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Distinguishing butchery cut marks 
from crocodile bite marks through 
machine learning methods
Manuel Domínguez-Rodrigo1,2 & Enrique Baquedano1,3

All models of evolution of human behaviour depend on the correct identification and interpretation of 
bone surface modifications (BSM) on archaeofaunal assemblages. Crucial evolutionary features, such as 
the origin of stone tool use, meat-eating, food-sharing, cooperation and sociality can only be addressed 
through confident identification and interpretation of BSM, and more specifically, cut marks. Recently, 
it has been argued that linear marks with the same properties as cut marks can be created by crocodiles, 
thereby questioning whether secure cut mark identifications can be made in the Early Pleistocene 
fossil record. Powerful classification methods based on multivariate statistics and machine learning 
(ML) algorithms have previously successfully discriminated cut marks from most other potentially 
confounding BSM. However, crocodile-made marks were marginal to or played no role in these 
comparative analyses. Here, for the first time, we apply state-of-the-art ML methods on crocodile linear 
BSM and experimental butchery cut marks, showing that the combination of multivariate taphonomy 
and ML methods provides accurate identification of BSM, including cut and crocodile bite marks. 
This enables empirically-supported hominin behavioural modelling, provided that these methods are 
applied to fossil assemblages.

In the early 1980s, the discovery of butchery marks on fossil bones from the oldest anthropogenic site (FLK Zinj, 
Olduvai Gorge) produced a series of analyses that led to the taphonomic confirmation of cut marks as linear 
grooves with V-shaped cross-sections and internal microstriations1,2. Subsequently, it was found that natural 
marks created through sediment abrasion and trampling could also mimic cut marks in cross-section shape and 
internal microstriations3–5. At the same time, it was discovered that stone-tool-imparted cut marks resulted in a 
diverse repertoire of cross-section shapes, well beyond the ideal V-shape section6,7. More recent work uncovered 
that bone surface modifications (BSM) with similar characteristics could result from the action of other agents, 
such as crocodiles8, vultures9, and other carnivores using their claws10. Since then, most taphonomists have aban-
doned the exclusive use of these two variables (V-shaped section and internal striae) to identify cut marks in the 
fossil record, because they lend themselves to equifinality.

It is therefore surprising that a recent study questions the ability of taphonomists to ascribe agency to BSM, 
based on the already-known fact that crocodiles also make V-shaped and linear microstriated BSM11. This new 
study resurrects the outdated assumption based upon just the two variables mentioned above and it concludes, 
predictably, that equifinality prevents most V-shaped and linear microstriated BSM to be correctly attributed 
to agent. This study flies in the face of ample taphonomic evidence that multivariate approaches succeed where 
older uni- or bivariate approaches failed. Trampling and cut marks made with different stone tools were suc-
cessfully identified under controlled experimentation in more than 90% of cases when more than a dozen vari-
ables of microscopic features of BSM were used simultaneously12,13. A similar multivariate protocol also enabled 
the differentiation of cut marks from trampling, hyena, and crocodile tooth marks at rates >80%14. Recently, 
machine learning (ML) methods on a sample of 1000 BSM have increased (depending on the algorithm type) 
the identification of marks to almost 100% accuracy15. Why then do Sahle et al.11 resurrect the same equifinality 
argument? Can crocodile and cut marks really be confused, impeding heuristically-supported discussions of 
early human behaviour and sending interpretations of Early Pleistocene sites and hominins to an epistemological 
limbo? (Figs 1 and 2)
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Here, we use successful ML methods to compare trampling marks, cut marks made with stone tools (using 
simple and retouched flakes), and crocodile bite marks. These four types of BSM are formally similar (V-shaped 
to various degrees and with internal striae); however, they differ in several other aspects. A sample of 10,000 
marks from controlled experimental sets are used to train and test the algorithms with the highest classification 
accuracy. The intrinsic and extrinsic information contained in each BSM and their context can be used to suc-
cessfully discriminate most marks. This has serious repercussions for paleoanthropology, since most behavioural 
debates on early human evolution revolve directly or indirectly on unravelling information contained in BSM in 
archaeofaunal assemblages. The heuristics of interpretations made of any given site will thus depend upon which 
taphonomic methods have been used for correct BSM identification and interpretation.

