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Background: Increasing evidence shows that the ubiquitin–proteasome system has a
crucial impact on lung adenocarcinoma. However, reliable prognostic signatures based
on ubiquitination and immune traits have not yet been established.

Methods: Bioinformatics was performed to analyze the characteristic of ubiquitination in
lung adenocarcinoma. Principal component analysis was employed to identify the
difference between lung adenocarcinoma and adjacent tissue. The ubiquitin prognostic
risk model was constructed by multivariate Cox regression and least absolute shrinkage
and selection operator regression based on the public database The Cancer Genome
Atlas, with evaluation of the time-dependent receiver operating characteristic curve. A
variety of algorithms was used to analyze the immune traits of model stratification.
Meanwhile, the drug response sensitivity for subgroups was predicted by the
“pRRophetic” package based on the database of the Cancer Genome Project.

Results: The expression of ubiquitin genes was different in the tumor and in the adjacent
tissue. The ubiquitin model was superior to the clinical indexes, and four validation
datasets verified the prognostic effect. Additionally, the stratification of the model
reflected distinct immune landscapes and mutation traits. The low-risk group was
infiltrating plenty of immune cells and highly expressed major histocompatibility complex
and immune genes, which illustrated that these patients could benefit from immune
treatment. The high-risk group showed higher mutation and tumor mutation burden.
Integrating the tumor mutation burden and the immune score revealed the patient’s
discrepancy between survival and drug response. Finally, we discovered that the drug
targeting ubiquitin and proteasome would be a beneficial prospective treatment for lung
adenocarcinoma.

Conclusion: The ubiquitin trait could reflect the prognosis of lung adenocarcinoma, and it
might shed light on the development of novel ubiquitin biomarkers and targeted therapy
for lung adenocarcinoma.
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INTRODUCTION

It has been extensively acknowledged that lung cancer is
strikingly the most common cancer among the whole
population (11.6% of the total cases) and the leading cause of
cancer death (18.4% of the total cancer deaths). Lung
adenocarcinoma (LUAD), the predominant subtype of non-
small cell lung cancer, features a poor prognosis and a limited
5-year survival rate (1, 2). However, patients diagnosed with
advanced LUAD, specifically those who fail to take surgical
interventions, are liable to suffer from retardant clinical
diagnosis and inadequate treatment regimes, which, in turn,
lead to a worsened status with restricted survival. It is of necessity
to regard risk assessment as a priority to detect those in
early stages and take further radical measures aimed to
prevent progression.

Ubiquitination, a frequent post-translational modification
that is highly conserved for metazoans and regulates the
stability and degradation of proteins, usually functions
reversibly within a series of enzyme-dependent reactions (3). It
has the potency to modify tumor-associated proteins and further
degrade them in a proteasome-dependent manner that makes
the malfunction of ubiquitination an adverse capacity to cause
LUAD inclusively (4–9). There still exists a necessity to further
uncover the diagnostic and prognostic value of ubiquitin–
proteasome systems in LUAD. Interestingly, several recent
studies indicated that ubiquitination serves as a crucial adaptor
in the regulation of innate and adaptive immune responses as
well as immune tolerance (10). Being proven markers of
dendritic cell maturation, MHC class II (MHCII) and
costimulatory molecules on the cell membranes, such as CD80
and CD86, are regulated by ubiquitination–deubiquitylation-
dependent dynamic equilibrium (11). Similarly, ubiquitination
also correlates with the regulation of T cell receptor proximal
signaling, which acts as a critical component of adaptive
immunity. These results indicated that ubiquitination is
involved in extensive antitumor immunity but failed to
describe its explicit role in regulating immune cells and their
environment. Thus, the exploration of ubiquitination in
regulating immune response and its correlation with genome
alternation in lung adenocarcinoma needs further evaluation.

In this study, we found that the ubiquitin molecules were
different in the tumor and in the adjacent tissue and further
observed the potential biological traits at the transcriptome and
protein levels. Subsequently, we constructed a ubiquitination-
oriented predictive model on the basis of a public database
analysis to evaluate its ubiquitin degree and prognostic value
in LUAD. Using integrated and stratified multi-omics analysis
within immune infiltration and genome alternation, respectively,
we further explored its clinical efficacy in predicting prognosis
and drug response to immune checkpoint blockade and targeted
therapy with the present evaluative markers. Overall, our study
presented a brand new clinically predictive ubiquitin model,
which aims to uncover the underlying ubiquitination
characteristics of LUAD and its clinical predictive effectiveness
with different genotypes.
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METHODS

Principal Component Analysis of
Ubiquitin-Associated Genes in LUAD
and Adjacent Tissue
In total, 2,838 ubiquitination genes were integrated, which
originated from the Integrated Annotations for Ubiquitin
and Ubiquitin-Like Conjugation Database (IUUCD)
(http://iuucd.biocuckoo.org/) (12). We found that 181
ubiquitin genes were co-expressed in LUAD. The principal
component analysis of the 181 ubiquitin genes screened
revealed the different expression in the tumors and the
adjacent tissues. It was performed by the “pca3d” packages
of R studio and visualized.

