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Abstract: Bud dormancy is an evolved trait that confers adaptation to harsh environments, and
affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone
and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several
advancements have been achieved in this field recently by using genetics, omics and bioinformatics
methods. Here, we review the current knowledge on the role of ABA and environmental signals, as
well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss
emerging potential mechanisms in this physiological process, including epigenetic regulation.
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1. Introduction

Dormancy is an evolved trait of perennial plants that allows vegetative buds to survive
harsh environmental conditions, and it was classified into three categories by Lang (1987):
ecodormancy, caused by limitations in environmental factors; endodormancy, where the
inhibition resides in the dormant structure itself, and paradormancy, inhibited by distal
organs. Abscisic acid (ABA) is recognized as an essential phytohormone in dormancy
regulation, especially as a central hub in seed dormancy [1–4], but its regulatory mechanism
in bud dormancy is not well understood.

1.1. ABA Metabolism and Signaling

ABA biosynthetic and catabolic pathways are well understood [5,6]. ABA is de novo
synthesized from the precursor isopentenyl diphosphate (IPP), which is further converted
into lycopene after four desaturation steps of carotenoid. Lycopene undergoes cyclization
and hydroxylation to generate zeaxanthin. The first step of ABA biosynthesis is initiated in
plastid with epoxidation of zeaxanthin to all-trans-xanthophylls zeaxanthin and violaxan-
thin, catalyzed by zeaxanthin epoxidase (ZEP) [7,8]. Violaxanthin is further isomerized into
cis-violaxanthin, which is cleaved by 9-cis-epoxycarotenoid dioxygenase (NCED) to yield
xanthoxin, the first C15 intermediate of ABA biosynthesis [9]. Xanthoxin is transferred from
the plastid to the cytosol, where it is converted to abscisic aldehyde by short-chain alcohol
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dehydrogenase. Finally, abscisic aldehyde is oxidized by aldehyde oxidase 3 to form
ABA [5,9]. The catabolic pathway of ABA is mainly established through hydroxylation
reaction. ABA can be hydroxylated at the C-8′ position by ABA 8′-hydroxylase, which
is encoded by the CYP707A gene family. 8′-hydroxy-ABA is unstable and enzymatically
isomerizes to generate phaseic acid [10,11]. In addition, ABA homeostasis can also be al-
tered by enzymes during intracellular and intertissue-mediated transport, such as cytosolic
UDP- glucosyltransferases (GTs) or β-glucosidases (BGs) [12–14]. In addition, ABA could
be transported among cells and organs in plants. The active transporters are ATP-binding
cassette (ABCG) transporters, NRT1/PTR FAMILY (NITRATE TRANSPORTER 1/PEPTIDE
TRANSPORTER FAMILY; NPF), multidrug and toxic compound extrusion (DETOXIFI-
CATION 50; DTX50), and AWPM-19 (ABA-INDUCED WHEAT PLASMA MEMBRANE
POLYPEPTIDE-19) family proteins [6].

Over the past decades, the core components and the regulation of ABA signal-
ing have been characterized. In 2009, soluble receptor proteins (PYRABACTIN RESIS-
TANCE/PYRABACTIN RESISTANCE 1-LIKE/REGULATORY COMPONENT OF ABA
RECEPTOR (PYR/PYL/RCAR)) for ABA in Arabidopsis were identified [15,16]. ABA
co-receptor, ABI1 and ABI2, are members of clade A Type 2C PP2Cs protein (PROTEIN
PHOSPHATASE 2Cs) and act as negative regulators of ABA signaling. PP2Cs inactivate
SnRK2s (SNF1-related protein kinase 2s) by dephosphorylating their kinase activation
loop and repress ABA response in the absence of ABA [17,18]. In the presence of ABA,
PYR/PYL/RCARs interact with PP2Cs in which the phosphatase activity of PP2Cs is inhib-
ited, facilitating activation of SnRK2s. Subsequently, SnRK2s activate ABA-RESPONSIVE
ELEMENT-BINDING FACTORS (ABFs or AREBs), which then initiate transcription at
ABA-responsive elements (ABREs) in the promoter regions of their target genes [19].

1.2. Bud Dormancy

Perennial bud dormancy can be classified into two forms based on the position of
dormant vegetative organs, i.e., woody bud dormancy (aboveground) and geophytes
dormancy (underground; corms, tubers, bulbs and rhizomes, underground adventitious
buds on the crown and lateral roots).