Figure 1.  (A) Five elongated semi-punctures caused by crocodiles carinated teeth. Notice the irregular outline 
of the mark (arrows). This irregular outline can also be found frequently in the carinae of crocodile tooth pits 
(B, arrow). (C) Another pattern of crocodile tooth pit, showing slight protuding ends of the carinae (yellow 
arrows) and angular section on one side (red arrow). These types of “triangular marks are also common in BSM 
made with unworn crocodile teeth. (D) Section of a perfect V-shaped tooth score made by crocodiles. Notice 
de absence of internal striae on the walls of the mark. (E) Typical combination of tooth pit (red arrow) plus 
V-shaped linear groove (yellow arrow) very abundantly represented in crocodile BSM. (F) Classical U-shaped 
tooth score without internal striae made by crocodiles. This type of BSM is common and completely overlooked 
by several studies because of its lack of overlap with stone-tool cut marks. Images are at 20× . Scale = 1 mm.
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Results
A series of eight ML algorithms were used in the BSM sample, using a total of 17 variables (complete set) (Table S1). 
All of the algorithms correctly classify more than 96% of all marks (Table 1). Three algorithms are less efficient 
than the others: Naive Bayes (NB), Partial-Least Square Discriminant Analysis (PLSDA) and Mixture Discriminant 
Analysis (MDA). NB shows the lowest sensitivity of these three. In contrast, Neural Networks (NN), Support Vector 
Machines (SVM), K-Nearest Neighbour (KNN), Random Forests (RF) and Decision Trees using the C5.0 algorithm 
(DTC5.0) show maximum accuracy in the correct classification of all BSM, with perfect sensitivity (1.0) and speci-
ficity (1.0) in all BSM types. This shows that several ML techniques are able to correctly classify and discern BSM and 
crocodile bite marks from other similarly-shaped BSM at a rate of 100% accuracy (Table 1).

It could be argued that some of those extrinsic (i.e., contextual) variables that have discriminatory potential 
do not take into account the palimpsestic nature of the fossil record by considering superimposition of BSM from 
different processes. Thus, variables such as “microabrasion” (which effectively contribute to discerning trampling 
marks from cut marks) or tooth pits associated with linear BSM (which effectively help discerning crocodile tooth 
scores from other BSM) could be less influential in other potential scenarios. That would be the case of trampling 
over cut-marked bones, or butchery of scavenged carnivore-consumed carcasses. For this reason, in order to assess 
BSM by their structural characteristics, extrinsic variables were removed in a second analysis, and only intrinsic (i.e., 
structural) variables were used (see definitions in Table S1). This was referred to as the partial set analysis.

Figure 2.  Good examples of linear tooth scores made by crocodiles in which internal microstriations are 
continuous (L) or mostly absent (R). In L, the striae are asymmetrically located on one side of the groove, with 
small number of striations and great separation in between them. This contrasts with the greater number of 
tightly packed microstriations found in stone-tool marks. In R, three striae, which follow the same pattern of 
separation are suddenly interrupted and most of the score is striae-free. Notice the difference in the flaking and 
shoulder of both marks. Only L is V-shaped. Image at 25× . Scale = 1 mm.

Complete set (intrinsic and extrinsic variables)

accuracy 95%CI kappa sensitivity* specificity*
NN 100 0.99-1 1 (1.0,1.0,1.0,1.0) (1.0,1.0,1.0,1.0)

SVM 100 0.99-1 1 (1.0,1.0,1.0,1.0) (1.0,1.0,1.0,1.0)

KNN 100 0.99-1 1 (1.0,1.0,1.0,1.0) (1.0,1.0,1.0,1.0)

NB 96,86 0.961-0.974 0,95 (0.59,1.0,1.0,0.98) (1.0,0.99,0.96,0.99)

RF 100 0.99-1 1 (1.0,1.0,1.0,1.0) (1.0,1.0,1.0,1.0)

PLS 96,73 0.960-0.973 0,95 (0.72,0.97,0.97,0.99) (1.0, 0.99, 0.96,0.98)

MDA 99,33 0.989-0.995 0,99 (0.92,1.0,1.0,0.99) (1.0,0.99,0.98,1.0)

C5.0 100 0.99-1 1 (1.0,1.0,1.0,1.0) (1.0,1.0,1.0,1.0)

Partial set (intrinsic variables)

NN 99,63 0.993-0.998 0,99 (1.0,1.0,1.0,0.98) (1.0,0.99,1.0,1.0)