Construction of the Prognostic Risk Model
Cox proportional hazard regression was used to evaluate the
prognosis-related ubiquitin genes in the expression of 181
ubiquitination genes in patients with LUAD. A total of 26
differentially expressed genes in 181 genes were associated with
the prognosis of LUAD patients. Subsequently, 10 among the
26 prognostic genes were screened to construct the multivariate
Cox model using stepwise multivariate Cox proportional
hazard regression (p < 0.05). Meanwhile, 11 of the 26 genes
were selected to build the prognostic model by least absolute
shrinkage and selection operator (LASSO) regression. Then, the
two models intersected with 9 genes: USP29, MPP7, TRIM40,
HERC1, TLE1, ASB2, NEDD1, USP44, and PHF1, respectively.
LASSO Cox regression was performed to reconstruct the
prognostic model of 9 genes.

A ubiquitin-related risk score (URS) was established by
including the gene expression values weighted by Cox
multivariate proportional risk model coefficients:

URS = ∑i[coefficient (mRNAi) × expression (mRNAi)]. The
three models were as follows: multivariate Cox model—
URSmulti-Cox =USP29 * 0.35 + MPP7 * (-0.23) + TRIM4 * 0.08
+ HERC1 * (-0.28) + TLE1 * 0.36 + RNF166 * 0.25 + ASB2 *
(-0.29) + NEDD1 * 0.48 + USP44 * (-0.1) + PHF1 * (-0.36);
LASSO model of 11 genes—URSLASSO (11) = USP29 * 0.28 +
MPP7 * (-0.18) + TLE2 * (-0.04) + TRIM40 * 0.04 + HERC1 *
(-0.16) + TLE1 * 0.32 + ASB2 * (-0.2) + NEDD1 * 0.32+USP44 *
(-0.8) +PHF1 * (-0.15) + WSB2 * 0.03; and LASSO model of 9
genes—URSLASSO (9) = USP29 * 0.34 + MPP7 * (-0.2) +
TRIM40 * 0.06 + HERC1 * (-0.21) + TLE1 * 0.36 + ASB2 *
(-0.2) + NEDD1 * 0.41 + USP44 * (-0.1) + PHF1 * (-0.22)

In addition, overall survival and first progression of each gene
of the URSLASSO (9) model were analyzed by the Kaplan–Meier
(KM) plotter (http://kmplot.com/analysis/).

Validation of the Model
According to the pathology stage of the patients, they were spilt
into the early and advanced stages. Stages I and II were
considered as the early stage, and stages III and IV were
assigned to the advanced stage of LUAD patients, including
378 and 104 patients, respectively.
February 2022 | Volume 13 | Article 846402
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The outer four validation datasets verified the stability and the
accuracy of the prognostic risk model from the Gene Expression
Omnibus (GEO) datasets, including GSE13213, GSE31210,
GSE36471, and GSE11969.

Analysis With PPI and GSEA of the Model
The functional protein interaction network of the 9 ubiquitin
genes was predicted using the STRING database (https://stringb.
org/) and considering the interacting protein based on the
interaction score >0.70. A total of 71 molecule proteins met
the screening criteria, and a protein interaction network map was
constructed by using Cytoscape 3.6.1.

The genes of the enrichment pathway were analyzed using
Gene Set Enrichment Analysis (GSEA) based on Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).
Three KEGG pathways were co-expressed corresponding to each
of the 9 Ubi genes.

Immune Infiltration of the Prognostic
Risk Model
According to the prognostic risk score, the patients of LUAD of
TCGA databases were split into high- and low-risk groups. The
differentially expressed genes of the groups was determined by
the LIMMA package (13) of R software, and the genes were
selected by |log fold change| ≥2 and p-value ≤10-5.

The levels of infiltrating immune and stromal cells were
calculated by QUANTISEQ, CIBERSORT, and XCELL
algorithms, which included 22 cells of the CIBERSORT
algorithm, 11 cells of the QUANTISEQ algorithm, and 64 cells
of the XCELL algorithm. The immune score, stroma score, and
microenvironment score were calculated by the XCELL
algorithms. The t-distributed stochastic neighbor embedding
(t-SNE) was used to analyze the clusters of immune cells of the
three algorithms to dimensionality reduction.

Mutation Profile of the Model
According to the model grouping, there were 242 cases in the
high-risk group and 244 cases in the low-risk group. The mutation
data of LUAD was analyzed and visualized by the maftools
package of R software. The co-mutation of pair genes was
calculated by somatic interaction function and examined by
Fisher’s exact test, and the tumor mutation burden (TMB) is
derived as mutation number/30. The patients were divided into
four subgroups according to the mean of TMB and immune
scores, such as high TMB and low immune score, high TMB and
high immune score, low TMB and low immune score, and low
TMB and high immune score, respectively.

Clinical Drug Response
Based on a database of the Cancer Genome Project (CGP), we
screened 4 chemotherapy drugs (cisplatin, gemcitabine, paclitaxel,
and etoposide), 3 targeted drugs (axitinib, selumetinib, and
gefitinib), and 3 proteasome inhibitors (bortezomib,
lenalidomide, and MG132). The “pRRophetic” package was used
to analyze the drug response of chemotherapy and targeted therapy
for groups, including the risk group, and a group of TMB/
immune score.
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Survival and Other Statistical Analysis
For the categorical variables, the KM plotter and Cox regression
analysis were used to calculate the significance of overall survival
(OS). The statistical difference of the OS in the KM curve
analyses was compared using the log-rank test. For continuous
variables, Cox regression was used to calculate the hazard ratio
and significance of differences in the OS. The time-dependent
area under the receiver operating characteristic (ROC) curve
(AUC) was used to evaluate the predictive power of risk score
and clinical indexes to model.