With respect to bud dormancy in woody plants, there is a wide range of genetic
variation within and between species and responses. Here, we take the woody model plant,
Populus, as a main example. In autumn, with short photoperiod and low temperature,
growth cessation, bud set, and dormancy of the bud meristem occurs sequentially in buds of
populus [20]. Among environmental factors, light plays the dominant role in dormancy of
most woody plants [21]. Early woody bud dormancy involves a series of states: cessation of
vegetative growth, formation of terminal buds, arrangement of abscission layers in leaves,
development of cold resistance, establishment of winter rest (endodormancy), and leaf
fall [22]. Initiation of bud dormancy can be stimulated by environmental factors like short
photoperiod, low or high temperature, low nutrition and water deficit. During the stage
of winter rest, there are many metabolic and developmental activities happening in the
dormant buds including respiration, photosynthesis, slow cell division, enzyme synthesis,
production of growth stimulators, and dissipation of growth inhibitors. In buds, callose
disrupts the symplastic pathway in all vascular cells, including sieve elements, by blocking
the plasmodesmata, resulting in decreased flow of water, nutrients and other molecules
in buds [23]. Phytohormones including abscisic acid (ABA), gibberellin (GA), ethylene
(ET), auxin and cytokinins (CKs) are involved in bud dormancy, of which ABA plays an
essential role in this process [24]. DAM (DORMANCY-ASSOCIATED MADS-BOX) is a
SHORT VEGETATVIE PHASE (SVP) homolog, which responds to environment factors
including temperature and photoperiod, and regulates endogenous ABA levels during
bud dormancy [25].

As for geophytes, the dormant organs develop in the soil before going to a dormant
state. During bulb formation, endogenous ABA is increased, which stimulates starch
accumulation and bulb development. Afterwards, increased ABA inhibits organs devel-
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opment and initiates bulb dormancy. Based on the different dormancy traits, the major
geophytes can be classed into three groups: (1) species with a relative long dormant period,
during which the differentiation of new organs is inhibited, like Gladiolus; (2) species that
differentiate flower buds inside the bulbs before/during bulb dormancy, including Tulipa,
Asiatic Lilium Hybrids and Hyacinthus; (3) species with no visible dormancy unless in hash
environments, like Hippeastrum. Environmental factors (low temperature and short pho-
toperiod) triggers bulb dormancy. Temperature is the main factor in geophytes dormancy,
affecting internal metabolites, phytohormones and signal response [26,27]. During geo-
phytes dormancy release, several metabolites change dramatically, including a gradually
decreased ABA, increased GA and glucose/sucrose ratio and enhanced respiratory activity,
although there are invisible morphological differences [28,29]. Other special chemicals like
glycerol, phenolics and peroxidase in scales could regulate bulb dormancy as well [30,31].

Much progress has been achieved on seed dormancy in model plants like Arabidopsis,
Zea mays and rice, although research on dormancy in perennial plant is also expanding.
This article attempts to mainly review the existing knowledge of winter bud endodormancy
in perennials including trees and geophytes. We restrict the review to broadleaf deciduous
angiosperms living in seasonally cold environments and discuss the scientific questions
that still need to be addressed in the near future.

2. ABA Integrates Environments Signaling in Regulating Bud Dormancy
2.1. ABA Mediates Photoperiod Response of the Bud Dormancy

In temperate ecosystems, the photoperiod is one of the most reliable indexes of the
seasonal growth cycle. Light regulates plant dormancy through the circadian clock and
flowering pathways [32,33]. In many tree species, the photoperiod (short days; SDs) is
below the critical threshold for growth before the onset of winter-induced bud growth
cessation [34]. Different light wavelengths are sensed by different photoreceptors, among
which the phytochromes (phys) sense red (R) and far-red (FR) light [35]. phyA is the
photoreceptor of FR light, while phyB is the R light photoreceptor as well as a thermosen-
sor [35,36]. phyA and phyB transduce the light signals predominantly through their
interactors (PHYTOCHROME-INTERACTING FACTORS; PIFs) [37]. In 2006, CO/FT
(CONSTANS/FLOWERING LOCUS T) was first revealed to modulate light-regulated
perennial bud dormancy in aspen trees. FT is induced by long days and downregulated by
SD, and negatively regulates bud growth cassation by promoting the expression of D-type
cyclins [38,39]. Other regulators in biological clock and flowering pathways are involved in
bud dormancy as well, like MADS-box transcription factor FLOWERING LOCUS C (FLC)
and SVP, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), LEAFY and
so on [40–42].

ABA is induced by SD and disrupts intercellular communication in buds, promoting
bud endodormancy. In this process, SVP-LIKE (SVL), an essential gene in bud dormancy,
is induced by SD and positively regulates NCED expression, forming a positive feedback
regulation with ABA signaling [33,43]. Moreover, SVL upregulates transcript level of
CALS1, which encodes for a callose synthetase. CALS1 promotes callose deposition, leading
to the closure of plasmodesmata with callosic plugs (dormancy sphincters) and limiting
access to growth-active signals, thus blocking intercellular communication and slowing
down cell activity in buds [33,41,44]. SVL also stimulates BRC1 (BRANCHED 1) expression
under SD and further inhibits FT expression, thus promoting bud dormancy [45]. BRC1
is negatively regulated by LAP1 (orthologous to the Arabidopsis floral meristem identity
gene APETALA1) under SD, forming a negative feedback loop that controls seasonal
growth by interacting with and antagonizing FT [45]. In addition, ABA signaling genes
such as ABI3, which is induced by SD-mediated increased ABA, is expressed in tissues
including the young embryonic leaves, the subapical meristem, and the procambial strands,
resulting in bud dormancy with incorrect bud formation [46]. ABI3 could physically
interact with FDL1 (FD-Like 1) under SDs and regulate the expression of genes involved in
bud maturation and adaptive responses for cold tolerance [47]. Recently, a chromodomain
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protein PICKLE (PKL) was shown to be inhibited by ABA under SD. In abi1-1 plants, defects
in dormancy regulation caused by ABA insensitivity can be suppressed by down-regulating
PKL expression [33].

