoids, which have deleterious
effects associated with long-term use, including organ damage,
osteoporosis, diabetes, and increased risk of cardiovascular
disease (2, 3). Both animal and human studies indicate that
consumption of marine ω-3 highly unsaturated fatty acids
(HUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA) may potentially alleviate the severity of chronic
inflammatory and autoimmune diseases [reviewed in (4–
6)], suggesting this precision nutrition approach might be a
steroid-sparing intervention for lupus.

Human studies support the contention that ω-3 HUFA

consumption may benefit lupus patients. In observational

studies, low ω-3 HUFA intake is associated with exacerbated
disease activity, adverse serum lipids, and atherosclerotic plaques
in lupus patients (7), and a recent study by the Michigan Lupus
Epidemiology and Surveillance (MiLES) program reported that
positive patient-reported outcomes were associated with high
consumption of ω-3 fatty acids and low dietary ω-6:ω-3
ratios (8). Most intervention trials implementing ω-3 HUFA
supplementation in lupus patients report lessening of symptoms
(9–18). However, there is variability across studies with some
trials failing to show positive results. Key limiting factors
contributing to disparities among investigations in humans
include inadequate patient numbers; lack of consideration of
effects of concurrent pharmacotherapies; variability in ω-3
HUFA dosages, sources, and supplementation durations; and
failure to monitor ω-3 HUFA tissue levels in patients. This
final point is immensely critical because the pro-resolving
and anti-inflammatory properties of dietary ω-3 HUFAs are
inextricably linked to the extent of their presence in the cell
membrane (19). Importantly, pro-inflammatory ω-6 HUFAs,
generated by elongation of shorter chain ω-6 polyunsaturated
fatty acids (PUFAs), that dominate the typical Western diet
compete with ω-3 HUFAs for occupancy at the sn2 position
of phospholipids, thereby diminishing their anti-inflammatory
and pro-resolving effects (19). In clinical studies, many factors
influence the efficiency ω-3 HUFA incorporation, including

patient compliance, individual differences in absorption, genetic
variation in lipid metabolizing genes, and consumption of

competing ω-6 PUFAs (20). Accordingly, for any clinical trial
of marine ω-3 HUFA supplementation, it is essential to measure
the balance of ω-3 HUFA levels both at baseline and throughout
the study.

Animal models of lupus are an essential tool for
understanding how gene-environment interactions influence
development of the disease in humans. The NZBWF1 mouse
is genetically predisposed to the development of autoimmune
disease and has been widely used for over five decades as a

preclinical lupus model for investigating mechanisms of disease
pathogenesis, effects of environmental exposures, and efficacy
of pharmacological and immunotherapeutic interventions
(21). Female NZBWF1 mice spontaneously develop lupus at
around 7 months of age, much earlier than males, and rarely
live past 12 months (22, 23), mimicking the sex bias observed
in human lupus. Inclusion of marine ω-3 HUFAs in the diet
delays lupus onset and extends survival in this strain (24–29).
Our laboratory has recently developed a novel model for lupus
flaring involving intranasal instillation of female NZBWF1
mice with crystalline silica (cSiO2). Frequent, high exposure to
cSiO2 particles in occupations such as construction, mining, and
farming is etiologically linked to multiple human autoimmune
diseases, including lupus (30–33). In this model, autoimmune
disease is triggered 3 months earlier than vehicle-treated
controls, as reflected in the lung by pro-inflammatory and
interferon-regulated gene (IRG) upregulation, mononuclear
cell infiltration, ectopic lymphoid structure (ELS) neogenesis,
and autoantibody production. In the kidney, we see concurrent
induction of glomerulonephritis (34, 35). Importantly, dietary
supplementation with the ω-3 HUFA docosahexaenoic acid
(DHA) ameliorates cSiO2-triggered lupus flaring in female
NZBWF1 mice (35–38), and this intervention is effective against
the background of three unique diets (36–38).

The ω-3 HUFA score (39) and the Omega-3 Index (O3I) (40)
are two interrelated red blood cell (RBC) biomarkers potentially
applicable for associating tissue HUFA balance with disease
outcomes in both preclinical and clinical studies. The ω-3 HUFA
score reflects the total ω-3 HUFAs as a % of total HUFAs (ω-3,
ω-6, and ω-9 HUFAs), while the O3I is the sum of DHA and
EPA as a percent of total fatty acids. The goal of the present
study was to test the hypothesis that the ω-3 HUFA score
and the O3I inversely correlate with indicators of inflammation
and autoimmune pathogenesis during cSiO2-triggered lupus
flaring in NZBWF1 mice. Data used to test this hypothesis
were drawn from three unique DHA supplementation studies
recently published by our laboratory (36–38) that employed both
purified mouse diets, as well as more complex diets reflecting
Western eating patterns. Our findings indicate that increases in
both the O3I and the ω-3 HUFA score were strongly associated
with suppression of autoimmune pathogenesis in this preclinical
mouse model of toxicant-triggered lupus flaring. Importantly,
these preclinical results identify the ω-3 HUFA score and
O3I thresholds potentially required for successful intervention
against lupus and other autoimmune diseases.

MATERIALS AND METHODS

Experimental Design
Data used for this study were collected from our previously
published investigations based on three DHA feeding studies
(35–38) (see Supplementary Data). Each study used female
NZBWF1 mice obtained from Jackson Laboratories (Bar Harbor,
ME). Female mice were used in these studies due to the sexual
dimorphism observed in both human lupus and the NZBWF1
mouse model (21). Experimental protocols were designed and
performed in accordance with National Institutes of Health
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guidelines and approved by the Institutional Animal Care and
Use Committee at Michigan State University (AUF#01/15-021-
00; AUF# PROTO201800113). Upon arrival, mice were randomly
assigned to experimental groups and housed four per cage
with access to food and water provided ad libitum. Animal
facilities weremaintained at constant temperature (21–24◦C) and
humidity (40–55%) with a 12 h light/dark cycle. One animal in
Study 3 was euthanized for health concerns unrelated to cSiO2

exposure or lupus development (38).
Experimental diets contained specified amounts of DHA

against unique dietary backgrounds as summarized in Table 1.
Study 1 used a modified high fat American Institute of Nutrition-
93G diet (HF-AIN-93G) containing 134 g fat/kg diet (30% kcal
fat), formulated with corn oil (10 g/kg), soybean oil (64 g/kg), and
high-oleic safflower oil (60 g/kg) (35, 36). High-oleic safflower
oil was substituted with 10, 30, or 60 g/kg microalgal oil
containing 40% (w/w) DHA (DHASCO, provided by Dr. Kevin
Hadley, Martek Biosciences Corporation, Columbia, MD). The
resulting experimental diets yielded 0.4, 1.2, or 2.4% (w/w)
DHA, respectively. Analyses were only performed on animals
fed diets containing 0, 0.4, and 1.2% (w/w) DHA because
no additional protection was seen when comparing the 1.2%
(w/w) DHA diet to the 2.4% (w/w) DHA diet. Furthermore,
animals fed the 2.4% (w/w) DHA diet achieved an ω-3 HUFA
score of ∼90%, which is much higher than those achieved in
the other studies and beyond levels observed in humans (41).
Study 2 employed the AIN-93G diet containing 70 g fat/kg
diet (17% kcal fat), composed of corn oil (10 g/kg) and high-
oleic safflower oil (60 g/kg) (37). High-oleic safflower oil was
replaced with 10 or 25 g/kg DHASCO to yield experimental
diets containing 0.4 and 1% (w/w) DHA, respectively. Study 3
utilized a modified total Western diet (MTWD) and a MTWD
with 40% less saturated fats and ω-6 HUFAs (MTWD ↓SF.ω-
6) (38). Both MTWDs contained 164 g fat/kg diet (34.5% kcal
fat), composed of soybean oil, anhydrous milk fats, olive oil,
lard, beef tallow, corn oil, cholesterol, and high-oleic safflower
oil. Olive oil was replaced by 30 g/kg DHASCO to achieve 1.2%
(w/w) DHA.

