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Nucleotide-binding and leucine-rich repeat receptors (NLRs) are intracellular plant immune
receptors that recognize pathogen effectors secreted into the plant cell. Canonical NLRs
typically contain three conserved domains including a central nucleotide binding (NB-ARC)
domain, C-terminal leucine-rich repeats (LRRs) and an N-terminal domain. A subfamily of
plant NLRs contain additional noncanonical domain(s) that have potentially evolved from
the integration of the effector targets in the canonical NLR structure. These NLRs with extra
domains are thus referred to as NLRs with integrated domains (NLR-IDs). Here, we first
summarize our current understanding of NLR-ID activation upon effector binding, focusing
on the NLR pairs Pik-1/Pik-2, RGA4/RGA5, and RRS1/RPS4. We speculate on their potential
oligomerization into resistosomes as it was recently shown for certain canonical plant NLRs.
Furthermore, we discuss how our growing understanding of the mode of action of NLR-ID
continuously informs engineering approaches to design new resistance specificities in the
context of rapidly evolving pathogens.

Introduction
Plants, unlike mammals, lack an adaptive immune system. Instead, they have evolved two-level innate
immunity based on the expression of surface and intracellular receptor proteins [1]. Nucleotide-binding
and leucine-rich repeat receptors (NLRs) belong to the second category and recognize secreted pathogens’
molecules known as effectors. This recognition often leads to a programmed cell death in plants known
as the Hypersensitive Response (HR) to limit pathogen spread in neighboring cells, tissues, and/or organs
[1,2]. NLRs are mostly composed of three conserved domains: a central nucleotide-binding (NB-ARC)
domain, C-terminal leucine-rich repeats (LRRs), and an N-terminal domain. Based on the nature of this
N-terminal domain, NLRs are broadly categorized into three major subgroups: Toll/interleukin-1 receptor
(TIR)-NLRs, Coiled-coil (CC)-NLRs, or Resistance to powdery Mildew 8 (RPW8-like)-NLRs [3]. Plant
NLRs recognize pathogen effectors through multiple mode of actions, reviewed in [4] and [5]. A recent
evolutionary model [6] proposes that NLRs may have evolved from single units able to both detect and
respond to the presence of effectors, referred to as singleton NLRs, to functionally specialized units that
either detect (sensor NLRs) or execute the response (helper or executor NLRs) to the presence of the
pathogen. Sensor and helper NLRs work in pairs (further described below) or in more complex intercon-
nected networks [7–9].

A subcategory of NLRs carry additional noncanonical domain(s) and can make up to 10–15% of the
NLRome of a given plant species [10,11]. Functional studies showed that these extra domains were in-
volved in direct or indirect effector recognition [12–16]. Therefore, it was proposed that NLRs with ex-
tra noncanonical domains have evolved from the integration of the effector target in the canonical NLR
structure [17]. These NLRs are thus commonly referred to as NLR-IDs (NLR with integrated domain(s)).
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Kinase, WRKY and zinc-finger BED domains are among the most commonly found IDs [10,11,18,19]. Interestingly,
in the case of Pii-2 from rice, the integrated NOI (NO3-Induced) domain binds the host protein Exo70-F3, which
is a target of the pathogen effector AVR-Pii from Magnaporthe oryzae [15]. Pii-2 indirectly recognizes AVR-Pii
via Exo70-F3 and it was hypothesized that the original effector target was a NOI-Exo70-F3 complex. Hence, the
NOI integration has enabled Pii to monitor OsExo70-F3 and detect AVR-Pii [15]. Several functionally characterized
NLR-IDs work in pair with a canonical NLR, where the NLR-ID is the sensor that recognizes the pathogen effector(s)
and the canonical NLR is the executor required for the activation of immune response [12–16]. Another characteristic
of these NLR pairs is their close proximity in the genome. The pairs regularly appear in a head-to-head orientation,
allowing them to share a common promoter for tight control of their expression. However, not all NLR-IDs have a
genetically linked canonical NLR in the genome [20–23]. It is unclear whether such NLR-IDs recognize pathogen
effector(s) and activate immune response as singletons, or with the help of a genetically unlinked helper. We show a
comprehensive list of all cloned and studied NLR-IDs along with their executors, if known, in Table 1.