2.2. ABA Mediates Temperature Signals Regulated Bud Dormancy

Temperature is possibly the most important factor in regulating bud dormancy es-
pecially for geophytes whose dormant organs are embedded in the soil [48]. For many
deciduous plants, e.g., Malus pumila, the growth cassation occurs in summer, with long
photoperiod and high temperature, while the endodormancy happens in autumn, dur-
ing SD and low temperature [49]. In most deciduous angiosperms, bud dormancy is
followed by blockage of vessels with accumulated callose, which results in decreased
metabolic function and transport between buds and branches [23]. In autumn, short-term
cold exposure increases endogenous ABA content in perennial buds by CBF, which binds
and activates DAM/SVL transcription, thus increasing ABA levels and inducing bud en-
dodormancy [50,51]. ABA could further activate its downstream signaling factors, i.e.,
ABF2, ABF3 and HB22, which in turn regulate the expression of DAM/SVP during dor-
mancy induction and release [50,52,53]. ABF2 interacts with TCP20, which directly inhibits
DAM genes expression [52]. DAM could also be activated by the ICE (Inducers of CBF
Expression)-CBF module under cold stress [24,51]. As mentioned above, phyB is also a
thermosensor, which is a positive regulator of thermo-controlled bud break in poplar. phyB
interacts with PIFs and inhibits its expression, leading to activation of FT2 and repression
of BRC1 and CENL1, which promote bud break and growth [54].

After exposure to chilling temperatures, there is an increase in cell connectivity in
buds when endodormancy is releasing [23]. Many studies have shown that long terms
of cold treatment decrease ABA content by inhibiting ABA biosynthesis while activating
ABA catabolism in dormant organs, including tree’s buds and geophytes, like poplar, pear,
Gladiolus hybridus and Leafy spurge [21,29,34,53]. Prolonged chilling activates CYP707A
genes expression, thus decreasing ABA content in dormant buds. Furthermore, DAM/SVP
would be inhibited and followed by activation of genes related to cell cycle, cell expansion,
GA biosynthesis and FT [50]. In poplar, low temperature upregulates EBB1 (EARLY
BUD-BREAK1), an APETALA 2 (AP2)-family transcription factor, resulting in suppression
of SVL expression. Repressing SVL expression breaks the SVL/ABA feedforward loop,
leading to the upregulation of EBB3 and consequently to activation of CYCD3.1, and bud
dormancy release [55,56].

In addition to the DAM hub, there are several reports showing that ABA signaling
mediates cold storage and controls bud dormancy release (Figure 1) [27,29]. In Gladiolus,
the transcription level of SVL does not significantly change during corm dormancy release,
but ABA dominantly regulates this process [27]. Cold storage inhibits NAC83 expression in
dormant corms and activates NAC83-targeted gene, PP2C1. PP2C1 is the ABA co-receptor
that plays roles in DNA duplication in dormant buds and inhibits ABA signal response,
promoting corm dormancy release [27]. Cold storage could also activate TCP19, a Class I
member of TCP family, which binds to the NCED promoter and represses NCED expression,
contributing to reduction in endogenous ABA and corm dormancy release [57]. TCP19
plays a role in cell division in buds as well, by positively regulating cyclin A/B/D genes
during corm dormancy release [57].
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sweet cherry and tree peony [26,65,69–71]. At the bud dormancy induction stage, sucrose 
in parenchyma cells declines and Tre6P (Trehalose 6-phosphate) decreases, which acti-
vates SnRK1 activity and stimulates ABA biosynthesis [72]. Generally, low Tre6P levels 
and/or high SnRK1 activities are associated with a dormant state/growth cassation, 
whereas high Tre6P levels and/or low SnRK1 activities are associated with active devel-
opmental progression [73]. For example, TPP-overexpressed (Tre6P-phosphatase) potato 
tubers accumulated higher levels of glucose and sucrose and sprouted prematurely, while 
tubers of snrk1 mutant displayed strongly delayed sprouting [74]. 

ABA has been shown to inhibit sucrose transporters in vine and potato dormant buds 
[72,75]. Moreover, ABA promotes starch accumulation in the dormant phase in grape bud 
by increasing the expression of starch biosynthesis genes SOLUBLE STARCH SYNTHASE 
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(INVs) and sucrose biosynthesis genes SUCROSE PHOSPHATE SYNTHASEs (SUPs) [76]. 

