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The National Cancer Institute’s Quantitative Imaging Network (QIN) has thrived over the past 12
years with an emphasis on the development of image-based decision support software tools for
improving measurements of imaging metrics. An overarching goal has been to develop advanced
tools that could be translated into clinical trials to provide for improved prediction of response to
therapeutic interventions. This article provides an overview of the successes in development and
translation of new algorithms into the clinical workflow by the many research teams of the
Quantitative Imaging Network.

INTRODUCTION
As Director of the National Cancer Institute’s Quantitative
Imaging Network (QIN) for the past 12 years, I have witnessed
the growth of QIN from early development of decision support
software tools that use imaging for measuring or predicting
response to cancer therapies to the early entrance of tested and
refined tools into clinical trials. This journey has shed light on
the fact that translation into clinical workflow is every bit as
challenging as the original steps of development and testing.
Knowledge that the challenges associated with translating
research from the laboratory to the clinical arena exist is not
new, but it appears that this fact must be rediscovered every few
years. Dr. Paul Ehrlich, 1908 Nobel Prize winner in medicine,
stated, “The step from laboratory to patient’s bedside...is extraor-
dinarily arduous and fraught with danger.” Although no details
concerning the “danger” were provided by Dr. Ehrlich, his com-
ment communicates the spirit of the difficulty experienced by
QIN teams today.

OVERVIEW
QIN was initiated in 2008 with a program announcement and its
first successfully reviewed application. Since that time, 43 teams
have been supported to participate as members of the network,
and 26 teams from around the world participated in the process
of creating and testing clinical decision support tools for quanti-
tative assessment of therapy response as associate members
without National Cancer Institute (NCI) support. This growth in
quantitative imaging is not isolated to QIN alone. Surveying
PubMed, it is seen that there has been an increase in the number
of articles containing the phrase “quantitative imaging” in the

title by over a factor of seven in the past decade (Figure 1). It
should not be inferred that the network was a large motivating
factor in this increased interest in quantitative imaging. Rather,
the best we can say is that the network was created at an oppor-
tune time when interest in the challenges of quantitative imaging
was maturing.

Over the past 12 years, applications to the network are tradi-
tionally received 3 times each year in response to an active pro-
gram announcement published by the NCI. In each round, the
applications are reviewed in a study section organized by NCI’s
Division of Extramural Activities. This process results in a net-
work with staggered starts of its member teams with the expected
effect of staggered degrees of progress toward eventual clinical
testing of quantitative tools at any given time. With the large
number of teams currently collaborating in the network, it is dif-
ficult to determine the performance readiness of each specific
tool to enter clinical trials. Therefore, a method of benchmarking
QIN tools was developed over a year ago (1). This process has
enabled the network to prioritize the tools and to determine tools
that are most prepared for entering clinical trials. To date, 67
tools have been benchmarked from a prebenchmark level (level
1) to clinical trial–ready (level 5).

BENCHMARKING OF TOOLS
This benchmarking process was highlighted in an earlier issue of
Tomography (Volume 5, Number 1; 2019). However, this was not
the first time that progress from QIN teams was highlighted in
special issues of prominent journals. The first was in 2012 in
Magnetic Resonance Imaging (Volume 30, Number 8). At this
stage in the network, teams were focusing on the development of
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algorithms and methods for measuring or predicting response to
therapies. The papers in that issue reflect this stage in quantita-
tive imaging development.

In 2014, Translational Oncology (Volume 7, Number 1) pub-
lished a collection of QIN research articles showing the status of
network progress. At this point in the progression of the network,
diversity in the advancement through the translation pathway
can be seen. Papers emphasizing development still dominate, but
a number of articles are seen that discuss advanced topics of
reproducibility, multisite data collection, and clinical trial chal-
lenges. This diversity in translation maturity is the result of the
staggered start dates for the teams in the network.

The 2016 issue of Tomography (Volume 2, Number 1) covered
all aspects of quantitative imaging research from QIN at that point
in the program. Topics from test–retest for radiomic stability to sim-
ulating the effects of spectroscopic magnetic resonance imaging for
radiation planning in glioblastoma showed that the network was
moving away from initial development of algorithms and methods
to real-world testing and analysis of quantitative methods.

In the SPIE Journal of Medical Imaging (Volume 5, Number
1), QIN was invited to submit original research articles on quanti-
tative imaging. By this time, the field had grown so large that a
number of institutions outside those supported by the QIN pro-
gram contributed to the special SPIE issue. Despite this, the
articles from QIN show a sustained progress from development
discussions to clinical evaluation of quantitative tools. In addi-
tion, a glance at the author lists shows extensive collaboration
among QIN teams.

