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DNA methylation-based biomarkers were suggested to be promising for early cancer
diagnosis. However, DNA methylation-based biomarkers for esophageal squamous cell
carcinoma (ESCC), especially in Chinese Han populations have not been identified and
evaluated quantitatively. Candidate tumor suppressor genes (N = 65) were selected
through literature searching and four public high-throughput DNA methylation microarray
datasets including 136 samples totally were collected for initial confirmation. Targeted
bisulfite sequencing was applied in an independent cohort of 94 pairs of ESCC and
normal tissues from a Chinese Han population for eventual validation. We applied
nine different classification algorithms for the prediction to evaluate to the prediction
performance. ADHFE1, EOMES, SALL1 and TFPI2 were identified and validated in the
ESCC samples from a Chinese Han population. All four candidate regions were validated
to be significantly hyper-methylated in ESCC samples through Wilcoxon rank-sum test
(ADHFE1, P = 1.7 × 10−3; EOMES, P = 2.9 × 10−9; SALL1, P = 3.9 × 10−7; TFPI2,
p = 3.4 × 10−6). Logistic regression based prediction model shown a moderately ESCC
classification performance (Sensitivity = 66%, Specificity = 87%, AUC = 0.81). Moreover,
advanced classification method had better performances (random forest and naive
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Bayes). Interestingly, the diagnostic performance could be improved in non-alcohol use
subgroup (AUC = 0.84). In conclusion, our data demonstrate the methylation panel of
ADHFE1, EOMES, SALL1 and TFPI2 could be an effective methylation-based diagnostic
assay for ESCC.

Keywords: esophageal squamous cell carcinoma (ESCC), DNA methylation, biomarker, diagnosis, targeted
bisulfite sequencing (TGS)

BACKGROUND

Esophageal cancer is one of the most aggressive malignant
tumors with high prevalence and poor prognosis worldwide
(Siegel et al., 2016). Esophageal cancer usually occurs as two
subtypes, esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EAC), which differed significantly
in pathogenesis, pathology, epidemiology and geographical
distribution (Enzinger and Mayer, 2003). The regions of
the highest occurrence of esophageal cancer stretching from
northern China to northwestern Iran, including Japan and India,
are localized in the so-called Asian Esophageal Cancer Belt (Kmet
and Mahboubi, 1972; Khuroo et al., 1992). The prevalence of
ESCC and EAC in these regions are significantly unbalanced
with 90% of esophageal cancer patients are ESCCs (Jemal et al.,
1972). In addition, the clinical outcomes of ESCC patients
depend largely on its diagnosed stage (Enzinger and Mayer,
2003). The majority of ESCCs are diagnosed at advanced stages
and the overall 5-year survival rate is relatively poor, while the
5-year survival rate for early stage diagnosed ESCC patients
is significantly higher (Besharat et al., 2008). Therefore, it is
imperative to identify biomarkers for early diagnosis of ESCC
patients.

DNA methylation, which usually occurs in CpG dinucleotides,
functioning as an epigenetic modification in mammalian genome
and is involved in regulating gene and microRNA expression
and alternative splicing. Global hypo-methylation as well as
the hyper-methylation of CpG islands in the tumor suppressor
genes have been widely identified in the process of tumorigenesis
(Baylin et al., 2001). DNA methylation was the first epigenetic
alteration to be identified in cancer and multiple lines of studies
have found that DNA methylation alterations could serve as
biomarkers for cancer diagnosis including ESCC. For example,
dozens of genes have been reported to be hyper-methylated in
ESCC, including APC, MGMT, CDH1, RASSF1 (Kawakami et al.,
2000; Kuroki et al., 2003; Takeno et al., 2004; Chen et al., 2012).
In addition, due to the heterogeneity of ESCC, a single biomarker
could only achieve relatively limited prediction ability, which
calling for the comprehensive combinations of these candidate
biomarkers.

In the present study, we first collected 65 candidate tumor
suppressor genes and evaluated their methylation status in ESCC
and adjacent control tissues from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) datasets. After
a stringent biomarker selection procedure, four of the candidate
hyper-methylated genes (ADHFE1, EOMES, SALL1, TFPI2) were
validated with high-throughput datasets from public databases.
Moreover, the methylation profiles of these four genes were

further validated with targeted bisulfite sequencing method in
94 pairs of ESCC tumor and adjacent control tissues from a
Chinese Han population, yielding a robust performance for ESCC
diagnosis.