Figure 1. ABA integrates environments signaling in regulating bud dormancy. During dormancy induction, SD and STCE
stimulate ABA biosynthesis and induce bud dormancy via DAM and ABA signaling that blocks the plasmodesmata and
slow down the cell cycle. After long term of chilling, endogenous ABA is decreased by cis- and trans- regulation. DAM/SVL
is repressed when ABA was decreased, resulting in promoted GA in cells and degradation of callose at the plasmodesmata.
Enhanced cell communication leads to active cell division and bud break. Note that this overview summarizes interactions
reported in different species, which are not necessarily occurring simultaneously. Full lines and dashed lines specify
established and putative/indirect regulation, respectively. LTCE: long term cold exposure; SD: short day; STCE: short term
cold exposure.

3. Cross-Talk between ABA and Sugars in Bud Dormancy

Sugars provide energy to cell activity and also act as signaling molecules that regulate
plant development and growth, including bud dormancy [58–60]. There is crosstalk be-
tween sugar signaling and other signaling pathways, including light and plant hormones
(e.g., ABA and ethylene) [61–63]. Sugar signaling is essential for maintaining paradormacy
by affecting cell cycle at the G1/S phase, and the transition from paradormancy to endodor-
mancy in buds [64–67]. During bud dormancy release, endogenous starch content, which
is high in accordance with endogenous ABA level, decreases [65,68]. Meanwhile, soluble
sugars (glucose, sucrose, fructose, trehalose, etc.) increase during the transition from en-
dodormancy to ecodormancy in buds of species such as leafy spurge, lily, sweet cherry and
tree peony [26,65,69–71]. At the bud dormancy induction stage, sucrose in parenchyma
cells declines and Tre6P (Trehalose 6-phosphate) decreases, which activates SnRK1 activity
and stimulates ABA biosynthesis [72]. Generally, low Tre6P levels and/or high SnRK1
activities are associated with a dormant state/growth cassation, whereas high Tre6P levels
and/or low SnRK1 activities are associated with active developmental progression [73]. For
example, TPP-overexpressed (Tre6P-phosphatase) potato tubers accumulated higher levels
of glucose and sucrose and sprouted prematurely, while tubers of snrk1 mutant displayed
strongly delayed sprouting [74].

ABA has been shown to inhibit sucrose transporters in vine and potato dormant
buds [72,75]. Moreover, ABA promotes starch accumulation in the dormant phase in
grape bud by increasing the expression of starch biosynthesis genes SOLUBLE STARCH
SYNTHASE 1 (SS1) and SS3, and inhibiting the expression of starch metabolism genes
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INVERTASEs (INVs) and sucrose biosynthesis genes SUCROSE PHOSPHATE SYNTHASEs
(SUPs) [76].

In plants, the crosstalk between sugars and ABA can be mediated by the Tre6P-SnRK1
and SnRK1-TOR (Target of Rapamycin)-SnRK2 modules (Figure 2). TOR is a Ser/Thr
protein kinase that belongs to the phosphatidylinositol 3-kinase-related lipid kinase family
and stimulates cell cycle and mRNA translation by phosphorylating of the ribosomal
protein S6 kinase S6K1 [77]. As mentioned above, low energy [e.g., low Tre6P, glucose-6-P
(G6P), and glucose-1-P (G1P)] activates SnRK1 through ABA signaling [78]. Under stress
conditions, SnRK1 and SnRK2 can repress TOR kinase by direct phosphorylation, resulting
in TOR complex dissociation [79]. In the absence of ABA (or under low levels of ABA),
PP2C phosphatases target SnRK1 and shut down SnRK1 signaling, thus activating TOR
and promoting plant growth and development [80]. Moreover, TOR represses the activity
of ABA receptors by phosphorylation, preventing SnRK2 activation and ABA downstream
response [78]. During the induction of bud endodormancy in grapevine, ABA could induce
SnRK1 expression and inhibit cell respiration [81]. However, there is only limited evidence
that SnRK1-TOR-SnRK2 cascade may be involved in bud dormancy in grapevine, further
genetic evidence is still needed [82].
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Figure 2. Schematic overview of the SnRK1-TOR-SnRK2 cascade in mediating the crosstalk between
ABA with trehalose during bud dormancy release. SnRK1 signaling keeps and switches energy
used for rapid growth and development toward enhanced stress tolerance and survival with low
energy. SnRK1 can be functional by repressing plant growth and the activity of TOR kinase. In
addition, SnRK1 signaling cross-talks with and actives ABA signaling together with SnRK2. SnRK2
represses TOR signaling by direct phosphorylation, leading to TOR complex dissociation. In favor
conditions, TOR kinase backwards represses SnRK2 signaling via phosphorylation of the PYR1-LIKE
(PYL) and active PP2C. TOR1 promotes the transcription of genes involved in cell-cycle progression
and translation of ribosomal protein mRNAs in plants. SnRK1 is repressed by high energy signals,
such as trehalose-6-P (T6P). Note that this overview summarizes interactions reported in different
species or environmental condition, which are not necessarily occurring simultaneously. Full lines
and dashed lines specify established.