The statistical difference of distribution of three or more
groups was examined by the Kruskal–Wallis test and that of two
groups was compared by the Wilcoxon test. Chi-square was used
to examine the statistical differences of risk groups and other
clinical indexes, including age, gender, stage, T stage, N stage, M
stage, risk score, and risk score plus stage. The P-values are two-
sided, and P <0.05 was considered statistically significant.
RESULTS

Construction of the Prognostic Risk Model
of Ubiquitination
The ubiquitin–proteasome system was a signature pathway to
hydrolytic protease and participated in the process of lung
adenosarcoma. To research the signature of ubiquitin molecules
in patients of LUAD, 2,838 ubiquitination genes were screened,
including those encoding E1s (ubiquitin-activating enzymes), E2s
(ubiquitin-conjugating enzymes), E3s (ubiquitin-protein ligases),
and DUBs (deubiquitinating enzymes), which originated from the
IUUCD. Our study flow chart is illustrated in Figure 1. A total of
181 genes of ubiquitination were co-expressed in the TCGA and
GEO databases (Figure 2A). The demographics of this cohort are
listed in Table 1. The GO pathway enrichment analysis was
performed to uncover whether these ubiquitination genes were
involved in the protein ubiquitination-related biological process
(Figure 2B). The genes were assigned to two clusters of LUAD and
adjacent tissue by principal component analysis, which revealed
that the ubiquitin genes influenced the biological process of LUAD
and needed further research (Figure 2C).

In order to reflect the ubiquitin level and clinical prognosis of
LUAD, we attempted to construct the evaluation criteria.
Therefore, by Cox regression analysis, 26 ubiquitin genes of
co-expressing multidatasets were associated with the prognosis
of patients with LUAD (p < 0.05) (Figure 2D). To illuminate the
ubiquitin characteristics, we constructed three models of
ubiquitin gene signature patients prognosis by different
methods. In these genes, 10 genes were screened to build the
URSmulti-cox of the prognostic model using stepwise multivariate
Cox proportional hazard regression. Then, 11 genes were equally
selected to build the URSLASSO (11) of the prognostic model by
LASSO regression. By intersecting the crucial genes of URSmulti-

cox and URSLASSO (11) models, 9 ubiquitin genes of URSLASSO (9)

model were constructed by LASSO regression (Figure 2E).
Upon comparing the three prognostic risk models, there were no

differences found in OS (p < 0.001) (Supplementary Figures
February 2022 | Volume 13 | Article 846402

https://stringb.org/
https://stringb.org/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Che et al. Ubiquitination Model and Immune Traits
S1A, C, E). Simultaneously, there was a little difference for the AUC
of time-dependent ROC on the three prognostic risk models. The 1-
year AUC of URSmulti-cox, URSLASSO (11), and URSLASSO (9) were
0.740, 0.745, and 0.746, respectively (Supplementary Figures S1B,
D, F). It revealed that 9 ubiquitin genes played a crucial role in lung
adenocarcinoma, including USP29, MPP7, TRIM40, HERC1,
TLE1, ASB2, NEDD1, USP44, and PHF1. Therefore, it was
reasonable to consider that the URSLASSO (9) model predicted the
prognostic risk of LUAD patients and reflected the ubiquitin
signature (Figure 2F). Additionally, each gene of the model had
critical importance in the overall survival and first progression,
which would turn into the new prognostic biomarkers of
LUAD (Supplementary Figures S2, S3). PHF1 and MPP7
had a high correlation according to the transcriptome data
(r = 0.59) (Figure 2G).

For the prognostic risk model, the patients of the high-score
group had a poor prognosis (Figure 2H). There was a higher risk
score for the high-risk model, which shows that patients with
increasing scores accumulated their risks. With increasing risk
score, the death toll was equally higher and the survival time was
shorter (Figures 2I, J). Notably, the ROC of the pathology stage
plus risk score was better than the other indexes, such as risk score,
age, gender, and TMN stage (Figure 2K). In the analysis of Cox
regression between risk score and clinical indexes, the model
would predict the prognostic risk as an independent factor
(Figures 2L, M). It illustrated that the model would more
comprehensively evaluate and predict a patient’s risk as a
complementary method. The potential value of the model for
Frontiers in Immunology | www.frontiersin.org 4
predicting the prognosis of patients and in assisting diagnosis was
likewise demonstrated. As a result, the ubiquitin–proteasome
system was a crucial signature in patients with LUAD.

Reliability of the Model in Early and
Advanced LUAD Patients and Validation in
the Four Independent LUAD Cohorts
In order to examine the feasibility and the reliability of the
prognostic model, we divided the clinical stage into the early
stage and the progressive stage. The patients were classified into
early (stages I and II) and advanced groups (stages III and IV),
covering 378 cases and 104 cases, respectively. For early-stage
LUAD patients, the low-score group had a more favorable OS,
and the number of patients in the low-risk group was higher than
in the high-risk group (Figure 3A). The ROC of the risk score
preceded the other clinical indexes (Figure 3B). As for lower risk
scores, the survival time of patients was longer, and the number
of patients was even more (Figure 3C). Accordingly, the risk
model was applied to the early LUAD and reflected the patient’s
prognostic as a risk factor (Figure 3D). Inversely, in terms of the
advanced stage, the number of patients in the high-risk group
was more than in the low-risk group, and there was a poorer OS
in the high-risk group (Figure 3E). The ROC of risk score was
superior to other indexes, and the high-risk score was shorter for
survival time and more for death toll (Figures 3F, G). As an
independent prognostic biomarker, the model could predict the
risk of advanced patients (Figure 3H). These results
demonstrated that the prognostic risk model could predict the
FIGURE 1 | Flow chart of the research.
February 2022 | Volume 13 | Article 846402
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risk state and was exempt from the pathology stage—that was to
say, the ubiquitin model would predict the prognostic risk in the
early LUAD patients, and it made an appropriate clinical
decision of a surgical intervention.