As mentioned earlier, Tomography (Volume 5, Number 1;
2019) highlighted the effort made by QIN to benchmark devel-
oped tools in order to prioritize tools and methods ready for clini-
cal testing. This issue stands as a watershed between QIN as a

developer of quantitative imaging tools and QIN as a contributor
of tools used in clinical evaluation. A complete list of the papers
published in that issue of Tomography are listed in the References
section of this paper [1–27].

Benchmark prioritization, however, is only the first step to-
ward bringing qualified imaging tools into clinical utility.
Announcing the availability and function of the clinically ready
tools to appropriate users is another necessary task in the transla-
tion from development to clinical utility. To do this, QIN initiated
efforts to present information on several clinically ready tools to
the cooperative groups of the National Clinical Trial Network
(NCTN). This process of presenting tools and their performance
characteristics cannot be a one-time event, and the introduction
of tools to these groups will continue. This issue of Tomography
is an excellent example of another way to present QIN tools to
the user community. Focusing specifically on tools and progress
from the QIN, this issue shows the breadth of the challenges
being met by the network.

QIN NETWORK OF EXPERTS AND ADVANCES
A strength of the network is the extent of collaboration that
exists, as noted by the enclosed 24 articles coauthored by
members of different teams within QIN (28–51). Another no-
table feature to highlight is the continued interest and use of
deep learning and radiomics to extract quantitative informa-
tion from medical images. QIN was an early subscriber and
contributor to these methods, and several articles here show
that the use of these information extraction methods in
imaging is increasing.

QIN often tackles research challenges that individual
research investigators ignore. I direct your attention to several
important examples in this issue. The article, “Standardization in

Figure 1. Growth of articles from
PubMed with the words
“Quantitative Imaging” in the title.
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Quantitative Imaging: A Multi-Center Comparison of Radiomic
Features from Different Software Packages on Digital Reference
Objects and Patient Data Sets” by McNitt-Gray et al. (35) shows
not only the degree of collaboration that has been established in
the network but also the type of challenge the investigators are
choosing to attack. Standardization of software packages is a
task that can be undertaken only when a large number of collab-
orating research groups come together and apply the necessary
resources to accomplish the task.

Other studies that are necessary for acceptance of quantita-
tive methods in the clinical environment include multisite uses
of tools to determine performance characteristics in different
clinical environments and imaging platforms. Smith et al. (29)
look at this problem in “Multi-Site Technical and Clinical
Performance Evaluation of Quantitative Imaging Biomarkers
from 3D FDG PET Segmentations of Head and Neck Cancer
Images.”

Jones (28) provides insight into the workings of one of the
several working groups of the network in her article, “Clinical
trial design and development work group within the Quantitative
Imaging Network.” Other working groups in the network include
bioinformatics/IT and data sharing, image analysis, and perform-
ance metrics, magnetic resonance imaging data collection, and
positron emission tomography (PET)/computed tomography (CT)
data collection.

QIN has had the privilege of receiving 2 research teams from
Canada into the network. Both teams were supported by the
Canadian Government and have been eager contributors to

network progress even after their support ended. The group from
Princess Margaret Hospital takes a serious look at 4DCT attenua-
tion correction in gated PET for hypoxia (49). Researchers from
the other Canadian member, the University of British Columbia,
are part of the standardization article mentioned earlier (35).

Finally, I urge the readers to pay attention to the various
articles on radiomics, deep learning, and data mining methods
for extracting information from the images. These show that
quantitative imaging is firmly rooted in the aforementioned sta-
tistical and analytical methods.

Direct support for QIN by NCI is now terminated, but that
does not mean that research in quantitative imaging will not be
supported in the future. Teams already part of the network will
continue to be supported throughout their grant cycle, and new
opportunities for quantitative imaging research can be provided
through existing grant mechanisms such as the NCI parent
announcement. Special funding to support the transition of tools
into clinical utility is being planned and may be in place soon.

SUMMARY
Quantitative imaging has matured from small development and
demonstration projects in isolated universities and clinics to a
substantial evolutionary effort encompassing scientific and sta-
tistical skillsets. It is being used to show increased efficiency in
clinical trials and to shedd light on important cancer characteris-
tics. QIN has a strong history in moving quantitative imaging
forward and will continue to do so for years to come.
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