MATERIALS AND METHODS

Biomarker Selection Based on
Publications and Public Datasets
Firstly, Candidate tumor suppressor genes were collected
through the keyword matching (“tumor suppressor gene”) with
custom script among 91,225 abstract downloaded from PubMed
database and manually re-checked (listed in Supplementary
Table 1). In order to test the methylation status of these 65
candidate genes in ESCC patients, we searched high-throughput
microarray datasets in TCGA and GEO database to collect the
DNA methylation profiles of the ESCC samples. After stringent
quality control, we found that TCGA project has quantified
the methylation profiles of 84 ESCC and 3 normal tissues, as
well as 78 EAC and 13 normal tissues. Due to the similarities
which were shown through PCA analysis between adjacent
control tissues from ESCC and EAC, the 13 normal tissues of
EAC were included in our combined dataset as controls equally
(Supplementary Figure 1). In addition, three datasets in GEO
database named GSE52826, GSE74693 and GSE79366 were also
retrieved, including 26 ESCC and 10 normal tissues. Eventually,
110 ESCC and 26 normal tissues were included from TCGA/GEO
for further study. ComBat was applied for removing the batch
effect between the different datasets (Leek et al., 2012). Due
to the fact that we want to obtain the diagnostic biomarkers
which might be applied for liquid biopsy, we then defined the
CpG sites with high methylation percent (>0.25) in the ESCCs
and relatively lower methylation percent (<0.25) in the adjacent
control tissues as the significant CpG sites. Further, it is widely
acknowledged that the methylation status of CpG sites was largely
variable in different cell types. As a result, we then filtered
out the significant CpG sites with high methylation percentage
(>0.25) in either peripheral blood mononuclear cells (PBMC,
N = 111) or peripheral blood leucocytes (PBL, N = 527) of the
healthy normal samples from the GEO database. The PBMC
dataset came from the GSE53045 dataset, and the PBL dataset
was the combination of GSE36054 and GSE42861 dataset (Alisch
et al., 2012; Liu et al., 2013; Dogan et al., 2014). Moreover, we
selected the candidate genes with at least two eligible significant
CpG sites for further validation. In summary, six genes were
included (ADHFE1, EOMES, RUNX1, SALL1, TFPI2, WT1,
Supplementary Table 2). After that, we designed the primers
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for these six genes separately and then applied for multiplex
PCR system. Due to the GC percent, PolyT and the number of
SNPs in the primers of our targeted regions, we only obtained
the multiplex PCR system consisting of the four genes including
ADHFE1, EOMES, SALL1, TFPI2 but could not generate enough
high quality reads for RUNX1 and WT1. Therefore, these two
genes were then discarded for further analysis. Finally, we
validated the methylation of these four candidate genes with 94
pairs of Chinese ESCC and control samples (Table 1).

Patients and Samples
Esophageal squamous cell carcinoma samples and their paired
adjacent control tissues were obtained for validation study
from the First Affiliated Hospital of Soochow University and
Fourth Military Medical University between the years of 2011
and 2015. All procedures performed in this study were in
accordance with the ethical standards of the institutional
research committee and with the 1964 Helsinki declaration
and its later amendments. The studies were approved by the
institutional review boards of Soochow University at Jiangsu
Province and Fudan University, Shanghai, China. Written
informed consent was obtained from each study subject. In
addition, all of the subjects were re-examined and confirmed
by professional pathologists for histopathological diagnosis.
All tissues were immediately frozen at −80

◦

C after surgical
resection. Face-to-face interviews were conducted by professional
investigators with a comprehensive questionnaire, including
clinical information on tobacco smoking, alcohol consumption
and family history.

DNA Extraction, Bisulfite Conversion and
Targeted Bisulfite Sequencing
Genomic DNA from ESCC tumor tissue and adjacent control
tissue samples were extracted by AllPrep DNA/RNA Mini Kit
(Qiagen, Duesseldorf, Germany) according to the manufacturer’s

protocols. For methylation analysis, 500 ng genomic DNA was
subjected to bisulfite conversion using the EpiTect Fast DNA
Bisulfite Kit (Qiagen, Duesseldorf, Germany). A multiplex PCR
was performed first with optimized primer sets combination
(Supplementary Table 3). PCR amplicons were diluted and
amplified using indexed primers and the products (170 –
270 bp) were separated by agarose electrophoresis and purified
by QIAquick Gel Extraction kit (Qiagen, Duesseldorf, Germany).
Libraries from different samples were quantified and pooled
together equally, sequenced with the Illumina Hiseq 2000
platform according to the manufacturer’s protocols. BSseeker2
software was utilized for reads mapping and methylation calling
(Guo et al., 2013). Samples and CpG sites with high missing
rates (>30%) were removed. In order to make sure the reliability
of the technique and analysis pipeline, we take LINE-1 as the
technical control, whose methylation rate was decreased in
cancer tissues compared with normal tissues. Therefore, LINE-
1 methylation status was applied to check the credibility of
the experiments. Meanwhile, the conversion ratio of C to T in
non-CpG sites were applied to evaluate the bisulfite conversion
efficiency.

The 5-aza-2′-deoxycytidine Treatment
and Quantitative-PCR
CaEs-17 cells lines were split to low density (25% confluence)
per well into 6-well cell culture plates and incubated at 37◦C
in a humidified incubator with 5% CO2, following culturing
overnight. Cells were treated with 5-aza-2′-deoxycytidine (DAC,
Sigma, St. Louis, MO, United States) at a concentration of
20 µM in the growth medium, which was exchanged every
24 h for a total of 96 h treatment. After treatment, total RNA
was extracted using TRIzol reagent (ThermoFisher, Rockford,
IL, United States) from cultured cells. Reverse transcription
was performed using 1.5 µg total RNA with an All-in-One
cDNA Synthesis SuperMix (Bimake, Houston, TX, United States)

TABLE 1 | The methylation status of the 6 CpG sites in the TCGA dataset and the validation dataset.