SVM 99,07 0.986-0.993 0,98 (0.94,1.0,1.0,0.98) (1.0,0.99,0.99,1.0)

KNN 99,63 0.993-0.998 0,99 (1.0,1.0,1.0,0.98) (1.0,0.99,1.0,1.0)

RF 99,64 0.993-0.998 0,99 (1.0,1.0,1.0,0.98) (1.0,0.99,1.0,1.0)

C5.0 99,63 0.993-0.998 0,99 (1.0,1.0,1.0,0.98) (1.0,0.99,1.0,1.0)

Table 1.  Accuracy values for each algorithm/test. Kappa, sensitivity and specificity values are also included. 
*(croc,rf,sf,tramp). Key: croc, crocodile tooth marks; rf, retouched flakes; sf, simple flakes; tramp, trampling.
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The ML algorithms that successfully identified BSM in 100% of cases in the analysis of the complete variable 
set were selected for testing this partial variable set. In this case, despite the loss of information by removing 
variables, these algorithms correctly classified BSM in more than 99% of cases. NN, KNN, RF and DTC5.0 were 
the most accurate classifiers. In the results provided by these four algorithms, the few misclassifications affected 
trampling marks and cut marks made with retouched flakes. The four algorithms yielded a sensitivity of 1.0 and a 
specificity of 1.0 regarding crocodile BSM. This means that all these ML methods provided an accurate classifica-
tion (100%) of all the crocodile marks and no other BSM was misclassified as a crocodile linear mark.

Discussion
There are two traditions in taphonomy. One is anchored in the twentieth century and its focus is on registered 
taphonomic entities (i.e., objects) as individual entities, and on assemblages as concentrations of entities16. This 
additive concept of taphocenoses and ichnoenoses is individualistic. Regarding BSM, such an approach places 
special emphasis on quantification of taphonomic attributes of each mark separately. Methodologically, this 
approach to BSM uses taphonomic variables independently.

An alternative taphonomic approach, developed in the twenty-first century, is systemic (as opposed to indi-
vidualistic) and emphasizes that association of registered taphonomic entities, via assemblage formation, entails 
emergent properties beyond the mere addition of the properties of single taphonomic objects. Taphonomic attrib-
utes are thus not just the ones pertaining to each single taphonomic entity, but also those emerging from associa-
tions of entities. This systemic approach has strong parallels with evolutionary biology16. Taphonomic entities are 
considered dynamic entities that occur in specific taphotopes, organized in the form of taphons (i.e., taphonomic 
groups) and they even occasionally display the property of being reproductive by creating new taphonomic enti-
ties16–18. Regarding BSM, emergent properties can only be addressed through multivariate approaches and this 
entails using not only all variables simultaneously, but also complex statistics. Each BSM contains its own struc-
tural information, in addition to that resulting from its association with other BSM on the same bone specimen 
as well as other features of the supporting bone specimen. This is what was defined as a configurational (i.e., 
relational) approach19. A configurational approach requires intrinsic (i.e. pertaining to the morphological and 
internal characteristics of a mark) and extrinsic (i.e., association of a specific mark with other marks or features 
on the same bone specimen) variables.

Here we have shown that multivariate configurational ML methods can successfully classify all experimental 
BSM, with an accuracy rate of 100%. This method uses a combination of intrinsic and extrinsic properties of each 
BSM, which shows that only configurational approaches capture the additional and emergent associative prop-
erties of marks on any given bone specimen. The important feature of this method is not only its high accuracy 
in mark identification, but also that it provides a computer-based way to classify BSM, avoiding the subjective 
classification made directly by the analyst. This does not remove subjectivity completely, but it reduces it signif-
icantly15,20. This work reinforces previous studies, which showed high success in BSM classification when using 
multiple variables12,14. It also shows that independent variables (such as cross-section shape and internal striae), 
may produce equifinality if considered separately, but may provide higher resolution if considered in conjunction 
with other variables. For example, V-shaped marks that also display intense flaking and abundant shoulder effects 
are much more frequent in cut marks made with retouched tools than in other BSM.