In this review, we report on the latest advances in the understanding of NLR-ID mode(s) of action and how it
continuously informs NLR-ID engineering. We speculate on the activation mechanisms of NLR-IDs in regard to the
recently solved structures of plant NLR resistosomes.

Current understanding of activation mechanisms of NLR-IDs
upon effector recognition
Among all characterized NLR-IDs, three NLR pairs have been extensively studied: the rice CNLs conferring resistance
against M. oryzae RGA5/RGA4 [16] and Pik-1/Pik-2 [24,25] and the RRS1/RPS4 TNLs from A. thaliana, conferring
resistance against R. solanacearum, P. syringae pv. tomato, and C. higginsianum [26–29]. Hence, we focus our
report on these three NLR pairs.

RGA4/RGA5
RGA4 and RGA5 recognize two sequence-unrelated effectors AVR-Pia and AVR1-CO39 from rice blast pathogen M.
oryzae [16]. NLR-ID protein RGA5 contains a heavy metal-associated (HMA) domain at the C-terminus after the
LRR domain. Interestingly, alternate splicing of RGA5 generates two transcript isoforms that are sequence identical up
until the C-terminus where RGA5-A isoform contains the HMA domain, but RGA5-B does not. Only RGA5-A con-
fers resistance to M. oryzae isolates expressing AVR-Pia or AVR1-CO39 and interacts with these effectors via its HMA
domain [16]. Although AVR-Pia and AVR1-CO39 are sequence-unrelated, they possess highly similar β-sandwich
structures that are characteristic of the M. oryzae AVRs and ToxB-like (MAX) effector family and bind RGA5HMA at
the same interface [30–32]. Furthermore, RGA4 and RGA5 interact through their CC domains and form homo- and
hetero-dimers [33]. The NLR protein RGA4 triggers effector independent HR when expressed transiently in both
rice protoplasts and in N. benthamiana. However, this HR is repressed when RGA4 is co-expressed with RGA5. The
present study suggests that upon direct interaction of the effector protein AVR-Pia with the HMA domain in RGA5,
repression mediated by RGA5 on RGA4 is relieved and HR occurs [33].

Pik-1/Pik-2
The NLR pair Pik-1 and Pik-2 from rice confers resistance to M. oryzae following recognition of the effector pro-
tein AVR-Pik [25,34,35]. Allelic series were described for both the NLR pair and the effector with Pik alleles show-
ing different recognition specificities to AVR-Pik variants [36–38]. Similar to RGA5, Pik-1 contains an HMA do-
main but located between CC and NB-ARC domains. Pik-1- and Pik-2-mediated immune activation occurs fol-
lowing direct interaction of AVR-Pik with the HMA domain in Pik-1 [14,38]. AVR-Pik effector proteins share the
same MAX fold as AVR-Pia and AVR1-CO39. However, the binding interface of Pikp-1HMA/AVR-PikD is different
from that of RGA5HMA/AVR-Pia or AVR1-CO39 [14,38]. Additionally, a tripartite complex involving Pikp-1, Pikp-2,
and AVR-PikD is formed upon effector binding to Pikp-1. This finding suggests a receptors cooperation for the
Pikp-1/Pikp-2 pair, rather than a negative regulation as it was reported for the RGA4/RGA5 pair [39]. However, how
RGA4 or Pik-2 activates immunity and triggers cell death is only partially understood.