The other transcriptome data of LUAD got similar analysis
outcomes. The four independent datasets were examined by the
prognostic value from GEO, such as GSE11969, GSE13213,
Frontiers in Immunology | www.frontiersin.org 5
GSE31210, and GSE36471. In the four independent datasets,
the patients of the high-score group had a poorer prognosis. The
median survival time of the high-score group was shorter than
that of the low-score group (Figures 3I, K, M, O). Meanwhile,
the ROC of the risk score was superior to other single indexes. In
addition, the ROC of the pathological stage plus risk score was
superior to the single index (Figures 3J, L, N, P). The above-
A B

D E F

G IH

J

K
L

M

C

FIGURE 2 | Construction of the prognostic risk model of ubiquitination in the lung adenocarcinoma (LUAD). (A) Ubiquitination-associated genes co-expressed in
The Cancer Genome Atlas (TCGA), GSE13213, GSE31210, GSE36471, and GSE11969 datasets. (B) Bar plot of the Gene Ontology enrichment analysis of ubiquitin
genes. (C) 3D principal component analysis plot of ubiquitin genes in LUAD and adjacent tissue. (D) Statistically significant (p < 0.05) Ubi genes of the prognostic
model based on univariate Cox proportion hazards regression. (E) Venn plot intersecting genes of the LASSO model and multivariate Cox model. (F) LASSO plot of
9 genes with ubiquitination LASSO model. (G) Correlation of the Ubi genes of the prognostic risk model. (H) Kaplan–Meier curve of the high- and low-risk groups of
TCGA-LUAD. (I) Risk score of the LASSO prognostic model. (J) Risk state of the LASSO prognostic model. (K) Receiver operating characteristic curve of the risk
score and other clinical factors for TCGA-LUAD. (L) Forest plot of the univariate Cox regression analysis of the risk score and clinical factors for TCGA-LUAD.
(M) Forest plot of the multivariate Cox regression analysis of the risk score and clinical factors for TCGA-LUAD.
February 2022 | Volume 13 | Article 846402
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mentioned outcomes illustrated that the prognostic risk model,
altogether with the current clinical diagnosis, could be more
accurate and comprehensive to predict the risk and prognosis of
LUAD patients. This approach could help make appropriate
clinical decisions and surgical interventions.

Model Was Associated With Clinical
Indexes and Signal Pathways in LUAD
The stratification of the model demonstrated the advantage of
managing LUAD patients. Upon examination using chi-square
test, the stratification of themodel had a potential relationship with
clinical indexes (Figure 4A). Therefore, we explored the correlation
between the risk score of the model and the clinical indexes. We
found out that male patients were prone to acquire a high risk than
femalepatientswithLUAD(Figure4B). Besides this, thepatientsof
pathological stage I were at a lower risk, and with increasing on
pathology stage, the risk score of the patients was increasing
(Figure 4C). Correspondingly, with the invasion of primary sites
and infiltration of lymph glands about tumor tissue, the risk of the
patients was highly increasing (Figures 4D, E). The model could
partially represent the clinical signature of patients.

As a result of the potential predictive value of the model and
clinical indexes, a nomogram was constructed to speculate the
probability of survival time. Adding all of the index scores
together multiplies the probability of 3 or 5 years to acquire
the risk of patients. The qualification of risk could improve the
management of clinical patients. It helped make a clinical
decision with progression in LUAD and expected to acquire
beneficial OS and prognosis of patients (Figure 4F).

Furthermore, the 9 gene’s protein–protein interaction (PPI)
of the model was built to find out the molecule’s interaction with
the prognostic model. We found out that the 62 molecules were
in a tight correlation with the 9 model molecules and were
involved in the process of ubiquitin. The 9 genes of the model
were located in the critical hub (Figure 4G).

Analyzing each gene by pathway enrichment of GSEA
determined which pathways played a vital role in LUAD
bio-progression. We discovered that the 9 genes of the model
Frontiers in Immunology | www.frontiersin.org 6
co-participated in the neurotrophy, cancer signal, and RIG-like
receptor signal pathway (Figure 4H). Some researchers had
reported that three pathways took part in LUAD bio-process
by multi-ways (14–16).

