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Abstract: Complexes (H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2)) in the reaction system 

of CO2 photoreduction with H2O were researched by B3LYP and MP2 methods along with 

natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and 

frequencies analysis performed. H2O/CO2 captured photo-induced electron and hole 

produced e–(H2O/CO2) and h+–(H2O/CO2), respectively. The results revealed that CO2 and 

H2O molecules could be activated by the photo-induced electrons and holes, and each of 

these complexes possessed two isomers. Due to the effect of photo-induced electrons, the 

bond length of C=O and H-O were lengthened, while H-O bonds were shortened, 

influenced by holes. The infrared (IR) adsorption frequencies of these complexes were 

different from that of CO2 and H2O, which might be attributed to the synergistic effect and 

which could not be captured experimentally. 
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1. Introduction  

Greenhouse gas CO2 is the primary cause of global warming. The transformation from CO2 to 

fuel-like hydrocarbon is becoming one of the most important areas of chemical research, which is not 

only for solving the urgent greenhouse effect, but also for finding a new approach to obtain energy. 

As the Earth’s ultimate power supply and an environmentally friendly energy source [1–5], light 

can activate reactants and promote a reaction. While the reduction of CO2 with H2O is very difficult 

with thermal surface catalysis, photo stimulating surface catalysis is of great theoretical and practical 

value. Many researches [6] have shown that CO2 could be reduced by water vapor or solvent with 

photocatalysts. Among these photocatalysts, TiO2 or modified TiO2 may promote the photoreduction of 

CO2 to useful organic compounds [7–13], such as formate, carbon monoxide, methane and ethanol. 

The optical and electronic properties of nanostructured TiO2 can be adjusted by thermal treatments 

[14], supported film growth [15], and metal-ion doping [16]. 

During our research on the reaction of H2O and CO2 over photocatalysts, we found methanol as a 

product [17], which meant that there must be some advantageous factors for forming C–H bond in the 

reaction. The photocatalytic production of CH4 from CO2 and H2O on Pt/SrTiO3 catalysts has also 

been reported by Hemminger et al. [18].  

H2O may reduce CO2 to CH4, CH3OH, and CO over the anchored titanium oxide catalysts at 323 K 

under UV irradiation [19]. A reaction scheme is proposed for the photocatalytic reduction of CO2 with 
H2O as follows: )(TiOh)(TiOeTiO 2νb2cb

hν
2

  . Incident photons are absorbed by TiO2, and 

photo-excited electrons (e-) and positive holes (h+) are produced in the catalyst by charge transfer to 

the excited state of (Ti3+−O−)*. Furthermore, the photo-excited electrons and holes in the lattice are 

separated and trapped by appropriate sites of TiO2 to avoid recombination. The interaction of CO2 
molecules with the excited state of (Ti3+−O−)* leads to the formation of CO 

2 radicals [5]. The 

semiconductor (SC) bandgap excitation leads to the formation of conduction band electrons and 

valance band holes, which serve as the sites for photoreduction and photooxidation, respectively [13]. 

The photo–oxidation of H2O led to the formation of hydroxyl radicals OH and H+ [14].  

SC  
 gEh

 SC (h 
b  + e 

cb )         (1) 

H2O + h 
b  → H2O

+ → •OH +H+         (2)  

The hydroxyl radicals generate oxygen while H+ ions form hydrogen by capturing conduction band 

electrons [15,16,18]. 