RRS1/RPS4
Studies involving A. thaliana RRS1/RPS4 immune receptors pair provide further insights into the immune activation
by NLR/NLR-ID pairs. RRS1 and RPS4 confer resistance to the bacterial pathogens P. syringae and R. solanacearum
through the recognition of the effectors AvrRps4 and PopP2, respectively [12,13,29,40,41]. In A. thaliana, two dif-
ferent RRS1 alleles show different recognition specificities. RRS1-S (in ecotype Col-0) recognizes AvrRps4 but not
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Table 1 A comprehensive list of all cloned and studied NLR-IDs to date, along with their executor NLR and pathogen
resistance, where these are known

NLR-ID Type ID code Host species
Integrated

domain Executor NLR ID code Resistance Citation

Adnr1 CNL TraesCS5A02G344100 Triticum aestivum
cv. Chinese spring

ANK, WRKY Adnr1-RGA4 (?) Traes
CS5A02G344000

Diuraphis noxia [83]

BnRPR1 TNL NA Brassica napus B3, TFSIIN BnRPR2 NA NA [84]

CHS3 TNL NP 197291 Arabidopsis
thaliana ecotype

Col-0

LIM, DA1-like
domain

CSA1 NP 197290 NA [85,86]

DAR5 RPW8-like NP 201464 A. thaliana ecotype
Col-0

LIM, DA1-like
domain

NA - NA [87]

OsRPR1 CNL OsJ 34782 Oryza sativa
Japonica group

WRKY (x2) OsRPR2 OsJ 34781 NA [88]

Pi1-5 CNL AEB00617 Oryza sativa Indica
group (C101LAC)

AAA NA - M. oryzae [89]

Pi5-3 CNL Os09g15850 O. sativa Japonica
Group cv.

Nipponbare

Apoptotic
protease-activating

factors, helical
domain

Pi5-1 Os09g15840 NA [90]

Pi7-J-1 CNL ASM94220 O. sativa Indica
group (cv. Jao Hom

Nin)

AAA Pish-J KY225901.1 M. oryzae [91]

Pia-2 (RGA5) CNL AB604627 O. sativa Japonica
Group cv.

Sasanishiki

HMA-like Pia-1 (RGA4) AB604622.1 M. oryzae [34]

Pii-2 CNL QDZ58247 O. sativa Japonica
Group

NOI Pii-1 BAN59294 M. oryzae [92]

Pik-1 CNL ADZ48537 O. sativa Japonica
Group

AAA, HMA-like
(Uniprot)

Pik-2 P0DO07.1 M. oryzae [93]

Pike-1 CNL NA O. sativa Indica
group (C101LAC)

CtNL Pike-2 NA M. oryzae [94]

Pik-h1 CNL AET36549 O. sativa Japonica
Group

AAA Pik-h2 AET36550 M. oryzae [95]

Pik-m1 CNL AB462324 O. sativa Japonica
Group cv. Tsuyuake

HMA-like (Uniprot) Pik-m2 D5L9H7 M. oryzae [96]

Pik-p1 CNL ADV58352 O. sativa Japonica
Group

AAA Pik-p2 ADV58351 M. oryzae [24]

Pik-s1 CNL AET36547 O. sativa Japonica
Group

HMA-like Pik-s2 AET36547 M. oryzae [97]

PiPR1 CNL XM 015780628 O. sativa Japonica
Group cv.

Nipponbare

ZnF BED NA - M. oryzae [98]

Pi-ta CNL ACX94088 O. sativa Japonica
group

Thioredoxin NA - M. oryzae [99]

RGA2a CNL AGQ17376 Aegilops tauschii EXO70 RGA1e AGQ17384 - [100]

RGH2 CNL NA Hordeum vulgare
subsp. vulgare

EXO70 RGH3 NA Blumeria graminis f.
sp. hordei

[101]

RLM3 Col TNL NM 001341182 A. thaliana ecotype
Col-0

BRX (3x) NA - Leptosphaeria
maculans,
Alternaria

brassicicola,
Alternaria

brassicae, and
Botrytis cinerea

[102]

RPG1 CNL Q8L3P8 H. vulgare subsp.
vulgare

Pseudokinase
domain (pK1),
active kinase
domain (pK2)

NA - Puccinia graminis f.
sp. tritici

[103]