In each study, groups of female mice (n = 7–8/group) were
initiated on experimental diets at age 6 wk and maintained
on those same diets until experiment termination. To limit
oxidation of dietary lipids, diets were prepared every 2 weeks,
vacuum-sealed and stored at −20◦C, and provided fresh
every 1–2 days. Two weeks later (age 8 wk), mice were
anesthetized with 4% isoflurane and intranasally instilled with
1mg cSiO2 (Min-U-Sil-5, 1.5–2.0µm average particle size, U.S.
Silica, Berkeley Springs, WV) in 25 µL PBS or PBS vehicle
(VEH) every week for 4 weeks. The total amount of cSiO2

provided over the course of the experiment (4mg per mouse)
was chosen to approximate half of a recommended human
lifetime exposure as established by the Occupational Safety
and Health Administration (34). Mice were euthanized by
intraperitoneally injecting 56 mg/kg BW sodium pentobarbital
11–13 weeks after the final cSiO2 exposure. Selected tissue
analyses were conducted as described for Study 1 (36), Study
2 (35, 37), and Study 3 (38). These included fatty acid

profiling (RBC, lung, kidney, spleen, liver), IRG expression
(lung), pro-inflammatory cytokines (bronchioalveolar lavage
fluid [BALF]), lymphocyte infiltration (lung), ELS development
(lung), pulmonary and systemic autoantibody expression (BALF,
plasma), and glomerulonephritis (kidney).

Fatty Acid Analyses
Experimental diets from Studies 1, 2, and 3, tissues from
Studies 1 and 3, and RBCs from Study 1 were analyzed
by GLC at Michigan State University as described previously
using a GC2010 Gas Chromatograph (Shimadzu, Columbia,
MD) equipped with a CP-Sil 88 WCOT (wall-coated open
tubular) fused-silica column (100m × 0.25mm i.d. × 0.2-
µm film thickness; Varian Inc., Lake Forest, CA) with
hydrogen as carrier gas (36). A standard cocktail of fatty acids
characteristic of erythrocytes was used to identify phospholipid
fatty acids, which were quantified as a percentage of total
identified fatty acids after response factor correction. Analysis
of RBCs from Studies 2 and 3 was performed by OmegaQuant
Analytics, LLC (Sioux Falls, SD), an independent CLIA-
certified laboratory.

To verify fatty acid compositions, final diets were analyzed
by gas liquid chromatography (GLC) as described above and
presented in Table 2. The dietary fatty acid composition was
used to calculate predicted RBC ω − 3 HUFA scores. We used
a modification of Lands’ equation (41) as follows, where HC3 =
3.0, HC6 = 0.70, PC3 = 0.0555, PC6 = 0.0441, HI3 = 0.005, CO
= 5.0, and Ks= 0.175.

Predicted ω − 3 HUFA Score =

100− (
100

1+ (HC6/en%H6) (1+ en%H3/HC3)
+

100

1+ (PC6/en%H6) (1+ en%P3/PC3+ en%H3/HI3+ en%O/CO+ en%P6/KS)
)

(1)

En%P6 was the en% of linoleic acid (C18:2n6), en%P3 was the
en% of alpha-linolenic acid, en%H6 was the en% of arachidonic
acid (C20:4n6), and en%H3 was the en% of EPA (C20:5n3),
DPA (C22:5n6), and DHA (C22:6n3). En%O (other fatty acids)
was calculated for each diet by subtracting en%P6, P3, H6, and
H3 from the total en% of fat in the diet. In diet formulations
with no measurable arachidonic acid, EPA, DPA, or DHA,
the values for en%H6 or H3 were replaced with 0.001, a
value much smaller than the estimated en%H6 or H3 in the
Western diet.

Determination of the RBC ω-3 HUFA Score
and the O3I
The ω-3 HUFA score and O3I were determined for RBCs and
all available tissues of each animal. The ω-3 HUFA score is the
sum of EPA (C20:5n3), DPA (C22:5n3), and DHA (C22:6n3)
as a percentage of the most abundant HUFAs (C20:5n3,
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TABLE 1 | Composition of experimental diets.

Basal diet Experimental diets

Study 136 Study 237 Study 338

HF AIN-93G AIN-93G MTWD MTWD↓SF.ω-6

DHA (en%) 0% 0.96% 2.40% 0% 0.87% 2.62% 0% 2.63% 0% 2.63%

DHA (%w/w) 0% 0.40% 1.20% 0% 0.40% 1% 0% 1% 0% 1%

Macronutrient (g/Kg)

Carbohydrates

Corn starch 366 366 366 398 398 398 230 230 230 230

Maltodextrin (Dyetrose) 121 121 121 132 132 132 70 70 70 70

Sucrose 92 92 92 100 100 100 257 257 257 257

Cellulose 46 46 46 50 50 50 30 30 30 30

kcal (% of total) 53.3 53.3 53.3 63.2 63.2 63.2 49.4 49.4 49.4 49.4

Proteins

Casein 184 185 184 200 200 200 190 190 190 190

L-cysteine 3 3 3 3 3 3 3 3 3 3

kcal (% of total) 16.7 16.7 16.7 19.7 19.7 19.7 16.1 16.1 16.1 16.1

Fats

Soybean oil 64 64 64 - - - 29 29 6 6

Anhydrous milkfat - - - - - - 36 36 7 7

Olive oila,b - - - - - - 30 0 138 108

Lard - - - - - - 28 28 6 6

Beef tallow - - - - - - 25 25 5 5

Corn oila,c 10 10 10 10 10 10 16 16 3 3

Cholesterol - - - - - - 0.4 0.4 0.5 0.5

High-oleic safflower oila,d 60 50 30 60 50 35 - - - -

DHA-enriched algal oila,e 0 10 30 0 10 25 0 30 0 30

kcal (% of total) 30.0 30.0 30.0 17.1 17.1 17.1 34.5 34.5 34.5 34.5

Other

AIN93G mineral mix 32 32 32 35 35 35 41 41 41 41

AIN93G vitamin mix 19 19 19 10 10 10 12 12 12 12

Choline bitartrate 2 2 2 3 3 3 3 3 3 3

TBHQ antioxidant 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03

aBased on oil composition reported by manufacturer.
bOlive oil contained 678 g/kg oleic acid and 84 g/kg linoleic acid, as reported by the USDA, FDC ID 748648.
cCorn oil contained 612 g/kg linoleic acid and 26 g/kg oleic acid.
dHigh-oleic safflower oil contained 750 g/kg oleic acid and 140 g/kg linoleic acid.
eAlgal oil contained 395 g/kg DHA and 215 g/kg oleic acid, as reported by manufacturer.

C22:5n3, C22:6n3, C20:3n6, C20:4n6, C22:4n6, C22:5n6,
C20:3n9) (39).

ω − 3 HUFA Score =
100% ∗(20 : 5n3 + 22 : 5n3 + 22 : 6n3)

Total HUFA
(2)

The O3I was calculated by taking the sum of EPA and DHA as a
percent of total fatty acids (40). In tissues, this value is referred to
as EPA+ DHA.