4. Cross-Talks between ABA and Other Hormones in Regulating Bud Dormancy

Hormones, including gibberellin, cytokinins, ethylene, jasmonic acid, are also involved
in bud dormancy in perennials, and there is cross-talk between ABA and these hormones
in regulating perennial bud dormancy (Figure 3) [24,27,83,84].
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Figure 3. The crosstalks between ABA and other phytohormones in regulating bud dormancy release.
Auxin and ABA crosstalk through BRC1-mediated hormone networks in axillary bud dormancy.
BRC1 not only activates ABA signaling factors ABI5 but also up-regulated the expression of the
key enzyme gene NCED3 by combining with other proteins. CKs and ABA plays antagonistic role
during bud dormancy release. Several transcriptional factors are involved in this process, such as
TCP19, SVL and NAC83. In autumn, cold exposure activates JA biosynthesis, both JAZ and MYC2
interact with ICE, forming the ICE-CBF-COR cascade. As the CBF-DAM cascade regulates bud
dormancy in popular, it is possible that the crosstalk between JA and ABA can be mediated by
MYC2-ICE-CBF-DAM cascade, and induce/maintain bud dormancy. Ethylene has been shown to
increase endogenous ABA and maintain bud dormancy in several species, but the mechanism is still
need to be investigated. ABA metabolism and signaling is marked in blue; cytokinin metabolism
and signaling is marked in purple; auxin metabolism and signaling is marked in orange; ethylene is
marked in green; Jasmonic acid metabolism and signaling is marked in pink. Note that this overview
summarizes interactions reported in different species or environmental condition, which are not
necessarily occurring simultaneously. Full lines and dashed lines specify established.

4.1. ABA and Gibberellins

Gibberellins (GAs) stimulate cell division and elongation at different stages of plant
development and in different tissues, including bud dormancy, seed germination, stem
elongation, flowering and reproductive organs development [85–87]. There are more
than 100 types of GAs, but only several forms are bioactive, e.g., GA1, GA3, GA4, and
GA7 [85]. In GA metabolism, bioactive GAs are mainly catalyzed by GA 20-oxidases
(GA20ox) and GA3ox. The existing bioactive GAs are deactivated to non-bioactive forms,
which are catalyzed by GA2ox [88]. In GA signaling, the GA-GID1-DELLA module is
considered to be universal in angiosperms. The binding of Gibberellins to the GA receptor
GID1 (GIBBERELLIN-INSENSITIVE DWARF1) promotes interaction of GID1 with the
DELLA proteins [24]. The GA-GID1-DELLA complex is recognized by the SCFSLY1/GID2
E3 ubiquitin-ligase, which triggers DELLA degradation by the ubiquitin-proteasome path-
way [24]. DELLA proteins are classed into RGA (Repressor of Gibberellic Acid), GAI
(Gibberellic Acid Insensitive) and RGA-like proteins by protein sequence similarities [89].

The effect of GA on bud dormancy is dependent on spatio-temporal and species’
variety [29,71,90]. In most cases, GA has a positive role in bud endodormancy release. In
pear, exogenous GA could positively regulate bud endodormancy release that substitute
for partial chilling treatment [91]. However, GA has a limited effect on Gladiolus corm dor-
mancy release when treated at the early stage of endodormancy [92]. In Kiwi, application
of GA3 before chilling promoted dormancy, while application after chilling promoted bud
break [93]. GA is also involved in paradormancy regulation. The GA deficiency driven
by increased expression of GA2ox resulted in increased axillary buds in hybrid aspen [94],
whereas GA promotes the outgrowth of branches in Jatropha curcas [95].
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Although the role of GA in the process of bud dormancy release and bud outgrowth
needs to be further investigated, the antagonistic relationship between GA and ABA has
long been shown to regulate key developmental processes, particularly seed dormancy
and germination [96–100]. As for bud dormancy release, the antagonism between GA
and ABA is also essential for integrating environmental and endogenous signals [44]. For
example, in pears, GAST1 (GA-STIMULATED TRANSCRIPTS1) integrates GA biosynthesis
and ABA signaling and participates in pear bud dormancy release in winter [91]. GAST1
responds to GA and also plays positive role in GA biosynthesis [91,101]. Indeed, ABA can
inhibit GA20ox by downregulation of GAST1, decreasing the level of GA and inhibiting bud
dormancy release [91]. For shade avoidance in maize, ABA promotes while GA inhibits
axillary bud dormancy (paradormancy) [102]. For bud endodormancy in popular inducted
by SD and low temperature, SVL could act as the nexus of GA and ABA metabolism.
SVL induces GA2ox8 (a GA catabolic gene) and binds to the promoter of NCED3 (an ABA
biosynthesis gene), thereby inhibiting the growth of the buds [41,44]. A study in poplar
showed that ectopically expressed RGL from Japanese Apricot delayed the onset of bud
dormancy [83]. However, there is still lack of information about how GA signaling factors
(e.g., RGL, RGA and GAI) crosstalk with or regulate ABA-related proteins in the process of
perennial bud dormancy release.