Photocatalytic reaction is the interaction between photo-inducted electrons and holes on the 

photocatalyst surface with reactants. In order to know the details of the interaction among the reactants, 

the photo-induced electrons and holes, and the situation of activated reactants, which were referenced 

by Inokuchi Y. et al. [20], we calculated the interaction between photo-induced electrons and holes 

with H2O/CO2 as complexes. There are few reports on such complexes. 
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2. Computational Details 

The geometries of H2O, CO2, CO 
2 , H2O

+, H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2) were 

respectively optimized and then they were analyzed by natural bond orbital (NBO) [21] using density 

functional theory (DFT) (with correcting coefficient 0.96 of vibrational frequencies) [22–25] at the 

B3LYP [26–29] level and Møller–Plesset (MP2 (with correcting coefficient 0.92) ) perturbation theory 

[30] on different basis sets. Among these basis sets, 6–311 g* [31,32] was employed in calculations as 

the optimal one. This work was carried out with the GAUSSIAN 03 program package [33]. CO2 and 

H2O were activated by photo-induced electrons and holes, which was confirmed by the change of 

geometry structure parameters and the charge distribution. NBO atomic charges and dipole moments 

of CO2 and H2O are listed in Table 1, and the geometrical parameters are shown in Figure 1. All these 

data indicated great changes in the optimum geometrical parameters of H2O/CO2, e–(H2O/CO2) and 

h+–(H2O/CO2) complexes. The interaction energies when the photo-induced electrons and the holes 

were also taken into account. The thermochemical parameters of the system are shown in Table 2.  
Herein, H2O/CO2-1 refers to the complex of CO2 and H2O combined by O···H···O (probable 

hydrogen bond between CO2 and H2O, similarly hereinafter); H2O/CO2-2, complex of CO2 and H2O 

combined by C···O (probable bond between the carbon atom of CO2 and the oxygen atom of H2O, 

similarly hereinafter); e–HC-1, the complex of CO2 and H2O combined by O···H···O captured an 

electron; e–HC-2, the complex of CO2 and H2O combined by C···O captured an electron, h+–HC-1, the 

complex of CO2 and H2O combined by O···H···O captured a hole; (h+–HC-2), the complex of CO2 and 

H2O combined by C···O captured a hole. 

3. Results and Discussion  

3.1. Geometric Parameters Analysis  

As shown in Figures 1 and 2, the geometrical parameters of all complexes revealed that bond 

lengths and bond angles were almost the same in H2O/CO2-1 and H2O/CO2-2. According to both B3LYP 

and MP2 method, the total dipole moments of H2O/CO2 was a little greater than that of H2O, 

indicating that the complex H2O/CO2 could not obviously change the properties of H2O and CO2 

molecules.  

Figure 1. Optimized geometry structure and total NBO charge distribution of the 

complexes by B3LYP.  
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Figure 1. Cont. 

 

 

 

Calculated structural parameters of e–HC-1 and e–HC-2 by B3LYP were different from that of CO2 

and H2O. The C=O bond was lengthened by 0.06–0.09 Å compared to that in CO2 while approximately 
equal to that in CO 

2 , and the length of H-O bond was also lengthened by 0.01–0.02 Å compared to 

that in H2O while it was shorter than that in H2O
+. Therefore, CO2 was activated and the repulsion 

force between C and O was strengthened. The bond angle AH-O-H was reduced by 7–17 degrees 

compared to that in H2O/CO2, while the bond length of H−O was 3.10 Å by MP2, which indicated the 

dissociation of the bond. The bond length of (CO2) O···H was 1.89 Å, which was close to that of 

hydrogen bond. The photo–induced electron in e–HC-1 enhanced the activation of CO2 and H2O. In 

e-HC-2, the bond length of (H2O) O···C was 1.50 Å by B3LYP and 1.45 Å by MP2, which was close to 

the length of C−O bond. One of the H atoms of H2O was dissociated from the original bonding O atom. 