Omega− 3 Index (O3I) =
100% ∗(20 : 5n3 + 22 : 6n3)

Total FA
(3)

Data Analysis and Statistics
All correlations to inflammatory endpoints used ω-3 HUFA
scores and O3Is measured in RBCs. Data were analyzed
using Graph Pad Prism 8.0.0 (GraphPad Software, San Diego,
CA, www.graphpad.com). Inflammatory endpoints that were

undetectable were replaced with half of the minimum value

for the individual endpoint. The robust regression and outlier

removal (ROUT) method was used to identified outliers,

which were excluded from further analysis (Q = 0.5%).
For all endpoints, <10% of data points were identified as
outliers. Where appropriate, non-normal data were log10
transformed and analyzed using linear regression. To account for
experimental andmethodological differences, all log transformed
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TABLE 2 | Fatty acid profiles of experimental diets as determined by gas-liquid chromatography.

Basal diet Experimental diets

Study 136 Study 237 Study 338

HF AIN-93G AIN-93G MTWD MTWD↓SF.ω-6

DHA (en%) 0% 0.96% 2.40% 0% 0.87% 2.62% 0% 2.63% 0% 2.63%

DHA (%w/w) 0% 0.40% 1.20% 0% 0.40% 1% 0% 1% 0% 1%

Common name Chemical formula (% of total fatty acids)

Lauric C12:0 0.07 ± 0.00 0.30 ± 0.06 0.75 ± 0.03 0.04 ± 0.00 0.62 ± 0.00 1.42 ± 0.07 0.65 ± 0.01 1.49 ± 0.03 0.14 ± 0.01 0.83 ± 0.01

Myristic C14:0 0.18 ± 0.01 0.97 ± 0.21 2.57 ± 0.11 0.16 ± 0.01 1.79 ± 0.02 4.15 ± 0.21 2.87 ± 0.06 5.54 ± 0.05 0.53 ± 0.01 2.51 ± 0.02

Pentadecanoic C15:0 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.29 ± 0.00 0.30 ± 0.00 0.07 ± 0.00 0.06 ± 0.00

Palmitic C16:0 8.31 ± 0.12 8.94 ± 0.33 10.05 ± 0.11 5.64 ± 0.04 6.82 ± 0.02 7.79 ± 0.02 22.24 ± 0.16 22.24 ± 0.05 10.87 ± 0.06 11.00 ± 0.01

Palmitoleic C16:1ω7 0.09 ± 0.00 0.18 ± 0.02 0.34 ± 0.01 0.08 ± 0.00 0.41 ± 0.00 0.86 ± 0.03 0.13 ± 0.01 0.10 ± 0.00 0.13 ± 0.01 0.12 ± 0.01

Strearic C18:0 2.61 ± 0.04 2.58 ± 0.07 2.47 ± 0.03 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 8.49± 0.04 8.26 ± 0.03 3.61 ± 0.03 3.37 ± 0.01

Oleic C18:1ω9 46.36 ± 0.87 42.55 ± 2.21 35.56 ± 1.05 71.08 ± 0.13 62.40 ± 0.08 53.26 ± 0.50 39.19 ± 0.38 29.00 ± 0.08 72.63 ± 0.08 64.41 ± 0.03

Linoleic C18:2ω6 36.55 ± 0.70 36.09 ± 1.14 34.51 ± 0.70 19.17 ± 0.10 18.94 ± 0.01 15.08 ± 0.79 21.07 ± 0.21 20.62 ± 0.18 8.57 ± 0.04 7.82 ± 0.04

Arachidic C20:0 0.32 ± 0.01 0.31 ± 0.01 0.28 ± 0.00 0.31 ± 0.00 0.28 ± 0.00 0.24 ± 0.00 0.21 ± 0.03 0.17 ± 0.01 0.29 ± 0.00 0.28 ± 0.01

Alpha-linolenic C18:3ω3 3.15 ± 0.08 3.25 ± 0.08 3.26 ± 0.09 0.36 ± 0.01 0.37 ± 0.00 0.32 ± 0.01 1.90 ± 0.03 1.81 ± 0.04 0.93 ± 0.01 0.87 ± 0.02

Behenic C22:0 0.28 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.22 ± 0.00 0.21 ± 0.00 0.20 ± 0.00 0.10 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.11 ± 0.00

Lignoceric C24:0 0.13 ± 0.01 0.12 ± 0.01 0.12 ± 0.00 0.14 ± 0.00 0.13 ± 0.00 0.12 ± 0.00 0.04 ± 0.01 0.05 ± 0.01 0.03 ± 0.00 0.05 ± 0.00

Eicosapentaenoic C20:5ω3 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.09 ± 0.00 0.20 ± 0.01 0.00 ± 0.00 0.13 ± 0.00 0.00 ± 0.00 0.10 ± 0.01

Docosahexaenoic C22:6ω3 0.00 ± 0.00 2.47 ± 0.74 7.74 ± 0.43 0.00 ± 0.00 5.40 ± 0.05 14.20 ± 0.65 0.00 ± 0.00 7.09 ± 0.20 0.00 ± 0.00 6.34 ± 0.08

Total saturated fat 12.1 ± 0.2 13.7 ± 0.7 16.8 ± 0.2 8.3 ± 0.1 11.5 ± 0.1 15.4 ± 0.1 35.28 ± 0.21 38.84 ± 0.05 15.80 ± 0.08 18.39 ± 0.02

Total MUFA 47.8 ± 0.9 44.0 ± 2.2 37.1 ± 1.1 71.9 ± 0.1 63.5 ± 0.1 54.7 ± 0.5 41.74 ± 0.36 31.49 ± 0.10 74.70 ± 0.10 66.49 ± 0.01

Total ω-6 PUFA 36.7 ± 0.7 36.1 ± 1.14 34.6 ± 0.7 19.2 ± 0.1 18.9 ± 0.1 15.1 ± 0.8 21.07 ± 0.21 20.62 ± 0.18 8.57 ± 0.04 7.82 ± 0.04

Total ω-3 PUFA 3.2 ± 0.1 5.8 ± 0.9 11.1 ± 0.4 0.4 ± 0.00 5.9 ± 0.1 14.7 ± 0.1 1.90 ± 0.03 9.04 ± 0.19 0.93 ± 0.01 7.31 ± 0.05

ω-6:ω-3 ratio 11.6 ± 0.3 6.4 ± 0.9 3.12 ± 0.13 52.8 ± 1.3 3.2 ± 0.0 1.0 ± 0.1 11.07 ± 0.10 2.28 ± 0.07 9.24 ± 0.13 1.12 ± 0.01

MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.
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inflammatory/autoimmune endpoints were standardized prior
to performing correlations across multiple experiments. When
the best-fit values of the slope and y-intercept were not
significantly different between experiments, raw data from
each experiment were combined and re-analyzed to obtain
a single linear regression model. Correlation analyses were
performed on raw data using Spearman’s Correlation due
to non-normality of the data (per Shapiro-Wilk Test, p <

0.05). For correlations to autoantibody classes and subtypes,
autoantibody groups were determined based on location and
function of cognate autoantigens. Within a given group,
signal intensities for individual autoantibodies were normalized
and summed to obtain a group score for each animal, as
described previously (42). The score was used to perform
correlation analyses against the RBC ω-3 HUFA score. In
analyses comparing diet groups, data are presented as mean
± SEM with n = 7–8 mice per group. To compare the O3I
and ω-3 HUFA scores of animals positive or negative for
nephritis, the non-parametric Mann-Whitney Rank Sum test was
used. A p < 0.05 was considered statistically different for all
study outcomes.