4.2. ABA and Cytokinins

Cytokinins (CKs) are a group of adenine-derived compounds that are involved in stem
and root meristem differentiation, seed germination, leaf senescence delay, stress response
and bud dormancy [27,103–105]. Adenosine phospho-isopentenyl transferase (IPT) and
CYP735As (CYTOCHROME P450, FAMILY 735, SUBFAMILY As) are key rate-limiting
enzymes that catalyze CKs biosynthesis, and tans-Zeatin (tZ)-type cytokinins are one of
the main types [106–108]. Cytokinin oxidase/dehydrogenase (CKX) is the main catalytic
enzyme for CK degradation [109]. The core of CK signaling pathway is mainly composed
of receptor histidine kinase (AHK), histidine phosphate transfer (HPt) proteins and type-A
or type-B response (A-RR or B-RR) regulator, which initiate the expression of CK response
genes [110–113].

In seed and corm dormancy, CKs antagonized ABA to promote seed germination, and
a similar regulation has been found in buds [27,114]. First, CKs treatment broke the bud
dormancy in strawberry axillary buds and tea buds, which was also shown in potato tubers,
while GA3 was found to be insufficient to break dormancy when CKX was overexpressed
(CKX-overexpressed tubers showed an extended dormancy period and did not respond
to GA3), suggesting that CKs play an important role in terminating tuber dormancy and
also indicating that GA is not sufficient to break dormancy in the absence of CK [115–117].
By detecting hormone levels before bud break, CKs was found to be the main regulator in
the potato tuber buds in the switch from innate dormancy to the non-dormant state [118].
The willow bud dormancy is initiated by high content of ABA and low levels of CKs in
the xylem sap [119]. Moreover, the CKs level reached the peak before bud-break, while the
ABA content was decreased [120]. It was recently reported that tZ is at low level during
bud dormancy and increased during flowering in pears, which supports a positive role for
CKs in bud dormancy release [97].

The cross-talk between CKs and ABA in buds of woody plants is mainly through
the DAM hub. Overexpression of PmDAM6 increases the ABA content in the late dor-
mancy and bud breaking stages, while decreasing CK level in Prunus [121]. CK-triggered
responses down-regulate MdoDAM1 via MdoBRRs, which further reduces ABA content
and promotes the release of bud dormancy [122]. In addition to DAM hub, the enhance-
ment of light-mediated CKs signals further negatively regulates ABA content in the dor-
mant bud, indicating that light signal is also involved in the cross-talk between CKs and
ABA [123–126]. It has also been reported that AP2 inhibits meristem activity by nega-
tively regulating CKs signaling, resulting in low mitotic activity and high expression of
ABA-responsive genes [127]. Moreover, NAC83-PP2C module and TCP-NCED module



Genes 2021, 12, 1635 9 of 20

indirectly affect the level of CKs by mediating ABA signaling and synthesis pathways,
respectively, and jointly regulate corm dormancy in Gladiolus (Figure 3) [27,57].

4.3. ABA and Auxin

Auxin is mainly synthesized in shoot tips and young leaves and is involved in
apical dominance/paradormancy, senescence, flowering and other developmental pro-
cesses [128–130]. As one of the most abundant auxin, IAA synthesis starts from tryptophan,
which is eventually oxidized to IAA by amino transferase and flavin monooxygenase
(YUC), with YUC being an important rate-limiting enzyme in this process [130]. Auxin
induces ARF-binding promoter expression by triggering Aux/IAA degradation [131].

Treatments with exogenous auxin, NAA, relieve the phloem dormancy by removing
callose from the sieve tubes, resulting in bud dormancy release [132]. Low levels of free
IAA were detected in tea buds at deep endodormancy stage, while high IAA levels were
found during dormancy release, similar to what was found in Chinese fir, Prunus mume
and grapevine buds [68,133–135]. In the underground vegetative buds of Canada thistle,
auxin and ABA signals act as central regulators of developmental networks as well as
paradormancy [136].

The formation of lateral branches can be divided into two steps: initiation of axillary
meristems and outgrowth of axillary buds [137,138]. Auxin has long been considered a
major signal of apical dominance, primarily inhibiting axillary bud growth [138,139]. The
hormone network regulating axillary bud outgrowth mainly includes auxin, strigolactone
(SL) and CKs [140–142]. Auxin indirectly inhibits the expression of BRC1, a promoter of
axillary bud outgrowth, by inhibiting CKs biosynthesis genes while activating SL biosyn-
thesis genes [143]. Auxin and ABA crosstalk through BRC1-mediated hormone networks
in axillary bud dormancy (Figure 3). Exogenous ABA treatment inhibited branch devel-
opment, while fluridone, an ABA biosynthesis inhibitor, promoted the development of
branches of Rosa hybrida [142,144,145]. At the same time, plants with low ABA sensitiv-
ity produced more branches [146]. Therefore, ABA generally plays an inhibitory role in
breaking dormancy in axillary buds [147].