In h+–HC-1, it was shown by B3LYP that one C−O bond length was shortened by 0.02 Å compared to 

that of CO2 and the other was lengthened 0.02 Å. The short one was near the triple bond, which might 

lead to CO formation. At the same time the O atom of CO2 may form a hydrogen bond with a length of 

1.51 Å. The corresponding O–H bond was lengthened 0.07 Å. In h+–HC-2, both C−O bonds were 

lengthened 0.05 Å, C···O (H2O) bond length was 1.57 Å, while both H−O bonds were lengthened 

0.02 Å, and the bond angle of O−H−O was increased by about 6−10 degrees. On the other hand, by 

MP2, the calculated structural parameters of h+–HC-2 were much different than from B3LYP, which 

indicated that the h+–HC-1 complex was not as stable as h+–HC-2. This was consistent with the 

following thermochemistry data. The dipole moments of both h+–HC-1 and h+–HC-2 were about 

three-times greater than that of H2O/CO2-1 and H2O/CO2-2 when calculated by B3LYP, and even greater 

when calculated by MP2, which indicated the breaking of symmetry in both h+–HC-1 and h+–HC-2. 
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Figure 2. Optimized geometry structure and total NBO charge distribution of the 

complexes by MP2.  

 

 

 

3.2. NBO Atomic Charge Analysis  

The natural electron configuration of the complexes, as shown in Table 1, revealed the population of 

charges in H2O/CO2, which was different from that of H2O (O: 2s(1.75)2p(5.11)3d(0.01), H: 1s(0.56)) 

and CO2 (C: 2s(0.64)2p(2.31)3p(0.03)3d(0.02); O: 2s(1.72)2p(4.76)3d(0.01)). This was evidence for 
the formation of a London dispersion complex [34]. The natural electron configuration of CO 

2 and 

H2O
+ were shown as follows: the natural electron configuration of the C atom was 

2s(0.97)2p(2.39)3s(0.06)3p(0.04)3d(0.01) and that of the O atom was 2s(1.74)2p(5.00) by B3LYP, 

while 2s(0.94)2p(2.20)3s(0.05)3p(0.04)3d(0.02) of the C atom and 2s(1.75)2p(5.12)3d(0.01) of the O 
atom by MP2 in CO 

2 . The natural electron configuration of the O atom was 2s(1.81) 2p(4.26) and 

that of the H atom was 1s (0.46) by B3LYP, while 2s(1.79)2p(4.28)3d(0.01) of the O atom and 1s(0.46) 

of the H atom by MP2 in H2O
+. 
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Table 1. Natural Electron Configuration of the complexes. 

M E h+–HC-1 h+–HC-2 e-HC-1 e-HC-2 H2O/CO2-1 H2O/CO2-2 

B 
3 
L 
Y 
P 
 
 
B 
3 
L 
Y 
P 
 
B 
3 
L 
Y 
P 

O 2s(1.69) g 2s(1.75) 2s(1.74) 2s(1.72) 2s(1.72) 2s(1.72) 
2p(4.90) h 2p(4.45) 2p(4.96) 2p(5.02) 2p(4.75) 2p(4.78) 
3d(0.01) i 3d(0.01) 3d(0.01) 3d(0.01) 3d( 0.01) 3d( 0.01) 

C 2s(0.62) 2s(0.68) 2s(0.96) 2s(0.67) 2s(0.64) 2s(0.64) 
2p(2.25) 2p(2.27) 2p(2.40) 2p(2.27) 2p(2.30) 2p(2.29) 
3p(0.02) 3p(0.03) 3s(0.06) 3p(0.05) 3p(0.03) 3p(0.03) 
3d(0.02) 3d(0.02) 3p(0.04) 3d(0.02) 3d(0.02) 3d(0.02) 
  3d(0.01)    

O 2s(1.72) 2s(1.75) 2s(1.75) 2s(1.73) 2s(1.72) 2s(1.72) 
2p(4.60) 2p(4.45) 2p(5.01) 2p(5.05) 2p(4.80) 2p(4.78) 
3d(0.01) 3d(0.01) 3d( 0.01) 3d(0.01) 3d(0.01) 3d(0.01) 

H 1s( 0.49) 1s(0.42) 1s(0.52) 1s(0.56) 1s(0.55) 1s(0.55) 
  2s(0.01) 2s(0.01)   

O 2s(1.79) 2s(1.65) 2s(1.75) 2s(1.75) 2s(1.75) 2s(1.75) 