RESULTS

DHA Supplementation Dose-Dependently
Increases ω-3 HUFA Score Uniformly
Across RBC and Tissues
The effects of substituting various amounts of DHA-rich
microalgal oil for high oleic acid safflower oil (HF AIN-93G,
Study 1; AIN-93G, Study 2) or olive oil in (MTWD and
MTWD ↓SF.ω6, Study 3) on resultant tissue and RBC ω-3
HUFA scores were compared. Regardless of diet, increasing
the DHA content up to 2.6 en% (human equivalent dose of
∼5 g/day) dose-dependently increased RBC ω-3 HUFA scores
(Figure 1A). These increases closely correlated (R2 = 0.93–
0.99, p < 0.05) with predicted ω-3 HUFA scores calculated
from diet composition using Lands’ equation (Figure 1B). ω-
3 HUFA scores were relatively consistent across all tissues,
both for basal and DHA-supplemented diets (Figures 2A,C).
DHA-dependent increases in RBC ω-3 HUFA score closely
correlated (p < 0.001) with those in lung (rs = 0.87), spleen
(rs = 0.84), and kidney (rs = 0.72) for Study 1 (Figures 2A,B),
and in lung (rs = 0.90), spleen (rs = 0.89), liver (rs =

0.86), and kidney (rs = 0.95) for Study 3 (Figures 2C,D).
Using the O3I as a measure of fatty acid content resulted
in lower and more varied correlations (rs = 0.27–0.88,
Figures S2B,D).

Elevated RBC ω-3 HUFA Scores Negatively
Correlate With Interferon Regulated Gene
(IRG) Expression in the Lung
Elevated IRG expression is highly associated with flaring and
increased disease severity in lupus (43). It was demonstrated in
Studies 2 and 3 that IRG expression is upregulated in cSiO2-
exposed NZBWF1 mice and that this is suppressed by DHA
supplementation (35, 38). Here, an IFN score was generated

FIGURE 1 | RBC ω-3 High unsaturated fatty acid (HUFA) score increases with

DHA intake in NZBWF1 mice and can be predicted based on diet composition

in cSiO2-treated NZBWF1 mice. Animals were fed different diets for Studies 1

(HF AIN-93G), 2 (AIN-93G), and 3 (MTWD and MTWD ↓SF.ω6) with or without

DHA (see Table 1) as indicated by individually colored lines and symbols. At

experiment termination, red blood cells (RBCs) were analyzed for fatty acids by

GLC. (A) Increasing en% of DHA in the diet elevated omega-3 HUFA score

similarly across all experimental diets. Data presented as mean ± SEM. (B)

The ω-3 HUFA score is predictable based on the en% of major ω-3 and ω-6

fatty acids using Lands’ equation. Individual animals represented by individual

data points. For all regression analyses, R2 is reported next to the

corresponding line and p < 0.001 Shaded bands around regression lines

represent 95% confidence intervals.

by combining the autoscaled expression of 12 IRGs measured
in animals fed AIN-93G, MTWD, and MTWD ↓SF.ω6 (38).
Resultant IFN scores negatively correlated withω-3 HUFA scores
(R2 = 0.29, p < 0.0001, Figure 3A). This negative correlation
is illustrated for representative IRGs including Isg15 (R2 =

0.32, p < 0.0001, Figure 3B), Psmb8 (R2 = 0.32, p < 0.0001,
Figure 3C), Irf7 (R2 = 0.26, p < 0.0001, Figure 3D), and Oasl1
(R2 = 0.30, p < 0.0001, Figure 3E). Overall, the autoscaled
plots indicate that ω-3 HUFA scores above 40% were associated
with reduced IRG scores and individual gene expression
(Figure 3).
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FIGURE 2 | ω-3 HUFA scores are consistent across multiple tissues in cSiO2-treated NZBWF1 mice. Mouse tissues from (A,B) Study 1 (HF AIN-93G diet) and (C,D)

Study 3 (MTWD and MTWD ↓SF.ω6 diets) were analyzed separately to assess the impact of DHA in tissue fatty acid incorporation. Study 2 is not included because

only RBCs were analyzed in this study. (A,C) ω-3 HUFA scores increased similarly across tissues with DHA supplementation. Data presented as mean ± SEM. (B,D)

Pearson’s correlation was used to assess correlations between the ω-3 HUFA score across different tissues (***p < 0.001).
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FIGURE 3 | RBC ω-3 HUFA score negatively correlates with IFN regulated gene expression in cSiO2-triggered NZBWF1 mice. (A) An IFN score was calculated to

include 12 IFN-related genes significantly induced by cSiO2 exposure (Ccl7, Zbp1, Ifi44, Ifit1, Irf7, Isg15, Mx1, Oas2, Oasl1, IPsmb8, Rsad2, Siglec1). These genes

(Continued)
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FIGURE 3 | were presented as fold-change relative to vehicle-instilled animals. Missing values and outliers were handled as described in the Methods section.

Expression was standardized by autoscaling (subtracting the mean expression of the gene and dividing by the standard deviation of the expression of the gene). Then,

standardized scores of all genes for an individual sample were summed to achieve the IFN score (B–E). Representative genes used in the calculation of the IFN score

including (B) Isg15, (C) Psmb8, (D) Irf7, and (E) Oasl1 reflect the trend observed in the combined IFN score. All values were plotted against the ω-3 HUFA score and

the resulting data analyzed by simple linear regression. Regression coefficients were considered statistically significant at p < 0.05. Shaded bands around regression

lines represent 95% confidence intervals.

Higher RBC ω-3 HUFA Scores Correspond
to Reduced Pro-inflammatory Cytokines
and Leukocyte Infiltration in BALF
Intranasal instillation of cSiO2 elicits local sterile inflammation
in the lungs of NZBWF1 mice that is associated with elevated
proinflammatory cytokines, chemokines, and mononuclear cell
influx, all of which can be suppressed by DHA supplementation
(36–38). Here it was found that IL-6 (R2 = 0.26, p = 0.0001,
Figure 4A), MCP-1 (R2 = 0.29, p < 0.0001, Figure 4B), and
TNFα (R2 = 0.39, p < 0.0001, Figure 4C) concentrations
in the BALF were negatively correlated with the ω-3 HUFA
score. Consistent with these findings, numbers of macrophages
(R2 = 0.40, p < 0.0001, Figure 5A), lymphocytes (R2 =

0.35, p < 0.0001, Figure 5B), and neutrophils (R2 = 0.12,
p = 0.0029, Figure 5C) in BALF also negatively correlated
with the ω-3 HUFA score in all three studies. Though some
R2 values are relatively low, there is a consistent negative
linear relationship with all endpoints assessed. Consonant with
IRG expression, reductions in these inflammatory responses
was most apparent when ω-3 HUFA scores exceeded 40%
(Figures 4, 5).

Increased RBC ω-3 HUFA Scores Are
Associated With Reduced Ectopic
Lymphoid Structure (ELS) Neogenesis and
Autoantibody Production
Central to cSiO2-triggered autoimmunity inNZBWF1mice is the
appearance of ELS in the lung composed of germinal center-like
organization of B- and T-cells (36). These structures promote the
development of autoreactive plasma cells and the production of
autoantibodies. Notably, their formation is suppressed by DHA
supplementation (36–38). Consistent with those observations,
very strong, negative linear correlations were observed between
the ω-3 HUFA score and CD3+ (R2 = 0.45, p < 0.0001) and
CD45R+ (R2 = 0.62, p < 0.0001) lung tissue in Studies 1, 2, and
3 (Figures 6A,B). Similar correlations were observed for anti-
dsDNA in BALF (R2 = 0.35, p < 0.0001) and plasma (R2 =

0.24, p < 0.0001) as measured by ELISA (Figures 6C,D). Again,
ω-3 HUFA scores over 40% were associated with reduced ELS
development and anti-dsDNA production (Figure 6). A further
feature of Study 2 was the use of high throughput autoantigen
microarray for in-depth analysis of autoantibodies relative to
specificity and isotype (44). Robust negative correlations were
found betweenω-3 HUFA score and IgG and IgM autoantibodies
in both BALF and plasma with specificity for a broad range of
host antigens (most rs values between−0.4 and−0.6, significance
indicated by asterisks) (Figure 7).