ABA acts downstream of BRC1 [147]. BRC1 not only activates two ABA signaling
factors ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABF3 [148–150], but also up-regulates
the expression of the key enzyme gene, NCED3, by interacting with other proteins [150,151].
In addition, endogenous auxin is inhibited in ABA-treated axillary buds, of which cell
cycle-related genes including CYCA2;1 and PCNA1 (POLIFERATING CELL NUCLEAR
ANTIGEN1) are repressed [147].

4.4. ABA and Ethylene

Ethylene (ET) is a simple gaseous hormone that regulates a wide range of plant
developmental processes, including fruit ripening, seed germination, flowering, abscission,
as well as bud dormancy [152,153]. ET biosynthesis starts from the amino acid methionine,
which is first converted to SAM (S-adenoysl-methionine) by SAM synthase. SAM is then
converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS), and
finally ET is produced by the conversion of ACC oxidase (ACO) [154–157]. In the absence
of ET, the receptors (i.e., ETR1, ETR2, ERS1, ERS2 and EIN4) activate Constitutive Triple
Response 1 (CTR1) and inhibit ET signaling pathway by transmembrane protein EIN2 in
Arabidopsis [156,158,159]. However, in the presence of ET, CTR1 is inactivated, and the
positive regulatory function of ETHYLENE INSENSITIVE 2 (EIN2) is released [160,161].
EIN2 positively regulates the EIN3 transcription factor members in the nucleus [162,163].
The ETHYLENE RESPONSE FACTOR (ERF) genes, belonging to the AP2/ERF superfamily,
are direct targets of EIN3 and activate downstream ET responses [157,164,165].

Many studies have demonstrated that ET biosynthesis and signaling pathways reg-
ulate bud dormancy. ET signaling genes EIN3, EIL1, and ERF are abundant during the
endodormancy and are decreased during the transition from endodormancy to ecodor-
mancy in populus, suggesting that ET may play roles in dormancy maintenance and
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release [82,166]. The application of competitive ET antagonist 2,5-Norbornadiene (NBD)
leads to premature sprouting in potato tubers [167]. In onion, exogenous ET not only
affects the expression of ACO and receptors (EIN4 and EIL3), but also increases the accumu-
lation of ABA by up-regulating the expression of NCED [168]. The etr1-4 mutant in birch
had relative low ABA content and fast growth under SD. Moreover, etr1-4 mutant is less
sensitive to ABA when sprouting and has weaker paradormancy compared to wild-type
plants, suggesting that ET signaling interacts with ABA signaling pathways in dormancy
regulation [169]. In addition, ET interacts with GA to participate in bud dormancy by
increasing DELLA accumulation in response to photochrome signals and upregulating
ERF6 expression [170,171]. However, exogenous ET was also reported to promote bud
breaking in some species like grapevine, poplar, while NBD inhibited bud dormancy re-
lease and increased ABA level [56,172–174]. In pear buds, ET precursor ACC was gradually
increased during bud break [175]. ERFs were significantly up-regulated in HC-treated
buds or before bud-break [56,174], suggesting that ET may act antagonistically to ABA
during bud dormancy release [24].

4.5. ABA and Jasmonic Acid

Jasmonic acid (JA) is a class of plant hormones that regulate plant development
and defense processes [176]. The core part of its signaling pathway consists of JA ZIM-
DOMAIN (JAZ) protein, F-box protein CORONATINE INSENSITIVE1 (COI1) and several
groups of suppressed transcription factors (MYC2, MYC3, MYC4 etc.) [177–179]. JAs act
synergistically with ABA by inhibiting DNA replication and activating the expression
of anti-stress genes during stress tolerance, and exogenous JAs and ABA inhibit seed
germination in several species [100,180–183].

JAs related genes were inhibited in bud dormancy and significantly upregulated in
bud dormancy release, and the content of JAs was also significantly increased in bud
dormancy release [184–186]. Whereas, during bud dormancy release in pear or lily bulbs,
the JA content is gradually reduced with the decreases of ABA [175,187]. JA and ABA par-
ticipate in the process of cold domestication together. In autumn, cold exposure activates
JA biosynthesis, and both JAZ and MYC2 interact with ICE, forming the ICE-CBF-COR cas-
cade discussed above. It is possible that the crosstalk between JA and ABA can be mediated
by MYC2-ICE-CBF-DAM cascade, to induce/maintain bud dormancy (Figure 3) [188,189].

5. Epigenetic Regulation of Bud Dormancy Mediated by ABA

Epigenetics is the study of molecules and mechanisms that can perpetuate alterna-
tive gene activity states in the context of the same DNA sequence, including noncoding
RNAs, DNA methylation, histone modification, heterochromatin, and 3D genome architec-
ture [190]. As currently there is little information about heterochromatin and 3D genome
architecture on bud dormancy, here we mainly summarize the knowledge of the former
three types on perennial bud dormancy.