RPG5 CNL ACH69774 H. vulgare subsp.
vulgare

Serine/Threonine
protein kinase

RGA1,RPG4
(Adf2) ACH69773,ACH69772

P. graminis f. sp.
tritici

[104,105]

Rph15 CNL KAE8770059 H. vulgare subsp.
spontaneum

ZnF BED NA - Puccinia hordei [106]

Rpp1-R1 ONLa PRGDB240989
(Glyma.18G280300)

Glycine max ULP1 protease NA - Phakopsora
pachyrhizi

[107]

Rpp1-R3 ONLa PRGDB236486
(Glyma.18G281500)

G. max ULP1 protease NA - P. pachyrhizi [107]

Continued over
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Table 1 A comprehensive list of all cloned and studied NLR-IDs to date, along with their executor NLR and pathogen
resistance, where these are known (Continued)

NLR-ID Type ID code Host species
Integrated

domain Executor NLR ID code Resistance Citation

Rpp1-R4 ONLa PRGDB236494
(Glyma.18G281600)

G. max ULP1 protease NA - P. pachyrhizi [107]

Rpp1-R5 ONLa PRGDB236455
(Glyma.18G281700)

G. max ULP1 protease NA - P. pachyrhizi [107]

RPP2A TNL NP 193685 A. thaliana ecotype
Col-0

AAA (2x) RPP2B NP 001328446 Hyaloperonospora
arabidopsidis

[108]

RRS1B TNL NM 180802 A. thaliana ecotype
Col-0

WRKY RPS4B NP 001330960 Pseudomonas
syringae

[42]

RRS1-R TNL HQ170631 A. thaliana ecotype
Nd-1

WRKY RPS4 NP 199338 P. syringae,
Ralstonia

solanacearum

[109]

RRS1-S TNL NM 123894 A. thaliana ecotype
Col-0

WRKY RPS4 NP 199338 P. syringae [109]

RRS1-Ws TNL AB470471.1 A. thaliana ecotype
Ws-0

WRKY RPS4-Ws AB470473.1 P. syringae, R.
solanacearum,
Colletotrichum
higginsianum

[110]

SLH1 TNL BAD38678 A. thaliana ecotype
No-1

WRKY RPS4 NP 199338 P. syringae, R.
solanacearum

[111]

Ta4ANPR1 ONLa NA T. aestivum cv.
Chinese spring

HTH (x2), BTB,
ANK (x2),

NPR1 like C

Ta4ANPR1-RGA4 NA P. graminis f. sp.
tritici

[112]

Ta7ANPR1
(RGA5)

ONLa NA T. aestivum cv.
Chinese spring

HTH (x2), BTB,
ANK (x2),

NPR1 like C

Ta7ANPR1-RGA4 NA P. graminis f. sp.
tritici

[112]

Ta7DNPR1 ONLa NA T. aestivum cv.
Chinese spring

HTH (x2), BTB,
ANK (x2),

NPR1 like C

Ta7DNPR1-RGA4 NA P. graminis f. sp.
tritici

[112]

TRIDC5AG050380
CNL TRIDC5AG050380 Triticum

dicoccoides
ANK, WRKY NA - Puccinia striiformis

f. sp. tritici
[21]

Tsn1 CNL ADH59425 Triticum turgidum
subsp. durum

Pkinase NA - Parastagonospora
nodorum,

Pyrenophora
triticirepentis

[113]

WRKY19 TNL NM 001125496 A. thaliana ecotype
Col-0

PAH, WRKY (2x),
MAPK

DSC1 NP 192938 Meloidogyne
incognita

[114]

Xa1 CNL AB002266 O. sativa Indica
group (strain

IR-BB1)

ZnF BED NA - Xanthomonas
oryzae pv. oryzae

[115]

Xo1 CNL NA Oryza sativa
Aromatic Group cv.