Higher RBC ω-3 HUFA Scores Were
Associated With Delayed Disease
Progression
Early glomerulonephritis onset and production of autoantibodies
is a critical outcome of cSiO2-triggered systemic autoimmunity
that was prevented by dietary DHA supplementation in Studies
1, 2, and 3 (36–38). We defined lupus disease progression in
animals as the presence of renal lesions combined with elevated
plasma anti-dsDNA IgG in cSiO2-treated animals compared
to the mean of the vehicle-treated group (p < 0.05). This
is reflective of the SLICC criteria published in 2013, which
stated that combination of biopsy confirmed nephritis in the
presence of either ANA or anti-dsDNA antibodies is sufficient for
classification of SLE in humans (45). Mice negative for both renal
lesions and plasma anti-dsDNA IgG had significantly higher ω-3
HUFA scores (median of 69.18, 95% CI 54.46–74.59) compared
to animals positive for both endpoints (median of 21.43, 95% CI
19.44–30.21) (Figure 6E). Consistent with the above findings for
inflammation and autoimmunity indicators, ω-3 HUFA scores
below∼40% were associated with disease progression.

Higher O3I Were Associated With Reduced
Autoimmune Pathogenesis
O3Is for Study 1 increased with en% DHA in the diet to a much
lesser extent than those for Studies 2 and 3 (Figure S1). When
assessing DHA’s effects on the O3I in tissues, responses followed
the rank order of kidney > lung > spleen > RBC for Study 1,
whereas for Study 3 the rank order was RBC > kidney > lung
> spleen > liver (Figures S2A,C). Previous reports of the RBC
O3I for animals fed similar diets weremuchmore similar to those
observed in studies 2 and 3 (in the range of 6–14%) (46). Together
these observations suggest that there were methodological issues
with the fatty acid analysis in Study 1, possibly due to fatty acid
decomposition. Therefore, correlation analyses between O3Is
and inflammation and autoimmunity indicators were performed
only for Studies 2 and 3.

O3Is significantly correlated with decreased IFN scores
(Figure 8A) and with downregulated expression of the
representative IRGs Isg15 (R2 = 0.28, p < 0.0001, Figure 8B),
Psmb8 (R2 = 0.32, p < 0.0001, Figure 8C), Irf7 (R2 = 0.25,
p = 0.0001, Figure 8D), and Oasl1 (R2 = 0.30, p < 0.0001,
Figure 8E). Furthermore, high O3Is were strongly associated
with suppression of cSiO2-triggered increases in numbers
of macrophages (R2 = 0.33, p < 0.0001, Figure 9A) and
lymphocytes (R2 = 0.40, p < 0.0001, Figure 9B) in BALF, as well
as decreased ELS neogenesis in the lung as reflected by B-cell
(R2 = 0.52, p < 0.0001, Figure 9C) and T-cell (R2 = 0.45, p
< 0.0001, Figure 9D) accumulation. Importantly, autoscaled
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FIGURE 4 | Increasing RBC ω-3 HUFA score corresponds to reduced inflammatory cytokines in the lung alveolar fluid of cSiO2-triggered NZBWF1 mice.

Bronchoalveolar fluid (BALF) was analyzed for the proinflammatory cytokines (A) IL-6, (B) MCP-1, and (C) TNFα by ELISA in Study 1 and by a multiplexed bead based

assay in Study 3. To compare across experiments, data was linearized by log10 transformation and standardized by autoscaling. The normalized and standardized

data were plotted against the ω-3 HUFA score for each animal. When each diet was assessed individually, the resultant linear models were not found to be

significantly different from one another, indicating that the data sets could be combined and analyzed simultaneously. The combined data were analyzed by a simple

linear regression and goodness of fit presented as R2. Regression coefficients were considered statistically significant at p < 0.05. Shaded bands around regression

lines represent 95% confidence intervals.
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FIGURE 5 | Elevated RBC ω-3 HUFA scores are associated with reduced mononuclear cell infiltration into lung alveolar fluid of cSiO2-triggered NZBWF1 mice. BALF

was assessed for (A) macrophages, (B) lymphocytes, and (C) neutrophils by differential cell counts, as determined by morphological assessment of 200 total cells on

cytological slides. Counts between diet groups were normalized by log transformation and standardized by autoscaling. The normalized and standardized data was

plotted against the ω-3 HUFA score for each animal. The data was analyzed by a simple linear regression and goodness of fit presented as R2. Regression coefficients

were considered statistically significant at p < 0.05. Shaded bands around regression lines represent 95% confidence intervals.
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FIGURE 6 | High RBC ω-3 HUFA scores correspond with suppression of ectopic lymphoid structure (ELS) neogenesis, anti-dsDNA response, and disease

progression in cSiO2-triggered NZBWF1 mice. (A,B) ELS neogenesis was assessed by measuring the volume density of (A) T cells (CD3+) and (B) B cells (CD45R+),

(Continued)
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FIGURE 6 | respectively, in the bronchial and perivascular regions of the lung. Anti-dsDNA was measured in (C) BALF and (D) plasma by ELISA. Percent area covered

by T or B cells and anti-dsDNA levels and were log10 transformed to normalize followed by autoscaling to standardize across experiments. These values were plotted

against the ω-3 HUFA score and the resulting data analyzed by simple linear regression. Goodness of fit of the linear regression was presented as R2. Regression

coefficients were considered statistically significant at p < 0.05. Shaded bands around regression lines represent 95% confidence intervals. (E) Mice positive for renal

lesions and elevated plasma anti-dsDNA IgG (significantly different from mean of the Veh-treated group, p < 0.05) had significantly lower median ω-3 HUFA scores

than mice in the the group negative for these endpoints, as assessed by the non-parametric Mann-Whitney U-test (***p < 0.001). Quantification of renal

histopathology score was based on the following scoring criteria: No proteinosis, normal glomeruli (0); multifocal segmental proliferative glomerulonephritis (1);

multifocal segmental proliferative glomerulonephritis and occasional glomerular sclerosis and crescent formation (2); diffuse global segmental proliferative

glomerulonephritis (3). Animals receiving any score ≥1 were categorized as positive for renal lesions.

FIGURE 7 | Increased RBC ω-3 HUFA scores correlate with reductions in a broad array of autoantibodies relative to specificity and isotype in the plasma and BALF of

cSiO2-treated NZBWF1 mice. Autoantigen coated protein arrays were used for profiling four isotypes of autoantibody (IgG, IgM, IgA, and IgE) in plasma and BALF in

Study 2. The final intensity value of each autoantibody was expressed as an autoantibody score. Individual autoantibodies were grouped according to the function of

their cognate antigens (group names shown on y-axis) as described in the Methods section. The scores of each autoantibody in this group were combined to obtain

an overall score for each group. This score was related to the ω-3 HUFA score using Spearman’s correlation coefficient. *p < 0.05, **p < 0.01, ***p < 0.001.
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plots consistently suggested that O3Is above 10% were associated
with reduced IRG expression, leukocyte infiltration, and ELS
development (Figures 8, 9). Lastly, O3Is were significantly
lower in mice (median of 5.44, 95% CI 5.30–5.85) that showed
development of lupus as indicated by renal lesions and elevated
anti-dsDNA compared to mice negative for both of these
endpoints (median of 17.48, 95% CI 14.83–19.67) (Figure 9E).