Sahle et al.11 subjectively classified BSM on Plio-Pleistocene bones from Ethiopia without any quantitative or 
qualitative support. These interpretations, based on descriptions, are not even based on a mark-by-mark com-
parison with modern experimentally controlled BSM, and no convincing matches were provided. These authors 
qualified statistically-based analyses as narrowly mark-focused and promising little illumination. This unfounded 
statement is contradicted by the present ML study. The present multivariate analysis sheds more light on BSM 
classification than the equifinal groove-shape section approach used by Sahle et al.11. These authors misrepre-
sent taphonomic praxis when they depict current taphonomic work as “roadblocking knowledge” and as shaped 
“by a tool/carnivore dichotomy”. This dichotomy is truly non-existent. This perception may have been projected 
because some research teams focused for decades mostly on carnivore BSM to indirectly interpret hominin sub-
sistence, but they do not represent the praxis of the paleoanthropological taphonomic community. Taphonomists 
are usually concerned with all types of BSM equally, because all contribute to information about site formation. 
The only obstacles to knowledge are epistemological and methodological, as the present work shows.

The “universe of equifinality” means that Sahle et al.11 also fail to consider alternatives to their interpreta-
tion of crocodile-modified bones from Middle Awash. If considering those marks in isolation using the striated 
cross-section shape, many of them cannot be differentiated from marks made by vultures9, trampling12, gravel 
compaction21,22 and even stone tools. These authors have not reproduced marks made by the diverse array of tools 
potentially creating BSM (e.g., modified cores). How are these different from the marks they report (see ref.23 
for similarities)? They have not rejected these alternative agents, meaning that, epistemologically, they cannot 
support crocodile agency. If, on the contrary, they were trying to be “consilient” and were considering marks in 
their context, they could find better support for some of the specimens they present, given the conspicuous tooth 
mark patterns of crocodiles on bones. Both Njau8 and Baquedano et al.24 report that between 75% and 82% of 
crocodile tooth-marked elements bear carinated marks, typical of crocodiles, frequently among other abundant 
BSM (especially tooth pits) on the same specimen. The presence of diverse marks on the Middle Awash bones 
could support Sahle et al.’s inferences, although they do not report any frequency of carinated marks. This config-
urational approach also indicates that the FLK Zinj assemblage, fundamental for interpretations of early human 
behaviour, shows very low frequency of multiple non-human carnivore-imparted marks on the same specimen 
(most commonly just one), very low frequency of pits, and not a single carinated BSM in the assemblage, thereby 
refuting the hypothesis of crocodile modification of the bones accumulated at the site, and supporting predomi-
nantly hominin agency25, as reflected by the assemblage’s abundant unambiguous cut mark record.
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Sahle et al.11 argue that there is no technological fix to the equifinality resulting from the application of sophis-
ticated 3D techniques to BSM. This perception results from two factors. First, the authors´ disregard for statistical 
treatment of data leads to a failure to appreciate significant differences between their own butchery and crocodile 
mark data sets, which they obtained through BSM profile analysis (see our analysis of their data in Supplementary 
Information). In fact, their data show that none of the fossil specimens that they selected bear unambiguous croc-
odile BSM. In contrast, some of them cluster closely with their own butchery data (Supplementary Information). 
Second, the authors selected the least developed and least experimentally tested of the 3D techniques available, 
instead of selecting the multivariate geometric morphometric techniques tested in larger experimental samples. 
The latter have yielded positive results in discriminating tool types and raw material types through the analysis of 
cut marks26–29. This and other more sophisticated 3D techniques have also successfully discriminated among BSM 
caused by different mammalian carnivores30 and even distinguished accurately tooth marks made by crocodiles 
from those inflicted by other carnivores31. A key element in this success was that the techniques were statisti-
cally complex, and that the focus was not on isolated marks, but on the ichnological assemblage. This is another 
advantage of the systemic approach. In contrast, Sahle et al.’s11 interpretations of fossil BSM are based on single 
specimens, completely out of context or with no directly associated faunal assemblage, despite their assertion that 
heuristic interpretations can only be made at the assemblage level, not with isolated specimens or, even worse, 
isolated BSM.

The tested accuracy in differentiating cut marks from crocodile marks presented with data here, in contrast 
with the descriptions provided by Sahle et al.11, could also result from the pristine conditions of the controlled 
assemblages, where each of them represents a single process. Bones and their ichnological content are dynamic 
taphonomic entities subjected to multiple processes, each of them adding and deleting information. How, for 
example, could a cut-marked bone subjected to post-depositional processes such as sediment abrasion, modify 
the BSM associative properties? This cannot be answered because we lack experimental data on palimpsestic 
ichnological processes. For the moment, we can approach this question by removing the extrinsic variables from 
our analysis, as was done above. Even the intrinsic variables would be affected by superimposed processes32, but 
given the lack of experimentation, we cannot elaborate on that here either.