Stratification of the Model Reflected the
Immune Cell and Microenvironment
Characteristics
The differentially expressed genes of the high- and low-risk groups
were evaluated to research the difference of stratification of the
model. By performing KEGG pathway enrichment, these
differential genes were discovered to participate in the immune
system, such as T cell receptor signal pathways (Figure 5A). As was
known to us, ubiquitination was a key regulatory mechanism of
immune function.As a result, the immune infiltration algorithmsof
QUANTISEQ (17), CIBERSORT (18), andXCELL (19) studied the
relationship between immune cell infiltration of model
stratification. Notably, we found out that the immune cells were
classified into two distinct groups by the stratification of the model
(Figures 5B–D). The low-risk group had more infiltration of
immune cells, including T cell, B cell, macrophage, and so on
(Figure 4E). Interestingly, the stratification of models was
apparently different in the immune score and environment score,
but not the stroma score (Figures 5F–H). The low-risk group was
higher than the high-risk group in the immune and
microenvironment score, which illustrated that the low-risk
group was infiltrating with many immune cells. To illuminate the
phenomenon, we analyzed the expression associated to immune
molecular structure. The human leukocyte antigen (HLA) was
coded by major histocompatibility complex (MHC), which was
identified by T cell and B cell and tightly associated with immune
function, being significantly highly expressed in the low-risk group
(Figure 5I). Apparently, the expression of HLA was higher in the
low-risk group, including HLA-I molecules (HLA-A, HLA-B, and
HLA-C) and HLA-II molecules (HLA-DMA, MHC-DMB, and so
on) (Figure 5J). The expression of immune checkpoint genes (20)
in the low-risk group was apparently higher than in the high-risk
group, which included T cell and B cell costimulatory molecules
TABLE 1 | Clinical characteristics of the patients from multiple datasets.

TCGA (n = 522) GSE11969 (n = 90) GSE13213 (n = 117) GES31210 (n = 226) GSE36471 (n = 116)

Age, years
Median 65.3 61 60.7 59.6 60
NA 18 (3.4%) – – – –

Gender
Male 242 (46.4%) 47 (52.2%) 60 (51.3%) 105 (46.5%) 53 (45.7%)
Female 280 (53.6%) 43 (47.8%) 57 (48.7%) 121 (53.5%) 63 (54.3%)

TNM stage
Stage I 279 (53.4%) 40 (44.4%) 54 (46.2%) 168 (74.3%) 62 (53.4%)
Stage II 124 (23.8%) 37 (41.1%) 50 (42.7%) 58 (25.7%) 19 (16.4%)
Stage III 85 (16.3%) 8 (8.9%) 8 (6.8%) – 19 (16.4%)
Stage IV 26 (5.0%) 5 (5.6%) 5 (4.3%) – 1 (0.9%)
NA 8 (1.5%) – – – 15 (12.9%)

OS state
Alive 355 (68.0%) 50 (55.6%) 68 191 (84.5%) 49 (42.2%)
Dead 167 (32.0%) 40 (44.4%) 49 35 (15.5%) 66 (56.9%)
NA – – – – 1 (0.9%)
February 2022 | Volum
Data are presented as n (%). NA, not available; OS, overall survival.
e 13 | Article 846402

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Che et al. Ubiquitination Model and Immune Traits
(CD28, CD40, and so on) and tumor necrosis factor receptor
superfamily (TNFRSF14, TNFR18, and so on) (Figures 5K, L).
The results demonstrated that the low-risk group infiltrated many
immune cells and highly expressed variant immune checkpoints,
includingprogrammeddeath-1 (PD-1), programmeddeath ligand-
1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4).
Accordingly, the immune treatment could benefit these LUAD
patients and improve the classified management of patients.
Frontiers in Immunology | www.frontiersin.org 7
Patients of the High-Risk Group Showed
Higher Mutation and Higher TMB
By the analysis using maftools (21), we found out that mutated
tendency and condition were similar in both low- and high-risk
groups. The missense mutation of variant classification, SNP of
variant type, and SNV class were the same in the stratification of
the model. However, the patients’ number of mutated genes in
the high-risk group was obviously higher than those in the low-
A B D

E F G

I

H

J K L

M N
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O P

FIGURE 3 | Stability and predictive power of the prognostic risk model. (A) Kaplan–Meier curve of the high- and low-risk group in the early lung adenocarcinoma (LUAD)
of The Cancer Genome Atlas (TCGA). (B) Receiver operating characteristic (ROC) curve of the risk score and other clinical indexes in the early LUAD of TCGA. (C) Scatter
plot of the survival time and risk score in the early LUAD of TCGA. (D) Forest plot of multivariate Cox regression analysis of the risk score and clinical factors for the early
LUAD of TCGA. (E) Kaplan–Meier curve of the high- and low-risk groups in the progressive LUAD of TCGA. (F) ROC curve of the risk score and other clinical indexes in
the progressive LUAD of TCGA. (G) Scatter plot of the survival time and risk score in the progressive LUAD of TCGA. (H) Forest plot of the multivariate Cox regression
analysis of the risk score and clinical factors for the progressive LUAD of TCGA. (I) Kaplan–Meier curve of the high- and low-risk groups of GSE11969. (J) ROC curve of
the risk score and other clinical factors from GSE11969. (K) Kaplan–Meier curve of the high- and low-risk groups of patients from GSE13213. (L) ROC curve of the risk
score and other clinical factors of GSE13213. (M) Kaplan–Meier curve of the high- and low-risk groups of patients from GSE31210. (N) ROC curve of the risk score and
other clinical factors of GSE31210. (O) Kaplan–Meier curve of the high- and low-risk groups of patients from GSE36471. (P) ROC curve of the risk score and other
clinical factors of patients from GSE36471.
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risk model (Figures 6A, D). In terms of the top 15 genes of
mutation, TP53, TTN, MUC16, CSMD3, RYR2, LRP1B, ZFHX4,
USH2A, KRAS, SPTA1, XIRP2, and FLG were the same in the
high- and low-risk groups, which showed the importance of the
mutation of 12 genes in cancer progression (Figures 6B, E).
Meanwhile, we analyzed the gene pairs of mutation in the
stratification model in terms of Fisher exact examination,
visualizing the top 25 gene pairs of mutation (Figures 6C, F).