Correlations between inflammation/leukocyte infiltration
indicators and RBC ω-3 HUFA scores and O3I for individual
animals in Studies 1, 2, and 3 were assessed by Spearman’s
correlation analysis. Both ω-3 HUFA scores and the O3I were
found to similarly negatively correlate with most endpoints in
each study, suggesting that both biomarkers were comparable
in predicting DHA’s disease-preventive effects (Figure 10). The
only endpoint that showed an opposing trend was the number
of PMN measured in the BALF. These differences may be due
to the fact that the animals in each experiment were sacrificed
at slightly different times post cSiO2 instillation. It appears that
animals sacrificed at later dates show an increasing strength in
the correlation betweenω-3 content and PMN (study 3 sacrificed
at 11 weeks, study 2 sacrificed at 13 weeks, study 1 sacrificed
at 12 weeks). This may be due to increased disease severity
leading to more pronounced neutrophil infiltration between
treatment groups.

DISCUSSION

Murine lupus models typically display gradual increases in
autoantibodies prior to glomerulonephritis and thus mimic
quiescent disease prior to flaring-associated organ damage (47).
Here, airway exposure to cSiO2 was used to mimic flaring in
NZBWF1 mice by promoting persistent sterile inflammation,
cell death, robust expression of IRGs, and development
of autoantibody-producing ELS in the lung (34–36). These
autoantibodies and resultant immune complexes can accumulate
in the kidney, accelerating glomerulonephritis (48–50). We
report here for the first time that increasing two biomarkers
of ω-3 HUFA tissue content, the ω-3 HUFA score and the
O3I, by dietary DHA supplementation is highly associated
with suppression of cSiO2-triggered lupus flaring. Benchmark
thresholds for these biomarkers were further identified that
may be highly relevant to future clinical use of ω-3 HUFA
supplementation as an intervention against lupus and other
autoimmune diseases.

As has been reviewed previously (51), autoimmune disease
onset and progression following cSiO2 inhalation likely begins
with unresolvable inflammation and rampant cell death in
the lung, overwhelming the ability of alveolar macrophages to
clear autoantigen-containing debris by efferocytosis (52). The
presence of host nucleic acids released from dying cells may
stimulate a type I IFN response (53, 54). Type I IFNs, including
IFN-α, promote autoantigen presentation to infiltrating B- and
T-cells and induce the release of additional cytokines such
as B-cell activating factor (BAFF) (55, 56), the target of the
monoclonal antibody drug Benlysta, approved for treatment
of adult lupus in 2011 and pediatric lupus in 2019. BAFF

stimulates thematuration of B-cells into autoantibody-producing
plasma cells. The resultant DNA-containing immune complexes
induce further release of IFN-α, sustaining this cycle (43).
Marine ω-3s and their metabolites attenuate multiple steps of
this putative pathway, resulting in protection against cSiO2-
triggered autoimmunity. Several studies indicate that DHA is
capable of blocking key inflammatory pathways and promoting a
more pro-resolving phenotype in macrophages, which enhances
their ability to efferocytose dying cells, thereby preventing
aberrant production of type 1 IFNs, pro-inflammatory cytokines,
and chemokines (57–59). Together, these inhibitory actions
could dampen the subsequent inflammatory and downstream
autoimmune responses. As shown here, increasing both the
ω-3 HUFA score or the O3I correlated with reductions in
IRG, cytokine, chemokine expression, B- and T-cell infiltration,
autoantibody production, and glomerulonephritis induced by
cSiO2 exposure.

In 2020, the National Institutes of Health
announced at 10 years strategic plan focusing on
precision nutrition—a “holistic approach to developing
comprehensive and dynamic nutritional recommendations
relevant to both individual and population health”
(https://www.niddk.nih.gov/about-niddk/strategic-plans-reports
/strategic-plan-nih-nutrition-research). Selection of dietary
lipids would be central to the development on an individual’s
precision nutrition plan. The strong correlations between the
ω-3 biomarkers and inflammatory endpoints suggest that the
balance between ω-3 and ω-6 fatty HUFAs in the cell membrane
is critical to promoting inflammation or resolution (60). At
the translational level, there are a variety of factors that will
influence the incorporation of dietary HUFAs into the cell
membrane of individuals. ω-3 and ω-6 HUFAs compete for
incorporation into the membrane phospholipids at the sn2
position, thus increasing the levels of ω-6 fatty acids in the diet
will reduce the ω-3 HUFA incorporation in the tissue and vice
versa (19). It has also been shown that the bioavailability of ω-3
supplements is enhanced when provided with a meal rich in
other fats (61). Finally, single nucleotide polymorphisms (SNPs)
in lipid metabolizing genes are associated with altered levels of
various fatty acids observed in the RBCs and tissues (62, 63),
and variations in lipid metabolizing genes are associated with
the efficacy of ω-3 supplementation in cardiovascular disease
(CVD) (64). Therefore, in preclinical and clinical ω-3 HUFA
intervention studies, it is vital to measure of the balance of ω-3
and ω-6 HUFAs.

Measuring an individual’s tissue HUFA status can be readily
accomplished with low-cost commercial tests that are performed
using dried blood spots (65). The alteration of RBC ω-3 and ω-
6 fatty acids observed following dietary interventions is reflected
in multiple tissues (Figure 2, Figure S2). Similarly, other studies
have shown membrane fatty acid profiles of various immune
cells, including monocytes, macrophages, T-cells, and B-cells,
are also influenced by ω-3 supplementation (66). Of the two
biomarkers studied, the O3I (i.e., DHA + EPA as a percent
of total erythrocyte fatty acids) has been extensively validated
in human clinical studies and is more widely implemented. A
critical advantage of the O3I is the wealth of literature utilizing
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FIGURE 8 | The Omega-3 Index (O3I) negatively correlates with IRG expression in cSiO2-triggered NZBWF1 mice. The IFN scores (A) and expression of (B) Isg15,

(C) Psmb8, (D) Irf7, and (E) Oasl1 expression were calculated as described in Figure 3. The autoscaled IFN scores and the expression of each gene was plotted

against the O3I and the resulting data analyzed by simple linear regression. Regression coefficients were considered statistically significant at p < 0.05. Shaded bands

around regression lines represent 95% confidence intervals.
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FIGURE 9 | Heightened O3Is correspond with suppression of leukocyte infiltration, ELS development, and disease progression in cSiO2-triggered NZBWF1 mice. (A)

Macrophage and (B) lymphocyte infiltration, as well as (C) B-cell, and (D) T-cell positive lung tissue were negatively correlated with the O3I. (E) Mice positive for renal

lesions and elevated plasma anti-dsDNA IgG (significantly different from mean of the Veh-treated group, p < 0.05) had significantly lower median Omega-3 Indexes

than mice in the the group negative for these endpoints, as assessed by the non-parametric Mann-Whitney U-test (***p < 0.001). For (A–D), data were analyzed by a

simple linear regression and goodness of fit presented as R2. Regression coefficients were considered statistically significant at p < 0.05. Shaded bands around

regression lines represent 95% confidence intervals.
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FIGURE 10 | RBC ω-3 HUFA score and O3I both negatively correlate with inflammatory/autoimmune indicators and pulmonary immune cell infiltration. Correlation

between inflammatory endpoints and RBC ω-3 HUFA scores and O3Is for individual animals was assessed by Spearman’s correlation coefficient, due to non-normal

distribution of samples. Many endpoints in Study 1 (HF AIN-93G diet) (A,B), Study 2 (AIN-93G diet) (C,D), and Study 3 (MTWD and MTWD ↓SF.ω6 diets) (E,F) were

significantly negatively correlated with both the omega-3 HUFA score (A,C,E) and the O3I (B,D,F). *p < 0.05, **p < 0.01, ***p < 0.001.
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this biomarker, which was proposed for use as a risk factor for
CVD in 2004. The widespread use of this biomarker has allowed
for meta-analyses to identify O3I levels that show protection
against a variety of disease endpoints, particularly in the field
of cardiovascular and coronary heart disease. In instances
where storage conditions, extraction protocols, and analytical
techniques remain consistent across studies and samples, the
O3I is preferable because it can be understood in the context
of previous studies. If inconsistencies among these factors are
a concern, defining fatty acid levels using the ω-3 HUFA score
might be more advantageous.