Crocodile marks were correctly classified among other things because of the high presence of other marks 
(especially pits) on the same specimen. If this extrinsic information (as well as other extrinsic variables) is 
removed, the ML methods can still classify correctly >99% of crocodile BSM. Cut marks made with simple flakes 
are also classified correctly in 100% of the tested samples.

The present work reinforces the idea that taphonomy (and palaeontology) can no longer be a descriptive 
discipline – as was the case during most of the twentieth century – in which descriptions are subject-dependent 
and variables are used independently. This work also emphasizes that systemic configurational approaches are 
heuristically stronger than individualistic context-free approaches. Replicable data must be generated and used 
in a multivariate manner. ML algorithms capture variable interaction like no other analytical tool. The application 
of this method to experimental marks shows that in general, most cut marks can be differentiated from crocodile 
bite marks. This does not necessarily mean that such accuracy can be achieved in the fossil record, but it certainly 
indicates that equifinality in fossil contexts can be heuristically overcome, because the probabilities of BSM classi-
fication will differ among different mark types. We have explicitly avoided getting lost in theoretical praxiological 
advice, such as that displayed by Sahle et al.11; rather, we have described in detail the methodological basis to 
overcome a purported, no longer existent equifinality in the identification of cut marks and crocodile bite marks.

Method
The set of variables used for the present study is described in Table S1. The original BSM sample consisted of 105 
cut marks made with retouched flakes, 246 cut marks made with simple flakes, 224 trampling marks and 58 tooth 
marks (scores) made by crocodiles. The original experimental BSM samples are described in refs12,24. In order to 
provide the modelling with large training and testing/validation sets, the sample was bootstrapped 10,000 times, 
yielding a sample that is substantially bigger than BSM samples that one may encounter in archaeofaunal assem-
blages. A total of 70% of this sample was used for the training models. Testing/validation was carried out on the 
remaining 30% of the sample. This is a standard procedure in predictive models in order to deal with the bias/
variance tradeoff. In the present work, the sample was initially bootstrapped with a function from the “caret” R 
library that considers bootstrapping the sample in proportion to the variable representation to each of the factors 
of the outcome variable. Categorical variables were transformed into numerical (dummy) variables. After enlarg-
ing the sample, data were pre-processed. To minimize variance biases, data were centred and scaled. The ML 
algorithms used did not require data transformation to deal with normality, skewness or collinearity.

During the application of ML algorithms, the models were tuned with self-correcting methods. This is one of 
the great advantages of ML tests. During model elaboration, several techniques allow estimating the performance 
of the model. Some statistics (e.g., RSME) enabled estimating the performance potential on new data. Several and 
very diverse ML algorithms were compared for efficiency and accuracy. Model evaluation took place through 
resampling techniques that estimate performance by selecting subsamples of the original data and fitting them in 
multiple submodels. The results of these submodels were aggregated and averaged. Several techniques can be used 
for this subsampling and submodelling: generalized cross-validation, k-fold cross-validation, leave-one-out-cross 
validation or bootstrapping. Here, we selected 10-fold cross-validation, which consists of the original sample 
being partitioned into 10 similarly-sized sets. A first model is subsequently generated using all subsamples, except 
the first fold. Then the first subset is reintroduced to the training set and the procedure is repeated with the second 
fold and so on until the tenth one is reached. The estimates of performance of each of the ten processes are sum-
marized and, thus, used to understand the model utility.