Based on the importance of TMB for immune response
treatment in cancer (22–24), the TMB of the high-risk group
was higher than that of the low-risk group, which meant that the
tumor neoantigen was high in the high-risk group and identified
easily by the immune system (Figure 6G), whereas the
discrepancy of overall survival between the different TMB
subgroups was not apparent (Figure 6H). Inversely, we found
that the OS of the high- and low-immune groups was statistically
different (Figure 6I). According to the mean of TMB and the
Frontiers in Immunology | www.frontiersin.org 8
immune score of patients, we assigned the patients into four
subgroups. Notably, we discovered that the group of low TMB
with the high immune score was the lowest in risk score with the
best prognosis (Figures 6J, K). The phenomenon of the high-
TMB group was poor survival and high risk, attributed to the
decrease of immune cell response. Hence, integrated TMB and
the immune score could benefit the group and improve the
health management of patients.

Drug Response of Clinical Chemotherapy
and Target Therapy
Based on a database of the CGP, we screened 4 chemotherapy
drugs (cisplatin, gemcitabine, paclitaxel, and etoposide) and 3
targeted drugs (axitinib, selumetinib, and gefitinib), which had
been used in the clinical treatment of LUAD. By analysis of
“pRRophetic” package (25), we found out that the drug response
was different in the stratification of the ubiquitin model and the
A B

D E

F G

H

C

FIGURE 4 | Relationship between the prognostic risk model and the clinical indexes. (A) Heat map of the model’s stratification, clinical indexes, and gene
prognostic model. (B–E) Box plot showing the difference between high- and low-risk groups about gender, stage, N stage, and T stage. P-values were calculated
with the Wilcoxon test. (F) Nomogram model of the risk score and other clinical factors to predict the progression of lung adenocarcinoma (LUAD). (G) Protein and
protein network interaction of 9 model genes. Yellow color represents the 9 model genes. The size of the circle and the thickness of the line represent the combined
score. (H) Gene Set Enrichment Analysis of a single gene of the 9 model genes associated with the low and high expression of LUAD of The Cancer Genome Atlas
(TCGA) and demonstrated in the three commonly participating pathways, including neurotrophic, cancer, and Rig I-like receptor signaling pathways.
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group of TMB/immune score (Figures 7A, B). In the
chemotherapy drug of lung cancer, cisplatin had a high drug
response in the low-risk group and the group of high immune
score and low TMB. Inversely, gemcitabine, paclitaxel, and
etoposide were in high drug responses in the high-risk group
and the groups of low immune score and low/high TMB
(Figure 7C). Additionally, for the targeted drug of lung cancer,
axitinib responded highly to the low-risk model and the groups
of high immune score and low/high TMB. Gefitinib had a
favorable response in the low-risk group, and selumetinib was
Frontiers in Immunology | www.frontiersin.org 9
preferably responded in the high-risk group and the groups of
low immune score and low/high TMB (Figure 7D). As a
consequence, the subgroups of multi-omics could preferably
benefit the drug response of patients.

Noticeably, the proteasome inhibitors were implemented in
clinical practice, such as bortezomib (proteasome inhibitor),
lenalidomide (E3 inhibitors), and MG132 (proteasome
inhibitors) (26). In our research, bortezomib and MG132 were
favorably responsive in the high-risk group, whereas
lenalidomide was highly responsive in the low-risk group of
A

B
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G

I

H

J

K
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C D

FIGURE 5 | Immune characteristic of prognostic risk model stratification. (A) Kyoto Encyclopedia of Genes and Genomes pathway enrichment of different expression
genes of high and low risk, demonstrating the top 10. (B) t-distributed stochastic neighbor embedding (t-SNE) analysis of 22 immune cells based on CIBERSORT
algorithm. (C) t-SNE analysis of 11 immune cells based on QUANTISEQ algorithm. (D) t-SNE analysis of 64 immune and stroma cells based on XCELL algorithm.
(E) Heat map demonstrating immune cell infiltration in the high- and low-risk groups in the TCGA databases. The low-risk group had a higher immune infiltration. P-values
were calculated with chi-square test. The additional annotation of the abscissa included other clinical indexes from TCGA, such as survival state, age, gender, stage, T
stage, N stage, M stage, and risk group. The annotation of the vertical axis included three immune infiltrated algorithms, namely, XCELL, QUANTISEQ, and CIBERSORT.
(F–H) Box plot showing the difference between the high- and low-risk groups about immune score, stroma score, and microenvironment score. (I) Heat map
demonstrating the difference of human leukocyte antigen (HLA) and immune checkpoint for the high- and low-risk groups. (J) Different expression of the HLA gene in the
high- and low-risk groups from TCGA. (K, L) Different expression of immune checkpoints in the high- and low-risk group from TCGA.
February 2022 | Volume 13 | Article 846402

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Che et al. Ubiquitination Model and Immune Traits
LUAD (Figure 7E). As a result, proteasome inhibitors could
benefit lung cancer in the future.
DISCUSSION