A major advantage of the ω-3 HUFA score is its consistency
across tissues and blood fractions and recalcitrance to differences
in storage conditions and analytical techniques. Since HUFAs
have similar chemical properties, they are degraded at similar
rates (19). This appeared to be critical factor in our studies, where
we found thatω-3 HUFA scores in RBCs were similarly impacted
by en% DHA across all three studies, whereas the O3I was less
robust (Figure S1). This observation is supported by a previous
study that investigated the stability of dried blood spot fatty acids
over the course of 4 weeks when stored at 4 and−20◦C. Bell et al.
observed a 15–30% decrease in individual HUFAs stored at 4◦C
for 28 days, while theω-3 HUFA score decreased by only 8% (67).
Because our samples were stored and processed under different
conditions among experiments, we favored the use of the ω-3
HUFA score for this study. With the ω-3 HUFA score, we saw
slightly higher correlations in many of the endpoints assessed,
which may be in part due to the reduced variability observed in
the HUFA score compared to the O3I. Another advantage shown
here (Figure 1B) and previously (41) is that the ω-3 HUFA score
can be predicted from dietary fat intake, making it an important
tool when developing personalized nutritional interventions.
Finally, focusing on the HUFA pool gives the clinician insight
into the potential for the generation of anti-inflammatory ω-3
and proinflammatory ω-6 HUFA metabolites (19, 68).

There are multiple mechanisms by whichω-3 andω-6 HUFAs
directly influence inflammatory pathways in the cell (69). First, by
increasing membrane fluidity and impeding lipid raft formation,
DHA and EPA can interfere with activation of transmembrane
receptors associated with inflammatory signaling (70). Second,
both extracellular and intracellular phospholipases can cleave
HUFAs from the membrane (71, 72). Resultant free DHA and
EPA may activate transmembrane receptors or intracellular
receptors associated with suppressing proinflammatory signaling
(73, 74). Specifically, ω-3 HUFAs have been shown to antagonize
TLR activation (75, 76) and interfere with NF-kB-dependent
transcription by activating PPARγ (58, 77). Third, both DHA
and EPA are metabolized to form specialized pro-resolving
mediators (SPMs) such as maresins, resolvins, protectins, and
anti-inflammatory epoxide metabolites (78, 79). SPMs inhibit
inflammatory signaling (80, 81) and promote efferocytosis of
dead cells (82, 83), both of which are critical to halting
autoimmune disease pathogenesis.

Besides competing for cell membrane incorporation,
ω-3 HUFAs can inhibit ω-6 HUFA metabolism to
downstream proinflammatory eicosanoids (e.g., thromboxanes,
prostaglandins, and leukotrienes) (19). Lipid metabolites

derived from the arachidonic acid cascade have primarily
inflammatory actions, especially during acute inflammation.
Shifting the HUFA balance to favor ω-3 HUFAs rather than
ω-6 HUFAs, such as arachidonic acid, may enhance the pro-
resolving phenotype promoted by ω-3 derived lipid mediators.
A recent study demonstrated that the plasma and red blood
cell levels of ω-3 HUFAs were highly correlated with the
production of downstream lipid mediators (79). Similarly,
supplementation with EPA and DHA led to a decrease in ω-6
HUFAs, namely arachidonic acid, as well as decreased ω-6
HUFA-derived metabolites.

It is likely that the anti-inflammatory actions of ω-3 HUFAs
and their downstreammetabolites are at play in the inflammatory
processes driving lupus symptoms. Among lupus patients, higher
ω-3 HUFA levels or more frequent consumption of fish correlate
with reduced disease activity (8, 84). In 2011, it was reported that
lupus patients had lower amounts of ω-3 HUFAs in RBC and
plasma than observed in healthy controls (85), and a subsequent
study showed a negative correlation between adipose ω-3 levels
and disease activity (7). More recently, it was shown that
individuals with lupus had decreased levels of plasma resolvin
D1, an anti-inflammatory metabolite of DHA, as compared to
healthy controls (86). To date, there has been no extensive
study of the membrane fatty acid content or plasma lipidome of
lupus patients. Investigation in this area is necessary to elucidate
potential benefit of ω-3 supplementation in human patients.

The majority of clinical trials utilizing ω-3 fatty acid
supplementation to combat disease have been specific to CVD.
Over the past three decades, randomized control trials (RCTs)
have produced inconclusive results, with some showing benefit
and others not. There are a variety of potential reasons for
this inconsistency, as thoroughly reviewed by Rice et al. (87).
Reasons include, among other things, insufficient dose of ω-3
HUFAs and inadequate duration of supplementation. Analysis
of the results of some CVD studies reveal that that there can be
significant overlap in the O3I in treatment vs. control group at
trial completion, which would explain why researchers did not
observe any effect with supplementation (88, 89). Additionally,
there is a lack of consistency in measuring the fatty acid content
in trial participants. The authors concluded that assessment
of the ω-3 status of study participants, both at baseline and
throughout the study, is critical to implementing an effective
nutritional intervention. A recently published large scale RCT
showing positive results with EPA supplementation met many
of the suggestions put forth by Rice et al. (87): (i) the EPA dose
given (4 g/day) was∼4-fold greater than other contemporaneous
trials, (ii) the study had an average duration of 4.9 years, (iii)
the baseline EPA levels were identical between the placebo and
treatment group, and (iv) the plasma EPA content at 1 year was
5-fold higher than at baseline (90). This study, as well as other
recent RCTs showing beneficial effects of ω-3 supplementation
have been reviewed in detail by O’Keefe et al. (91).

Compared to CVD, there have been very few trials
investigating the impact of ω-3 supplementation on lupus
outcomes, all of which have very few subjects (n < 100)
(Table 3). Recent reviews on this subject (5, 92) reveal that
approximately half of the clinical trials performed employing
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TABLE 3 | Summary of ω-3 HUFA intervention trials in lupus patients.