Once all models are completed, model selection takes place. his is usually done combining indicators of 
error (i.e., RSME or root mean square error) or accuracy. Cost values (of bias-variance) were evaluated vis-a-vis 
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accuracy with the caret function “tuneLength” up to 10 (i.e., 2−2…. 27). The tuning parameter selected for meas-
uring model performance was the “kappa” parameter. For class predictions, these can come in two forms: a dis-
crete category (showing the factor classification) and a probability of membership to any specific category. This 
latter can be continuous (as in random forests or discriminant analyses, for example) or binary when using sig-
moid classifiers (as in logistic regression or support vector machines). The Kappa statistic (which considers the 
amount of accuracy generated by chance) can take the form of −1 to 1 (as in correlation). It is a proxy of accuracy 
by indicating a perfect match between the model and the documented classes (kappa = 1) or a less than perfect 
match (kappa = < 1). Kappa values of 0.3–0.6 shows reasonable agreement. Estimates higher than these indi-
cate a high agreement between the expected accuracy and the documented one. Cohen´s kappa value is a more 
robust measure of prediction and classification than accuracy, because it does not quantify the level of agreement 
between different datasets, but it represents the degree of similarity of datasets corrected by chance. The selected 
model performance was also tabulated with confusion matrices.

Machine learning techniques are powerful predictive and classification methods33. A selection of those iden-
tified as the most powerful classificatory methods available34 were used and compared. These comprised the 
following (some of them initially described in ref.35):

Neural Network (NN).  This algorithm operates by creating nodes which hierarchically build a network of 
synthesized information through regression methods. This works similarly to the neural networks of the human 
brain. Nodes convey the transformed input signal through feedforward networks, which terminate in an output 
node. The training of the neural network is done by adjusting weights through successive layers of nodes. The 
input data fed to the neural layers (perceptrons) is transformed via specific nonlinear sigmoidal functions. The 
parameters of these functions are usually optimized to minimize SQR (Sum of Square Residuals). These param-
eters exhibit a tendency to overfit the training data set. To avoid this, weight decay is used to reduce the model 
errors for a given value of lambda. This λ parameter must be specified together with the number of hidden units 
(perceptrons). Reasonable values for λ range from 0.0 to 0.1. Here, five different weight decay values were tested 
(0.00, 0.01, 0.1, 1, 2). The models were tuned for an uneven number of units (i.e., neurons) ranging from 1 to 19, 
in a resampling method involving training and testing subsamples. The final values for the complete set model 
were size = 5 and decay = 0.0177. The final values for the partial set model were size = 10 and decay = 0.0021. For 
the present analysis, the “nnet” and the “caret” R libraries were used.

Support Vector Machines (SVM).  The SVM algorithms provide a powerful method for non-linear classifi-
cation. A SVM is a mathematical and spatial boundary between data points in a multidimensional space. It creates 
a hyperplane which yields homogenous distribution of data on either side. In non-linear spaces, data separation 
is achieved through the use of kernels, which add additional dimensions to data in order to achieve a proficient 
separation according to class. The SVM regression method uses a threshold (via the tuning of kernels) set by the 
user to determine which residuals contribute to the regression fit. To estimate the model parameters, SVM also 
uses a loss function. The cost (C) parameter is the cost penalty that is used to penalize models with large residuals. 
The loss function (the same as the lambda in NN) determines the degree of overfit of the training data. The cost 
parameter adjusts the structure of the model. The algorithm used in the present study was the C-Classification 
parameter with a SVM radial kernel. The size of the hyperplane is selected through the value of C. Large values of 
C will produce a small-margin plane to maximize classification. Low C values produce a wider plane resulting in 
higher rates of misclassification. Here, a fixed value for the cost function was adopted and the kernel parameter 
was estimated to σ = 0.0521 for the complete set analysis and σ = 0.0671 for the partial set analysis. The model 
was tuned over >100 cost values. The final cost value selected by the kappa parameter was C = 4 for the complete 
set analysis and C = 128 for the partial set analysis. For the present study, the “e1071” and the “caret” R libraries 
were used.

K-Nearest Neighbour (KNN).  This unsupervised (lazy) learning algorithm classifies unlabelled data by 
assigning them the class of the most similar labelled examples. This algorithm works well in samples with many 
variables and performs well when there are well-defined labelled sets. The algorithm makes no assumption about 
the distribution of the sample and it is easy to train. KNN identifies k cases in the sample as the nearest in sim-
ilarity. Unlabelled cases are subsequently assigned by similarity. To predict the location of testing data in the 
predictor space, different k models are tested and compared to an error/accuracy parameter. To overcome the 
bias-variance tradeoff an intermediate k value is usually selected. Larger k values tend to reduce the bias of vari-
ance but small patterns may go unnoticed. Here, a final model was produced with k = 5 (both for the complete set 
and partial set analyses), after having tested 32 and 23 different k values respectively. Training and testing data-
sets were created through boosted subsamples. These were subsequently analysed using the R “class” and “caret” 
libraries and the “knn” function.