2p(4.37) 2p(5.07) 2p(5.19) 2p(5.00) 2p(5.13) 2p(5.13) 
3d( 0.01)  3d(0.01)  3d( 0.01) 3d(0.01) 

H 1s( 0.49) 1s(0.42) 1s(0.52) 1s(1.12) 1s( 0.56) 1s(0.55) 
  2s(0.01)    

M 
P 
2 
 
M 
P 
2 
 
M 
P 
2 
 
M 
P 
2 
 
M 
P 
2 

O 2s(1.70)  2s(1.75) 2s(1.74) 2s(1.73) 2s(1.72) 2s(1.72) 
2p(5.05)  2p(4.54) 2p(5.08) 2p(5.13) 2p(4.89) 2p(4.89) 

  3p(0.01)    
3d(0.01)  3d(0.01) 3d(0.01) 3d(0.01) 3d( 0.01) 3d( 0.01) 

C 2s(0.63) 2s(0.66) 2s(0.93) 2s(0.66) 2s(0.65) 2s(0.65) 

2p(2.02) 2p(2.11) 2p(2.20) 2p(2.06) 2p(2.05) 2p(2.05) 
3p(0.02) 3p(0.03) 3s(0.05) 3p(0.04) 3p(0.03) 3p(0.03) 
3d(0.03) 3d(0.03) 3p(0.04) 3d(0.03) 3d(0.03) 3d(0.03) 
  3d(0.02)    

O 2s(1.72) 2s(1.75) 2s(1.75) 2s(1.74) 2s(1.72) 2s(1.72) 
2p(4.75) 2p(4.54) 2p(5.13) 2p(5.17) 2p(4.89) 2p(4.89) 
3d(0.01) 3d(0.01) 3d( 0.01) 3d(0.01) 3d(0.01) 3d(0.01) 

H 1s( 0.45) 1s(0.40) 1s(0.49) 1s(0.56) 1s(0.54) 1s(0.54) 
      

O 2s(1.78) 2s(1.64) 2s(1.75) 2s(1.73) 2s(1.74) 2s(1.74) 
2p(4.34) 2p(5.11) 2p(5.20) 2p(5.10) 2p(5.16) 2p(5.16) 
3d( 0.01)  3d(0.01) 3d(0.01) 3d( 0.01) 3d(0.01) 

H 1s( 0.48) 1s(0.40) 1s(0.57) 1s(1.00) 1s( 0.54) 1s(0.54) 
  2s(0.01)    

 

The population of charge in e–(H2O/CO2) was dispersed both by B3LYP and MP2. In e-HC-1, there 

was 0.06 electrons on 3s orbital of C atom, 0.04 electrons on 3p orbital, and 0.01 electrons on 3d 

orbital by B3LYP. In e–HC-2, 3s orbital of C atom gained 0.00 electron, 0.05 (0.04 electrons by MP2) 

electron on 3p orbital and 0.02 (0.03 electron by MP2) electrons on 3d orbital by B3LYP. The 

contribution to the hybrid orbital from 2s orbital and 2p orbital were different in e–HC-1 and e–HC-2. 
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The particular natural electron configuration of a H atom in e–HC-2 indicated that the H atom was a 

free radical which had 1.12 (1.00 electron by MP2) electrons on its 1s orbital, and 0.01 electrons on the 

2s orbital of another H atom for the joining of the photo–induced electron by B3LYP.  

The population of the charge in h+–(H2O/CO2) was dispersed. There was not so much difference in 

the charge distributions of h+–HC-1and h+–HC-2 on the C atom and H atom by B3LYP, while the charge 

distribution of h+–HC-2 was higher than that of h+–HC-1 by MP2. The contribution of 2p orbital in O 

atom of h+–HC-1and h+–HC-2 to the hybrid orbital was different. As for H2O/CO2-1and H2O/CO2-2, the 

population of the charge was almost the same by both calculating methods.  