Year Author FA dose

(EPA+DHA)

Supplementation

type

N Trial duration Measured

fatty acids

Fatty acids

reported

Result

1989 Clark et al. (9) 1.8 g, 5.4 g MaxEPA fish oil

capsules

12 5 wk Yes—platelets ARA, EPA, DHA Decreased

Triglycerides and

cholesterol

1991 Walton et al. (11) 5.6 g MaxEPA fish oil

capsules

27 12 wk Yes—RBCs not reported Improved disease

status

1993 Clark et al. (10) 4.4 g MaxEPA fish oil

capsules

21 1 yr Yes—Platelets ARA, EPA, DHA Improvement, but

not in renal

function or disease

activity

2004 Duffy et al. (12) 0.9 g MaxEPA fish oil

capsules

52 24 wk Yes—Platelets EPA, DHA Improved disease

status

2005 Nakamura et al. (17) 1.8 g EPA, ethyl esters 6 3 mo Yes—Plasma

PL

LA, DGLA, ARA,

ALA, EPA, DPA,

DHA

Decreased

oxidative stress

(8-isoprostane)

2008 Wright et al. (18) 3 g Omacor, EPA/DHA

methyl esters

60 24 wk Yes—Platelets ARA, EPA, DHA Decreased

SLAM-R, BILAG,

FMD, isoprostanes

2013 Bello et al. (14) 3 g Lovaza, EPA/DHA

ethyl esters

85 12 wk No - No change

2015 Arriens et al. (13) 4.5g Metagenics fish oil

capsules

32 6 mo No - Improved disease

status

2015 Lozovoy et al. (16) 300mg Fish oil capsules

(no brand)

62 4 mo No - Decreased

SLEDAI, increased

adiponectin,

decreased leptin

2017 Borges et al. (15) 1.28 g Naturalis

HiOmega3 fish oil

capsules

49 12 wk No - Decreased CRP

ARA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; LA, linoleic acid; DGLA, dihomo-gamma linoleic acid; ALA, alpha linolenic acid; DPA, docosapentaenoic

acid; SLAM-R, systemic lupus activity measure—revised; BILAG, British Isles lupus assessment group; FMD, flow mediated dilation; SLEDAI, systemic lupus erythematosus disease

activity index; CRP, C-reactive protein; PL, phospholipid.

ω-3 supplementation in lupus patients report a reduction in
disease activity (11–13, 16, 18, 93). Many studies that did not
observe a reduction in disease activity reported improvements in
other areas, such as a reduction in serum triglycerides (9, 10) or
biomarkers of inflammation and oxidative stress (9, 15). A critical
impediment to evaluating the efficacy of ω-3 supplementation
in these trials is the inconsistency in measuring and reporting
the ω-3 levels in subjects. Among lupus studies reporting fatty
acid levels, there is variability in units used for reporting [mol%
(9, 10), wt% (17, 18, 85), mg/mL (12)], the source [platelets
(9, 10, 12, 18), RBCs (11, 85), plasma phospholipids (17, 85)], and
the fatty acids reported. To more definitively identify ω-3 levels
that are protective against lupus symptoms and flaring requires
frequent measurement and consistent reporting of ω-3 status in
human patients, in addition to more robust clinical trials.

The recent studies identifying the protective effects of ω-
3 supplementation in CVD support the potential benefit for
a similar dietary intervention in lupus. Notably, patients with
lupus have an increased risk of myocardial infarction and
CVD mortality relative to the general population (94). A
key mechanism proposed to link these chronic diseases is
increased oxidative stress (95, 96). A 2012 clinical trial with

>700 participants reported that 4 g/day IPE (iscosapent ethyl,
an ethyl ester of EPA) for 12 weeks significantly decreased
plasma oxLDL (97), an oxidized biomarker implicated in
CVD. Similarly, urinary F2 isoprostanes, produced by the non-
enzymatic oxidation of arachidonic acid and a widely accepted
marker for oxidative stress, were decreased by supplementation
with 4 g/day of either DHA or EPA in a study of 59 hypertensive
patients with type 2 diabetes (98) A specific member of the F2-
isoprostane family, 8-isoprostane, was found to be decreased in
with ω-3 supplementation in lupus patients, as measured in both
the platelets and urine (Table 3) (17, 18).

In the present study, O3Is above 10% and ω-3 HUFA
scores >40% appeared to be associated with absence of disease
progression. This is consistent with studies showing decreased
mortality from cardiovascular disease in populations where the
ω-3 HUFA score is >40% (99) and associating increased ω-3
HUFA scores to a reduction in chronic pain (100). In 2004, Harris
and von Schacky proposed that an O3I > 8% was associated
with decreased risk of death from CHD, while O3I < 4% was
associated with increased risk (101), based on a small clinical trial
of 57 subjects. In 2017, a meta-analysis of 10 cohort studies, with
a combined n > 27,505, confirmed these cutoffs (102). Because
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there are far fewer clinical studies investigating the role of ω-3
HUFAs in rheumatic disease, and even fewer that present enough
fatty acid information to calculate the ω-3 HUFA score, it is
difficult to identify a protectiveω-3 HUFA score or O3I for lupus.
However, a study performed in patients with rheumatoid arthritis
showed that increasing the ω-3 HUFA score from ∼30 to ∼40%
resulted in decreased joint swelling, pain, various inflammatory
markers, and NSAID and glucocorticoid use (103).

Providing sufficient levels of ω-3 supplementation is
paramount to achieving ω-3 HUFA levels capable of reducing
symptoms involved in lupus flares. A recent study presented
an equation to predict the change in the O3I using the baseline
O3I and the supplemented dose of EPA and DHA (104). These
findings suggested that individuals with a baseline O3I around
4%, a level typical for many individuals consuming a Western
diet, would require 1,500 mg/day EPA + DHA for 13 weeks
to achieve an O3I of 8%. Though many ω-3 supplementation
trials in lupus patients use doses >1,500 mg/day, the results
presented herein suggest that a human equivalent dose of ∼5
g/day may be necessary to provide protection against a variety
of lupus associated endpoints. Consumption of 5 g/day ω-3
HUFAs has been determined as safe by the European Food Safety
Authority after analyzing the impact ofω-3 HUFAs on endpoints
such as bleeding time, immune function, and changes in blood
LDL-cholesterol (105).

A potential limitation of this study is the limited range of doses
of DHA provided (0, 2, and 5 g/day human equivalent dose),
which may contribute to the relatively low R2 value observed
between the ω-3 biomarkers and some inflammatory endpoints.
Additional intermediate doses of DHA, and corresponding
intermediateω-3 levels, may allow for a more accurate regression
model. Other informativemodifications to the diet would include
using EPA as the primary source of dietaryω-3HUFAs, providing
ω-3 HUFAs as phospholipids rather than triglycerides, or varying
levels of ω-6 fatty acids to determine the extent to which ω-
6 HUFAs impact levels of ω-3 biomarkers and lupus-associated
inflammatory endpoints. Finally, it should be recognized that
DHA was administered here prophylactically. Since the most
severe lupus symptoms are episodic and associated with flaring,
the study design of our experiments is most relevant to periods of
disease remission achievable by treatment with glucocorticoids,
antimalarials, and immunosuppressants—drugs that have many
adverse side effects (106). ω-3 supplementation might be
amenable as a substitute or adjunct therapy for these strong drugs
to prevent flaring and prolong the quiescent state. However,
the prophylaxis model does not mimic the human situation
where ω-3 supplementation is provided after the onset of overt
symptoms. Thus, further research is needed on the effects of ω-3
supplementation to treat ongoing lupus flares.

To summarize, we demonstrated with this study that both
ω-3 HUFA scores and O3Is of mice fed a wide range of
diets supplemented with DHA could be related to numerous
lupus-associated inflammatory endpoints. This determination
is highly relevant to current and future trials investigating the
effect of ω-3 supplementation in inflammatory and autoimmune
diseases. Our results suggest that measurement of RBC ω-3
levels allows clinicians and administrators of randomized

clinical trials to assess the efficacy of the supplementation
strategy employed, as well as confirming compliance. Precision
nutritional interventions can be designed to reduce consumption
of ω-6 fatty acids while simultaneously supplementing with ω-
3 HUFAs, with the objective of achieving an ω-3 HUFA score
or O3I that may protect against lupus flaring and autoimmune
disease progression.
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