Carolina Gold
Select

ZnF BED NA - X. oryzae pv.
oryzae|X. oryzae pv.

oryzicola

[23,116]

Yr5 CNL QEQ12705 T. aestivum ZnF BED NA - P. striiformis f. sp.
tritici

[117]

Yr7 CNL QEQ12704 T. aestivum ZnF BED NA - P. striiformis f. sp.
tritici

[117]

YrSP CNL QEQ12706 T. aestivum ZnF BED NA - P. striiformis f. sp.
tritici

[117]

YrU1 CNL QIM55694 Triticum urartu ANK, WRKY NA - P. striiformis f. sp.
tritici

[21]

Most of the NLR-IDs presented in this list have been attached from RefPlantNLR [82].
aStands for ‘Other’-NL. For NLRs without a CC or TIR domain but a noncanonical domain integrated at their N-terminus (based on RefplantNLR
nomenclature [82]).

PopP2, while RRS1-R (in ecotype Ws-2) can recognize both AvrRps4 and PopP2. RPS4 is a canonical TNL type of
resistance protein, while RRS1-R is a TNL protein with an integrated WRKY-like domain near its C-terminus. Inter-
estingly, there is a paralogous RPS4B/RRS1B pair in A. thaliana (ecotype Ws-2) that also recognizes AvrRps4 but not
PopP2. The WRKY domains of RRS1 and RRS1B phylogenetically cluster with different WRKY groups, suggesting
an independent integration event [42].
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Effector recognition occurs by direct binding of structurally distinct AvrRps4 or PopP2 effectors to the inte-
grated WRKY-like domain [12,13]. The structures of the WRKY-like domain of RRS1 in complex with AvrRps4 or
PopP2 indicate that the effectors share a similar binding interface to this ID domain that involves the WRKYGQK
DNA-binding motif [43,44]. Additionally, AvrRps4 and AtWRKY41, a host WRKY transcription factor, share the
same binding interface as RRS1WRKY/AvrRps4 or PopP2 and effector binding reduces the DNA-binding activity of
AtWRKY41 [43]. This suggests that AvrRps4 promotes virulence via sterically blocking DNA binding of WRKY TFs.
Deletion of RRS1-RWRKY triggers a constitutive RPS4-dependent immune activation, suggesting that the RRS1-RWRKY

maintains the complex in an inactive state [45]. Intramolecular interactions between the WRKY-like domain and its
adjacent domain (named DOM4) are disrupted by AvrRps4 effector binding, which de-represses the complex and
leads to an immune response activation [45]. PopP2-mediated de-repression of RRS1-R/RPS4 immune complex is
likely different and requires the longer C-terminal extension that is present in RRS1-R but not in RRS1-S [45].

Furthermore, multiple sites within the region harboring C-terminal and the WRKY-like domains of RRS1-R but
not RRS1-S are phosphorylated [46]. Phosphorylation occurring at Thr1214 is essential to keep the RRS1-R/RPS4 im-
mune complex at repressed state, while dephosphorylation might release this autoinhibition. Interestingly, the same
phosphorylation site is acetylated by PopP2, which might prevent phosphorylation and thus activate the complex
[46]. PopP2 but not AvrRps4 responsiveness requires phosphorylation at other sites within the C-terminal region of
RRS1-R. De-repression of RRS1-R and RRS1-S by effector binding also triggers proximity between their TIR domains
and C termini, releasing RPS4TIR from RRS1TIR inhibition [46]. This could lead to self-association-mediated nicoti-
namide adenine dinucleotide (NAD+) hydrolase (NADase) activity of the executor RPS4 and activation of down-
stream immune signalling, as shown for two singleton TNL immune receptors RPP1 and ROQ1 [47,48]. Finally,
recent work suggests that there is an extra layer of complexity in the interaction between RRS1-R and RPS4 [49].
The authors showed that RRS1-R enhances the HR mediated by several autoactive RPS4 alleles, but not RRS1-S. Ad-
ditional biochemical and structural studies will be required to characterize the effect of the RPS4 mutations on its
interaction with RRS1 alleles.