Precision treatment brings the gospel for patients bearing
advanced LUAD, being largely dependent on comprehensive
genomic profiling. Notably, transcriptomic sequencing has
been extensively implemented in inpatient wards to facilitate
diagnosis and therapeutic regimes, including those being
resistant to targeted therapy and even immune checkpoint
blockade (27). However, there still exist many challenging
Frontiers in Immunology | www.frontiersin.org 10
unmet clinical needs. Given that several studies have proved
that integrated genomic combined with transcriptomic analysis
outperforms single-omics analysis (28), how to make much of
multi-omics analysis to elaborate on the biological behavior of
LUAD and its therapeutic vulnerabilities seems increasingly
urgent (29, 30). Here our group presented a ubiquitination-
oriented predictive model by means of multi-omics deep
profiling. These multilayer molecular architectures of LUAD
center on the potential association within ubiquitination and
other modifying manners, extensively uncovering its clinical
efficacy in detailing biological characteristics and predicting
prognosis and drug response to immune checkpoint blockade
and targeted therapy.
A B

D E F

G IH
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FIGURE 6 | Mutation situation of the prognostic risk model groups. (A) Landscape of mutation in the high-risk group from The Cancer Genome Atlas (TCGA).
(B) Waterfall plot demonstrating the 15 genes with the most mutations and mutated types in the high-risk group from TCGA. (C) Co-mutated plots of 25 genes from
TCGA by somatic interaction function in the high-risk group from TCGA. (D) Landscape of mutation in the low-risk group from TCGA. (E) Waterfall plot
demonstrating the 15 genes with the most mutations and mutated types in the low-risk group from TCGA. (F) Co-mutated plot of 25 genes from TCGA by somatic
interaction function in the low-risk group from TCGA. (G) Box plot showing the difference between the high- and low-risk groups about tumor mutation burden
(TMB). P-values were calculated with the Wilcoxon test (***P < 0.001). (H) Kaplan–Meier curve of the low- and high-TMB groups. (I) Kaplan–Meier curve of the low-
and high-immune-score groups. (J) Box plot showing the difference of the risk score in the four groups, including high immune score and high TMB, high immune
score and low TMB, low immune score and high TMB, and low immune score and low TMB. P-values were calculated with the Wilcoxon test. (K) Kaplan–Meier
curve of four groups.
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Severing as a crucial adaptor of protein stability, the ubiquitin–
proteasome system is essential for pan-cancer development and
process via the maintenance of cellular protein homeostasis (31).
Ubiquitin recognizes and targets indicated proteins specifically in
an enzyme-dependent manner, whose ubiquitination makes
themselves vulnerable to degradation. As for now, efforts on
ubiquitination are mainly concentrated on a single protein and its
upstream or downstream signaling pathways, while the
transcriptome, proteomics, and even other multi-omics analyses
of ubiquitin signature areminimally in the press. Thus, we took the
lead in analyzing the genomes and transcriptome characteristics of
enzymes involved in theubiquitin–proteasome system, expecting to
reveal their biological functions and clinical merits in LUAD.

In our study, based on LASSO regression analysis of
transcriptome data, 9 core genes of ubiquitin were screened to
eventually construct the prognosis risk model, including USP29,
MPP7, TRIM40, HERC1, TLE1, ASB2, NEDD1, USP44, and
PHF1, which would be the new prognostic biomarkers in LUAD.
Noticeably, some of them have been validated to share a close
Frontiers in Immunology | www.frontiersin.org 11
connection with LUAD, while the others seem undervalued.
Previous research proved that USP29 upregulation enhances the
cancer stem cell-like characteristics in lung adenocarcinoma cells
to promote tumorigenesis in athymic nude mice (32). It was also
found that, within a human lung tumor tissue array, a significant
number of carcinomas overexpress TLE1 and correlate with
malignancy in cancer, regarded as a biomarker to predict the
prognosis of LUAD patients (33, 34). Meanwhile, USP44 is
frequently downregulated in lung cancer, leading to a poor
prognosis, which is further corroborated in mice (35).
Although other genes have seldom been reported, it is worthy
to explore their potential relationship with carcinogenesis and
the proteomics landscape in LUAD.

According to the nomogram, a steady and credible tool to
quantitatively measure the risk on an individual basis by
combining and delineating the risk factors (36), our study
demonstrated that the model of ubiquitin signature is tightly
associated with the risk and prognosis of patients. In the high-
score cohort, the survival time and survival quantity were
A B

D

E

C

FIGURE 7 | Drug response of subgroups. (A, B) Heat map of drug response in the model groups, and groups of tumor mutation burden (TMB) and immune score.
(C) Different responses of chemotherapy drugs (cisplatin, gemcitabine, paclitaxel, and etoposide) in the model groups and groups of TMB and immune score.
(D) Different responses of targeted therapy drugs (axitinib, selumetinib, and gefitinib) in the model groups and groups of TMB and immune score. (E) Different
responses of proteasome inhibitors (bortezomib, MG132, and lenalidomide) in the model groups.
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significantly lessened, which is superior to other conventional
predictive methods due to its independence in prediction. An
integrated model combined with the TNM stage may be utilized
to comprehensively predict the risk and prognosis of clinical
patients in clinical practice in order to acquire favorable clinical
management. Furthermore, this model also prompts clinical
traits and the progress of LUAD. The phenotype-related
stratification of the model assigned the patients into two
distinct subgroups. In the low-score cohort, the overall
survival of patients overweighted those with high scores in
the early or advanced stages, respectively. These results
indicated that the integrated utilization of a ubiquitination-
oriented model and other clinical indexes may potentially
optimize the clinical management of LUADs.