The total NBO charge distribution of the complexes is presented in Figures 1 and 2. The positive 

charge on C was 0.460 electrons in e–HC-1, which was lower than that in e–HC-2. The O atom of H2O 

in e–HC-1obtained more negative charge than that of the others in both e–HC-1and e–HC-2 H atom was 

negatively charged for the effect of the photo-induced electron, where the corresponding values for the 
isolated CO 

2 and H2O
+ are shown as follows: 0.513 e– for C and -0.756 e– for O by B3LYP while 

0.753 e– for C and -0.877 e– for O by MP2 in CO 
2 , -0.070 e– for O and 0.535 e− for H by B3LYP, and 

-0.082 e– for O and 0.541 e− for H by MP2 in H2O
+. It is interesting that the charge of O atom from 

H2O in h+–HC-1 was different from that in h+–HC-2 by both methods for different chemical 

environment around them. The unbalanced charge distribution of the two O atoms from CO2 in 

h+–HC-1 was because of the tendency to form hydrogen bond. This phenomenon also existed in 

H2O/CO2-2.  

The total NBO charge distribution in H2O/CO2-2 was different from that of H2O (O: -0.870 e−, 

H: 0.435 e−), CO2 (C: 1.000 e−, O: -0.500 e−) and H2O/CO2-1 because of the interaction between C 

atom and O atom (from H2O). The greatest difference of the two calculating method is shown in 

e-HC-1and e-HC-2, especially for C and H atoms, while the tendency of the H dissociation was almost 

the same by B3LYP and MP2. 

3.3. Thermochemistry Parameters Analysis 

Thermochemistry parameters of the system are presented in Table 2. The interaction energies of 

CO2 and H2O molecule including photo-induced electrons and corresponding holes were calculated 

using the following equations:  

OHCOHCHC EEEE
22

         (3)  

OHCOHCeHCe EEEE
22

           (4) 

  OHCOHChHCh EEEE
22

        (5) 

In the equation (1), ΔEHC could represent the calculated interaction energy values of the sum of 

electronic and thermal energies (Etot), the sum of electronic and thermal enthalpies (H) and the sum of 
electronic and thermal free energies (G) of HC-1 and HC-2. In the equation (2) HCeE   represents the 

same items of e–HC-1 and e–HC-2, and then in the equation (3) HChE   represents that of h+–HC-1 

and h+–HC-2. The corresponding entropy values were calculated by the following equation: 
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T

GH
S


            (6) 

T refers to the reaction temperature of our experiment 333 K [17]. 

H2O/CO2-2 had the maximum value of the entropy (ΔS = -128.80 J/mol·K ) for its loose structure 

and poor symmetry. h+–HC-1 had the highest energy (ΔEtot = -84.70 KJ/mol) for the existence of 

dissociative H atom among the six complexes, while e–HC-2 had the minimum entropy 

(ΔS = -243.75 J/mol·K ) and the lowest energy (ΔEtot = 14.54 kJ/mol) compared to the other five for its 

relatively stable skeletal structure as well as its good symmetry by B3LYP. This result was different 

from that by MP2, where HC-1 and H2O/CO2-2 had the maximum values of the entropy 

(ΔS = -264.23 J/mol·K) and h+–HC-1 had the highest energy (ΔEtot = -77.75 kJ/mol). 

The enthalpy values of most of the six complexes were higher than that of the sum of CO2 and H2O, 
the sum of CO2 and H2O

+, and the sum of H2O and CO 
2  for the forming of new bond and radicals. 