In plants, DNA methylation occurs in three different cytosine contexts: CpG, CHG
and CHH, in which H can be either cytosine, thymine or adenine [191]. De novo methy-
lation can occur by RNA-directed DNA methylation (RdDM), where small interference
RNAs (siRNAs) guide DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to
homologous sequences in the genome [192]. Total levels of DNA methylation increased
in dormant chestnut’s buds compared to non-dormant buds [193]. During bud dormancy
release in sweet cherry, changes in DNA methylation precedes transcript changes, and
responded to low temperatures including cold signaling, oxidation-reduction process,
metabolism of phenylpropanoids, lipids and a DAM gene (i.e., MADS1) [194]. Long-term
cold treatment stimulates DNA methylation in the promoter of MADS1 in sweet cherry and
increases siRNA that match this region, in accordance with the up-regulation of FT tran-
scripts [191]. In Arabidopsis, miR402 could be induced by ABA and reduces the transcript
levels of DML3 (DEMETER-LIKE PROTEIN 3), which results in increased methylation
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levels at certain loci [195]. Currently, genes regulated by DNA methylation still need to be
explored in the process of perennial bud dormancy.

Histone modification is a covalent post-translational modification that fine-tunes
gene expression (activation or silencing) by altering chromatin structure, and includes
methylation, acetylation, phosphorylation, ubiquitylation and sumoylation [196]. During
the transition from dormancy to dormancy release in potato, muti-acetylation of H4 and
H3.1/3.2 was increased [197]. Increased acetylation of H4 was also detected in the chest-
nut [193]. In peach, global H3K27me3 was higher in dormancy-released bud, compared
with dormant buds. But, the modification is variable for specific gene [198]. Several studies
showed histone modification is involved in bud dormancy by shifting on/off DAM/SVL in
this duration [50,198,199]. Coinciding with cold accumulation in peach, several chromatin
regions including the region around the translation start of DAM6 in peach are marked
by enriched H3K27me3, removal of H3K4me3 and acetylated H3 (H3ac) (Figure 1) [199].
Similar findings were found in Leafy spurge, kiwifruit and sweet cherry [200–202]. Other
dormancy-related genes like EARLY BUD BREAK3 (EBB3), a target of ABA signaling
downstream of the SVL/ABA feedforward loop during dormancy release, is modified by
H3K27me3 [55]. In addition, ABA promotes bud dormancy by inhibiting the expression of
a chromodomain protein PICKLE (PKL), which inhibits SVL and promotes bud dormancy
release in popular [33,41].

ncRNAs are functional RNAs that regulate gene expression at both the transcriptional
and post-transcriptional levels, with many ncRNAs involved in histone modification,
chromatin remodeling and DNA methylation [203]. In peach, several microRNAs, siRNAs
and lncRNAs have been found to be correlated to bud dormancy release for instance
miR319, miR6285, miR2275 and D4ncRNA (intronic ncRNA in DAM4) (Figure 1) [204].
Several long ncRNAs (>200 nt), isolated from popular buds at different dormant stage,
were reported to be involved in regulating endodormancy release, for example, two
lncRNAs acting as endogenous target mimics for gma-miRNA396h, which itself targets
CYP707As [205].

6. Conclusions and Outlook

Dormancy is a complex phenomenon in plants and is also a ceasing trait. During bud
dormancy, internal changes occur including deposition of plasmodesmatal callose, slow
cell division, limiting import of sucrose, and changes of hormones. A large body of studies
has shown that ABA is the hub that integrates environmental signals and endogenous
chemicals to regulate bud dormancy in perennials (Figure 1). Recent research shows
that SL and karrikin can be recognized by the receptor DWARF14 (D14) and KARRIKIN
INSENSITIVE2 (KAI2), respectively, and these two receptors are homologs [206,207]. The
fact that karrikin has been shown to be involved in bud and seed dormancy, as well
as SL control axillary bud development, also suggests that these two hormones play a
role in perennial bud dormancy [206,208]. It will be interesting to investigate the cross-
talk between ABA and karrikin/SL in endodormancy of perennials. Moreover, it is also
worthwhile to compare their role in paradormancy and endodormancy.

Although there are a few studies about epigenetics in regulating bud dormancy,
several questions still need to be addressed. For example, how does endogenous ABA affect
epigenetics in dormant buds during bud dormancy release with respect to heterochromatin
and 3D genome architecture? How do ncRNA or histone modifications regulate ABA
metabolism in perennial dormant bud?

When buds are in a dormant state, the plasmodesmata is blocked by callose. Is there
any change among the organelles, like mitochondrial, amyloplast and golgi apparatus,
during this biological process? How does ABA regulate the activity or development of
these organelles?

It will be especially exciting to integrate genetics, omics (e.g., genomics, proteomics
and metabolomics) and computational analyses to identify a broad and complex network of
perennial bud dormancy, which helps elucidate the molecular components and mechanisms
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underlying multiple cellular and biological processes. By using omics techniques, it will be
much easier to identify domestication loci associated with bud dormancy, which contributes
to plant breeding via crossing or molecular methods.
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