We also found that this model can be applied to predict
representative immune checkpoint inhibitor responses to LUAD
via innate and adaptive immunity, respectively (10, 37). It was
reported that RIG-I-like receptor and neuron-derived
neurotrophic factors might awaken lung cancer by the immune
system (14–16). In this study, by the PPI and GSEA analysis of
each gene within this model, 9 genes referred to RIG-I-like
receptor, neuron-derived neurotrophic factors, cancer, and
ubiquitin–proteasome system in lung adenocarcinoma,
illuminatingly manifesting that the ubiquitin–proteasome
system has a potential association with the immune system in
cancer. Moreover, ubiquitin also functions in T cell-mediated
adaptive immune responses. By the t-SNE analysis of immune
infiltration of QUANTISEQ, XCELL, and CIBERSORT
algorithms, we separated the engaged populations into two
specific subgroups, namely, high- and low-score cohorts. The
clinical samples in the low-score group were infiltrated with
diverse immune cells, including B cells, T cells, and DC, and
possessed escalated expressions of HLA-I and HLA-II.
Analogously, the costimulatory molecules, TNFR superfamily,
and microenvironment score are consistent with the ascendant
expression of immune checkpoint markers in this cohort (38,
39). On account of PD-1, PD-L1, and CTLA-4 highly expressed
in the low-risk model, the indicated cohort is susceptible to
immune checkpoint blockade, theoretically facilitating the
clinical selection of the beneficial population. TMB facilitates
the establishment of personalized immunotherapy approaches
within genomic sequencing among LUAD patients, which has
been accepted as an independent predicting factor to immune
checkpoint inhibitors (40, 41). Nevertheless, the discrepancy in
overall survival between the different TMB subgroups is not
apparent in our research. We found that those with high TMB
suffered a higher risk and a more undesirable prognosis than
those in the opposite group (41). Noticeably, integrated TMB
and the immune score could address this dilemma. Our
observations indicated that those with high TMB and low
immune scores were subjected to a high risk of development
and weakened survival rate. Inversely, survival and prognosis
are superior for those of the three other groups in the group of
low TMB and high immune scores. These outcomes
demonstrated that the performance of integrating TMB and
Frontiers in Immunology | www.frontiersin.org 12
immune score outperforms the single TMB in the prognosis of
LUAD patients.

Platinum-based chemotherapy regime and targeted therapy
improve the patient’s survival rate of LUAD to an extent (42, 43).
Cisplatin, gemcitabine, paclitaxel, and etoposide give rise to the
benefit of LUADs and inhibit the progress of lung cancer (44–
48), and the personalization of targeted therapy to corresponding
markers (axitinib, selumetinib, and gefitinib) also contributes to
the extension of life expectancy (49–51). According to the above-
mentioned details, we found that gemcitabine, paclitaxel,
etoposide, and selumetinib presented differential responses to
the two stratifications of this multi-omics model, showing a high
response in the high-risk group and a boost of curative effects,
but for cisplatin, axitinib, and gefitinib, they seem to benefit those
in the low-risk cohort. Analogously, the groups of genome
alternation demonstrate the different drug responses of
subgroups. Drawing from these results, we can conclude that
sophisticated stratification can further uncover the application
value of ubiquitin-related multi-omics profiling, in turn
advancing the pertinent individualized therapy scheme in
the clinic.

Unfortunately, there are several limitations needed to be
recognized in this study. To start with, the sample size was
inadequate to reflect objective facts in the real world. Due to the
orientation from limited public databases, the samples were
restricted to a confined population that we could not analyze
additional detailed information, which might be consistent with
reality. Furthermore, restricted sample sequencing failed to
optimize the potential clinical application value of this
ubiquitination model. This predictive model was drawn from
sequence profiling to specific populations in databases and, in
turn, failed to verify its specificity and sensitivity in clinical
prediction. High-throughput sequencing combined with multi-
omics of lung adenocarcinoma tissues endows this model
increased practical merits, which costs a high expense and
will be engaged in our coming research scheme. Finally,
rough risk factor stratification weakened its predictive
efficiency of the indicated layers to drug responses. Taking
defined non-quantitative scores as a distinctive criterion for
evaluating drug responses cannot meet the demand for
discrimination and precise therapeutical regimes. Combined
standards with TMB or other indicating markers is still
preferred to a cursory single one, which needs further
exploration in the near future.
CONCLUSION

In summary, our study revealed the clinical application value of a
ubiquitination-oriented predictive model from public databases.
Integrated and stratified multi-omics analyses within immune
infiltration and genome alternation are conducive to illustrate its
clinical potency in describing ubiquitin characteristics, escalating
precision therapy, and predicting prognosis.
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Supplementary Figure S1 | Comparing three models. (A, C, E) The Kaplan-
Meier curve of the high and low-risk groups by constructing the URSmulti-cox model,
URSLASSO (11) model, and URSLASSO (9) model. (B, D, F) The average 1-year, 3-year
and 5-year ROC curve of the risk score by constructing the URSmulti-cox model,
URSLASSO (11) model, and URSLASSO (9) model.

Supplementary Figure S2 | The Kaplan-Meier curve of overall survival of LUAD
patients. (A–I) The Kaplan-Meier curve of overall survival of LUAD patients in each
gene of URSLASSO (9) model, including ASB2, HERC1(p619), MMP7, NEDD1,
PHF1, TLE1, TRIM40, USP29, and USP44.

Supplementary Figure S3 | The Kaplan-Meier curve of first progression of LUAD
patients. (A–I) The Kaplan-Meier curve of first progression of LUAD patients in each
gene of URSLASSO (9) model, including ASB2, HERC1(p619), MMP7, NEDD1,
PHF1, TLE1, TRIM40, USP29, and USP44.
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