The Gibbs free energy values of most of the six complexes were lower than that of the sum of CO2 and 
H2O, the sum of CO2 and H2O

+, and the sum of H2O and CO 
2 , where the necessary energy for 

photo-induced electrons and holes to charge the reactants from the environment of the photoreaction 

system is available. It is interesting that the highest ΔG was in h+–HC-2, which indicated the instability 

of h+–HC-1. This was consistent with the structural parameters at the same level. No thermochemistry 

experimental data now for these complexes were available for the complicated photocatalytic reaction 

environment. Counterpoise calculations at the B3LYP/6-311G*//6-311++G** level and the 

MP2/6-311G*//6-311++G** level suggested that basis set superposition errors (BSSE) were nearly the 

same (2.09 kJ/mol) for all conformers. Since it is not clear that such corrections improved the 

reliability of the results [35–40], we did not included them in Table 2. 

Table 2. Thermochemistry Parameters of Complexes. 

Method B3LYP MP2 
parameter ΔEtot 

kJ/mol 
ΔH 

kJ/mol 
ΔG 

kJ/mol 
ΔS 

J/mol·K 
ΔEtot 

kJ/mol 
ΔH 

kJ/mol 
ΔG 

kJ/mol 
ΔS 

J/mol·K 
HC-1 4.68 0.28 53.78 -160.66 -26.26 -26.26 52.52 -264.32 
HC-2 -2.48 -7.44 35.45 -128.81 -26.26 -26.26 52.52 -264.32 

e-HC-1 -69.04 -74.00 -4.80 -207.81 -73.51 -68.26 2.62 -237.73 
e-HC-2 14.54 9.58 90.75 -243.75 -28.88 -23.63 39.38 -211.34 

h+–HC-1 -84.70 -93.49 -37.77 -167.33 -77.75 -58.17 -8.13 -167.83 
h+–HC-2 -25.74 -30.68 36.74 -202.46 42.47 47.24 108.29 -204.76 

 
At the computational levels we employed, the skeletal bending vibration of CO 

2 was at 711.03 cm-1, 

the symmetrical stretching vibration and the asymmetrical stretching vibration of C=O at 1277.34 cm-1 
and 1621.78 cm-1 respectively by B3LYP, while the corresponding absorption frequencies of CO 

2  by 

MP2 were at 689.17 cm-1, 1232.93 cm-1 and 1613.98 cm-1, respectively.  

The infrared absorption spectra of complexes herein became more complicated for the interaction 

between H2O and CO2 and the effect of photo-induced electrons and holes as shown in Figures 3 and 4. 
In H2O/CO2-1,the asymmetrical stretching vibration of O-C≡O at 2342.28 cm-1 by B3LYP and 2261.42 

cm-1 by MP2, respectively. 
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Figure 3. IR Spectrum of the complexes at B3LYP/6–311G* Level (GV 4). 

(a) H2O/CO2-1B; (b) H2O/CO2-2B; (c) e–HC-1B; (d) h+– HC-1B; (e) e–HC-2B; (f) h+– HC-2B. 

 

(a) H2O/CO2-1B (b) H2O/CO2-2B 

 

(c) e–HC-1B (d) h+– HC-1B 

(e) e–HC-2B (f) h+– HC-2B 

 

Figure 4. IR Spectrum of the complexes at MP2/6–311G* Level (GV 4). (a) h+–HC-2M;  

(b) H2O/CO2-2M; (c) h+–HC-1M; (d) e–HC-1M; (e) H2O/CO2-1M; (f) e–HC-2M. 

(a) h+–HC-2M (b) H2O/CO2-2M 
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Figure 4. Cont. 

(c) h+–HC-1M (d) e–HC-1M 

(e) H2O/CO2-1M (f) e–HC-2M 

 

There was no different infrared absorption between H2O/CO2-1 and H2O/CO2-2 by MP2. In e−HC-1, 

the stretching vibration of H−O (O−H···O=C) was at 3390.72 cm-1 by B3LYP, and the other stretching 

vibration of H−O at 3590.40 cm-1, the scissoring rocking vibration of C=O at 710.40 cm-1, the 

symmetrical stretching vibration and the asymmetrical stretching vibration of C=O at 1253.76 cm-1 and 