Different sensor/executor interactions for different NLR pairs
P-loop (Walker-A) and MHD motifs associated with the NB-ARC domain contribute to NLR activation [50,51]. Al-
though RRS1 and RGA5 both contain a canonical NB-ARC, their p-loop motif is not required for immune response
signalling. The same motif, however, is essential for the function of their executors RPS4 and RGA4, respectively
[33,45]. This is different from what was observed for Pikp-1 and Pikp-2 receptors, where the p-loop and MHD motifs
were required in both sensor and executor for the HR induction in N. benthamiana [39]. With the recent demonstra-
tion that plant NLRs oligomerize upon activation to form resistosomes [47,48,52,53] that are similar to mammalian
inflammasomes [54–57], it would be interesting to see how paired NLRs and NLR-IDs in general fit this model. Are
both sensor and executor part of the resistosome? Does the sensor activate/release the executor, which then forms a
resistosome? The plant NLR-ID/NLR pairs may function similarly to the mammalian NLRC4/NAIP5 pair that forms
a specific inflammasome structure [58,59]. In the plant pairs the sensor NLR-ID interacts with an elicitor (effec-
tor), similarly to NAIP5 sensor that interacts with the bacterial flagellin, while the executor NLR is activated (as the
NLRC4) and both could potentially form an activated resistosome. Additionally, an activated resistosome containing
sensor/executor poly-heterodimers may occur, given that many NLR pairs associate even in the absence of the ef-
fector. Alternatively, in the cases where the NLR-ID is not paired, the singleton could be activated by recognizing an
elicitor via its ID and form a homo-oligomerized resistosome complex or co-operate with another NLR from a distant
genetic locus. A detailed speculation of the formation of such resistosomes in plants is shown in Figure 1. However,
these hypotheses remain to be investigated using state of the art structural biology approaches and genetics. Many
NLR-IDs have been identified to date (Table 1) and elucidating how effector recognition and activation occur might
uncover new mechanisms for this wide NLR subfamily.

IDs as targets for NLR engineering
Plant pathogens rapidly evolve virulent races that can nullify new resistance specificities shortly after being deployed
in the field. To address this, we need to continuously identify new resistance genes and alleles targeting the pathogen
genotypes associated with plant disease outbreaks and transfer these into commercial elite cultivars in a timely fashion.
With our growing understanding of NLR mode of action, fine-tuning resistance mediated by characterized NLRs
and adapting it to current epidemics might become possible. Recent work showed that engineering new resistance
specificities in NLR-IDs is achievable, although it involves considerable prior knowledge of the system. The two main
avenues for engineering IDs in NLR-IDs are mutagenesis or domain shuffling (Table 2 and Figure 2).
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Figure 1. NLR-ID/NLR pair activation model

Pathogens such as bacteria, oomycetes, fungi, nematodes, or insects secrete effectors into the plant cytoplasm. The interaction

of the effectors with the ID of the sensor NLR, either directly or indirectly, leads to the activation of the sensor and the executor

NLRs in the cytoplasm or nucleus. We propose that the activation of the NLR pairs is accompanied with oligomerization of either

the executor only, or of the sensor-executor heterodimers or of the sensor-executor in a NLRC4/NAIP5-like complex. The NLR

oligomers may vary depending on the nature of the NLR pair. Some NLR pairs may also self-associate in resting stage before their

activation by an effector (e.g., Pik-1/Pik-2). Created in BioRender.com.