Random Forest (RF).  The algorithm uses a small random number of the dataset variables, instead of all the 
variables. Each selection produces an independent tree. Bootstrap aggregation, more commonly known as bag-
ging, is the common procedure of random forests, which splits a training dataset into multiple data sets derived 
from bootstrapping. The results are contrasted against a validation test, from the observations (about one-third) 
not used for the training dataset. These observations are referred to as out-of-bag (OOB) observations. RF pro-
duce estimates on how many iterations are needed to minimize the OOB error. After selecting a number of trees, 
the algorithm averages the results and produces a robust classification method, which avoids overfitting of results 
to data, as is more common in standard decision and regression trees. Here, forests were built using 500 trees. For 
the present study, the “randomForest” and the “caret” R libraries were used. The final value used for the selected 
model was mtry = 5.
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Mixture Discriminant Analysis (MDA).  Initially conceived as an extension of LDA (Linear Discriminant 
Analysis), MDA is built upon class-specific distributions combined into a single multivariate distribution. This 
is done by creating a per-class mixture, as described by Kuhn and Johnson32. This consists of separating the 
class-specific means from the class-specific covariance structure. Otherwise described, each class has different 
means but the complete-class data set has the same covariance. These are sub-classes of the data. They are spatially 
modelled once it is specified how many distributions should be used. The tuning parameter for these models is 
the number of distributions per class or sub-classes. The MDA algorithm integrates ridge- and lasso- penalties 
to determine feature selection. Here, the final model selected through the kappa parameter was composed of 11 
sub-classes.

Naive Bayes (NB).  Bayes’ Rule, as used in the NB algorithm, estimates probabilities of classes on observed 
predictors (i.e., probabilities of previous outcomes), resulting in dynamic estimates of posterior probabilities of 
classes. The conditional probability (i.e., the probability of observing specific predictor values in relation to data 
associated with specific classes) is used to model classification. NB assumes that all predictors are independent. 
Prior probabilities allow the decision of which class any case must be assigned to. If no prior estimates are pro-
vided, these are derived from the documented occurrence of classes within the training set and their relation 
to predictors’ properties. Predicted classes are created based on the largest class probabilities for each class as 
derived from the training set. NB uses a nonparametric density modelling process. Here, the “e1071” qne “klaR” 
R libraries were used. The tuning parameter was held constant at a value of 0 and the kappa parameter was used 
to select the optimal model.

Partial Least Squares Discriminant Analysis (PLSDA).  This test classifies the criterion variable classes 
by identifying the predictor combinations that optimally separate classes. It is commonly used in situations 
where predictor reduction is necessary (such as in LDA based on PCA scores), but it is more efficient than these 
two-step data reduction methods. PLSDA finds latent variables (components) that maximize classification accu-
racy. Therefore, when data reduction is required for classification, PLSDA is preferred over PCA-LDA. In this test, 
the tuning parameter is the number of latent components to be retained in the final model. When the number of 
predictors is short compared to the number of cases, PLSDA can execute classification better than LDA: Predictor 
importance can be also identified. Here, the “plsr” function within the “pls” R libary was used. Model tuning was 
carried out with the “caret” R library. The number of components retained in the final model was ten.

Decision Trees using the C5.0 algorithm (DTC5.0).  This algorithm implemented in decision trees has 
enabled this ML technique to reach a degree of accuracy comparable to far more complex ML methods such as 
neural networks or support vector machines. The procedure is similar to that for simple decision trees. These 
operate through recursive partitioning of data. Decision trees can produce models whose performance can be 
improved with meta-learning methods. One of these methods is k-fold cross-validation. This consists of divid-
ing the data set into k-subsets and the holdout method (original data set divided into training and testing sets) 
is repeated k times. The variance of the resulting estimate decreases as the k increases. The data thus randomly 
divided into k different sets produce results that are eventually averaged over. The standard number of trials is 10, 
but here, the models required 25 trials for the complete set and 60 for the partial set. A 10-fold cross validation 
method was adopted in both cases. For the present analysis, the “C50” and the “caret” R libraries were used. The 
numbers of rules adopted were 36 and 32 respectively and the number of trees used were <100 before conver-
gence was reached.
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