1648.32 cm-1, respectively. By MP2, the infrared absorption frequencies of e−HC-1 were somewhat red 

shifted. In e−HC-2, the stretching vibration of C···O was at 546.72 cm-1 by B3LYP, the symmetrical 

stretching vibration and the asymmetrical stretching vibration of C=O at 1242.24 cm-1 and 

1782.72cm-1, respectively. There are many differences of which by MP2, the skeletal rocking vibration 

at 513.47 cm-1, the in-plane rocking vibration and the out-of-plane rocking vibration of H−O at 

1137.10 cm-1 and 531.10 cm-1, respectively, the stretching vibration of H−O at 3525.12 cm-1, the 

in-plane bending vibration and the out-of-plane bending vibration of C=O at 765.76cm-1 and 

805.19cm-1, the symmetrical stretching vibration and the asymmetrical stretching vibration of C=O at 

1225.77 cm-1 and 1716.58 cm-1, the stretching vibration of C···O at 587.59 cm-1. 

There are some synergistic effects in h+–HC-1 by B3LYP. The symmetrical stretching vibration of 

O···H−O was at 2182.68 cm-1, the out-of-plane bending vibration and the in-plane bending vibration of 

O−C≡O at 603.19 cm-1 and 612.05 cm-1, respectively, the symmetrical stretching vibration of O−C≡O 

at 1322.16 cm-1, the synergistic effect of the asymmetrical stretching vibration of O···H−O and O−C≡O 

at 2384.96 cm-1. While by MP2 in h+–HC-1, the out-of-plane bending vibration of O···H−O was at 

538.36 cm-1, the symmetrical stretching vibration and asymmetrical stretching vibration of O−C≡O at 

1356.56 cm-1 and 2275.21 cm-1. The asymmetrical stretching vibration of O···H−O was at 2507.93 

cm-1, the stretching vibration of H−O at 3309.60 cm-1. In h+– HC-2 by B3LYP the in-plane bending 

vibration of C=O was at 540.22 cm-1, the stretching vibration of C···O at 601.69 cm-1, and the 

synergistic effect of the asymmetrical stretching vibration of C=O at 722.74 cm-1, the asymmetrical 
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stretching vibration of H···O=C at 1012.45 cm-1. While by MP2 the stretching vibration of C···O at 

685.57 cm-1, the scissoring rocking vibration of C=O at 511.11 cm-1, and the symmetrical stretching 

vibration of C=O at 1334.48 cm-1. It indicated that both the two calculating method revealed the 

unreasonable data to h+–HC-2, therefore the complex was unstable, therefore h+–(H2O/CO2) had only 

one stable structure h+–HC-1.  

4. Conclusion 

The charge distribution of H2O and CO2 was changed because of the joining of the photo-induced 

electrons and holes both by MP2 and by B3LYP. The effect from photo-induced electrons and holes in 

complexes activated H2O and CO2 herein. H2O has been known to exist as –OH group on the surface 

of catalysts by our experiment and the literature [12]. H2O was activated for the lengthened O–H bond 

in h+–(H2O/CO2). The possible hydrogen bond and CO in h+–(H2O/CO2) indicated that the hole was 

advantageous during the photoreduction of CO2 by H2O. The IR absorption of e–(H2O/CO2) and 

h+–(H2O/CO2) could not be captured experimentally, and some synergistic effect appeared in IR 

adsorption spectra which were consistent with the state of complexes and their geometric parameters, 

therefore the result of calculations revealed useful information for understanding the reaction system.  

The results of calculations indicated that the action of photo-induced electrons and holes to 

H2O/CO2 was stronger than the interaction between H2O and CO2 , therefore CO2 was activated in 

e–(H2O/CO2) and h+–(H2O/CO2), the bond length of RO=C lengthened in e-(H2O/CO2), the charge on C 

and O changed greatly, the density of electron cloud on C strengthened in e–(H2O/CO2), and the 

probability for C to combine with –OH or H increased, which might be favorable for forming CH3OH.  
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