Table 2 Examples of NLR-ID engineering with corresponding targets and outcomes

System
Cognate
effector(s) New target(s) Methods Gain of binding

HR in N.
benthamiana

Resistance in
stable lines

Pikp-1/Pikp-2 AVR-PikD AVR-PikD,E,A,C Structure-guided
mutagenesis

Y Y (not for AVR-PikC) Not tested

RGA5/RGA4 AVR1-CO39, AVR-Pia AVR-PikD Structure-guided
mutagenesis

Y Y N

RGA5/RGA4 AVR1-CO39, AVR-Pia AVR-Pib Structure-guided
mutagenesis

Y Y Y

RRS1-R/RPS4 PopP2, AvrRps4 SAP05 Domain shuffling Y Y N

Pikm-1/Pikm-2 AVR-PikD,E,A GFP, mCherry Domain shuffling Not tested Y Not tested
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Figure 2. Pipeline to engineer new resistance specificities in NLR-IDs

The two main avenues to engineer IDs in NLRs are structure and/or protein–protein interaction-guided mutagenesis or domain

swaps. Once new binding affinity is confirmed, the next step is to express engineered sensor, executor, and newly recognized

effector in a heterologous system for high-throughput screening. Providing cell death was observed in the presence of the effector,

the system can be transferred into crops to test for resistance against pathogen(s), expressing the newly recognized effector.

Created in BioRender.com.

Structure-guided engineering of the integrated HMA domain
in Pik-1 and RGA5
The integrated HMA domains of rice NLRs Pik-1 and RGA5 were engineered using structure-guided mutagenesis
to expand their recognition spectrum or switch effector specificity. De la Concepcion et al. [60] combined favor-
able binding interfaces from Pikp-1HMA/AVR-PikD [14] and Pikm-1HMA/AVR-PikD, E, A [38] complexes to de-
sign a Pikp-1HMA variant able to bind AVR-PikD, E, A, C and trigger HR in the presence of AVR-PikD, E, A in
N. benthamiana when co-expressed with its executor Pikp-2. Cesari et al. [61] engineered RGA5HMA (aka Pia-2
HMA), recognizing AVR-Pia and AVR1-CO39, to bind AVR-PikD. The authors combined the binding interfaces
of RGA5HMA/AVR1-CO39 and Pikp-1HMA/AVR-PikD into RGA5HMA to design a RGA5HMA variant able to bind
AVR-PikD and retain binding to AVR1-CO39 and AVR-Pia. Co-expressing this RGA5 variant with its executor
RGA4 in the presence of Avr-PikD, Avr-Pia or AVR1-CO39 triggers HR in N. benthamiana. However, the engineered
Avr-PikD recognition did not translate into resistance in rice transgenics infected with M. oryzae strains expressing
this effector. Finally, Liu et al. [62] modified the HMA domain of RGA5 to gain binding to AVR-Pib by comparing
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the structure of the RGA5HMA/AVR1-CO39 complex to the modelled structure of RGA5HMA/Avr-Pib [63]. The engi-
neered RGA5HMA lost AVR-Pia binding and recognition and triggers HR in responses to AVR-Pib in the presence of
RGA4 in N. benthamiana. Additionally, RGA5HMA variant/RGA4 conferred resistance against M. oryzae expressing
AVR-Pib in rice transgenics.

Integrated domain swap in RRS1R and Pik-1
Effector/host target interactions could provide valuable information on how to engineer new resistance specificities
to bait effectors [43,64]. Maidment et al. [64] and Oikawa et al. [65] showed that AVR-Pik variants bind rice pro-
teins containing a HMA domain that is phylogenetically related to the HMA domains integrated in Pik-1 alleles and
RGA5. All known AVR-Pik variants bind OsHIPP19, including the two variants AVR-PikC and F that are not rec-
ognized by any known Pik alleles. The structural information of the OsHIPP19/AVR-Pik complexes resolved in the
present study could thus inform on HMA domain engineering to expand Pik alleles spectrum of recognition to these
AVR-Pik variants. Recently, Wang et al. [66] developed a tripartite system to engineer phytoplasma effector SAP05
recognition by the RRS1/RPS4 system. SAP05 mediates the degradation of its targets SPL and GATA transcription
factors by hijacking the 26S plant ubiquitin receptor RPN10 [67]. The authors used an autoactive version of RRS1-R,
RRS1-Rslh1, RPS4, and RRS1-R fused with the GATA domain that is recognized by SAP05 in this system. In the ab-
sence of SAP05, RRS1-Rslh1 autoactivity is repressed by RRS1-R-GATA. In the presence of SAP05, RRS1-R-GATA is
degraded, re-enabling RRS1-Rslh1 autoactivity that is dependent on RPS4. The tripartite system was able to induce
HR in the transient system of N. benthamiana in the presence of the SAP05 effector. Transgenic Arabidopsis lines
expressing RRS1-R-GATA, RRS1-Rslh1, and RPS4 showed delayed symptoms in the presence of the pathogens but
were not fully resistant, however.

More recently, Kourelis et al. [68] swapped the HMA domain of Pikm-1 for single variable domain heavy chain
(VHH) antibodies (or nanobodies) targeting GFP or mCherry. The Pikm-1-Nanobody fusions (Pikobodies) trigger
HR in N. benthamiana in the presence of Pikm-2 and the corresponding fluorescent protein. Furthermore, Piko-
bodies conferred resistance against a Potato Virus X variant expressing free GFP or free mCherry. It remains to be
shown whether Pikobody-mediated resistance is functional in stable transgenics, however. Given that nanobodies
can be raised against virtually any molecule, Pikobodies have the potential to generate resistance against all major
plant pathogens and pests secreting effectors in the plant cell.

Effector binding does not always translate into immunity
Challenges can arise at each step of the NLR editing process (Figure 2). For example, mutations and/or domain swap-
ping can trigger an autoimmune response when transiently expressed in heterologous systems [37,66,69]. Further
fine-tuning of the NLR scaffold is often necessary to prevent this. Additionally, even though new binding affinity can
be engineered, binding alone does not automatically translate into an immune response (Table 2 and Figure 2). This is
especially true when information on the isolated ID in complex with the effector is used to guide engineering, as it is
impossible to predict the effect of the mutation(s) in the context of the full-length receptor. Finally, even if there is an
immune response in heterologous systems and transient assays, synthetic NLRs might still not be functional in other
systems under stable expression (Table 2 and Figure 2). These hurdles are not impossible to overcome, however. The
examples of NLR-ID engineering discussed above illustrate that NLRs can tolerate such edits and even function with
non-plant domains. Certain NLR scaffolds may be more tolerant than others to domain swapping and/or targeted
edits. For example, orthologues across cereals of RGA5 carry different integrated domains at their C-terminus [18].
Could this mean that RGA5 orthologues might accept domain swaps more easily than other NLR scaffolds? This
remains to be investigated.

An additional perspective connected to NLR-IDs is the identification of essential host’s components that are tar-
geted by pathogens and pests to promote susceptibility. All the identified and studied IDs potentially reflect the orig-
inal targets of the pathogens at the subcellular level so far. This indicates that these integrated domains can be used as
a toolbox toward the identification of the original effector targets in the host cells as well as novel host susceptibility
components that could be utilized further [70,71].

Outlook
Combined with the increasing quality of genome assemblies and annotations available for a wide range of plant species
and varieties, NLR discovery pipelines [72–74], improved protocols for crop transformation [75,76], and shorter
generation times [77,78] and synthetic NLRs will be a valuable addition to our toolkit to design future crops. While
developing new resistance specificities might be facilitated in the future, synthetic NLRs will face the same issue as
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any dominant resistant genes deployed as a single unit. Stewardship plans will thus need to be in place to deploy
synthetic NLRs in combination and/or rotation with other resistance genes to prevent rapid resistance breakdown.
Additionally, diagnostic methods such as field pathogenomics [79,80] or Marple [81] can identify pathogen isolates
causing outbreaks and thus inform targeted engineering of new resistances.

Summary
• NLR-IDs are present across the plant kingdom.

• Functional studies showed that these extra domains are involved in direct or indirect effector recog-
nition.

• Most functionally characterized NLR-IDs work in pairs.

• It is still unclear how NLR-IDs are activated upon effector recognition.

• Integrated domains in NLRs can be engineered to expand or modify their spectrum of effector recog-
nition.
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