CpGsite Gene Position(hg19) Relation to CpG_Island McaMa McoMa P-valueb Sensc Specc AUCc

TCGA cg20295442 ADHFE1 chr8:67344665 Island 0.26 0.15 0.18 0.42 0.85 0.61

cg20912169 ADHFE1 chr8:67344720 Island 0.26 0.14 0.22 0.46 0.85 0.60

cg22383888 EOMES chr3:27764816 N_shore 0.53 0.22 3.10 × 10−7 0.77 0.92 0.87

cg04550052 SALL1 chr16:51184355 Island 0.46 0.22 7.10 × 10−5 0.79 0.85 0.78

cg04698114 SALL1 chr16:51184379 Island 0.47 0.22 1.90 × 10−4 0.77 0.85 0.77

cg12973591 TFPI2 chr7:93519473 Island 0.33 0.15 0.06 0.63 0.88 0.65

Validation cg20295442 ADHFE1 chr8:67344665 Island 0.18 0.09 5.10 × 10−3 0.28 0.95 0.63

cg20912169 ADHFE1 chr8:67344720 Island 0.17 0.07 2.10 × 10−3 0.30 0.94 0.64

cg22383888 EOMES chr3:27764816 N_shore 0.31 0.11 3.30 × 10−9 0.55 0.94 0.77

cg04550052 SALL1 chr16:51184355 Island 0.29 0.13 2.50 × 10−4 0.44 0.91 0.67

cg04698114 SALL1 chr16:51184379 Island 0.34 0.16 1.10 × 10−6 0.47 0.96 0.72

cg12973591 TFPI2 chr7:93519473 Island 0.25 0.08 3.30 × 10−5 0.49 0.89 0.69

aMcaM represents the mean methylation percentage of the cases, and the McoM represents the mean methylation percentage of the controls. bP-value is calculated
through the Wilcoxon rank-sum test followed by FDR (false discovery rate) adjustment for multiple correction. cSens, sensitivity; while Spec, specificity; AUC, area under
curve. The sensitivity, specificity as well as the AUC were both with a logistic regression prediction model without adjustment for gender, age and smoking status and
alcohol status.
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according to the manufacturer’s protocol. Meanwhile, qPCR was
used to detect the expression of SALL1, EOMES, TFPI2, ADHFE1
mRNA in a reaction volume of 10 µl, including 5 µl SYBR Green
(Bimake, Houston, TX, United States), 1 µl cDNA, 0.5 µl of
each primer and 3 µl water. The mixture was incubated by the
following program: 95◦C for 5 min, 40 cycles of 95◦C for 15 s,
60◦C for 1 min. The primers used for reverse transcription was
listed in Supplementary Table 4.

Statistical Analysis and Machine
Learning
In the first and second stage, we tested the differential
methylation of the CpG sites between cancer and normal
tissues using Wilcoxon rank-sum test. False discovery rate (FDR)
correction was conducted for multiple test correction. In order
to discriminate the ESCC tumor and normal tissues, we utilized
several machine learning methods, including logistic regression
(Package stats), support vector machine (SVM, Package e1071),
random forest (Package randomForest), naïve Bayes (Package
e1071), neural network (Package nnet), linear discriminant
analysis (LDA, Package mda), mixture discriminant analysis
(MDA, Package mda), as well as the flexible discriminant analysis
(FDA, Package mda) followed with five-fold cross-validation. All
statistical analyses were conducted using R 3.2.1 (Dessau and
Pipper, 2008).

RESULTS

Public Datasets Collection and CpG
Sites Validation
In order to quantify the methylation status of these four candidate
genes, public DNA methylation microarray datasets of ESCC
were carefully searched. The detailed biomarker identification
procedure was shown in Figure 1. In total, 110 ESCC tumor
tissues and 26 adjacent control tissues were enrolled (Li et al.,
2014; Hao et al., 2016; Kishino et al., 2016). Based on the
CpG sites selection criteria which was described in Patients and
Methods, six significant CpG sites (cg20295442, cg20912169,
cg22383888, cg04550052, cg04698114, cg12973591) located at
the four candidate genes were selected for validation (Table 1).
Integratively, though some of the six CpG sites did not
reach the statistical significance threshold due to the limited
sample size, we still believed that all of these 6 CpG sites
may be of potential as the non-invasive potential biomarkers
for ESCC and thus were included for validation. To test the
prediction ability based on these six CpG sites, we built a
prediction model based on the logistic regression using the
methylation status of these 6 CpG sites without adjustment for
age, gender and other covariates, which provided a fair good
performance to discriminate between ESCC and normal tissues
(Sensitivity = 79%, Specificity = 92%, AUC = 0.87). To further
evaluate and validate the diagnostic ability of these six CpG sites,
we then conducted the validation study in 94 paired ESCC and
adjacent control tissue samples obtained from the patients from
the Chinese Han population.

Methylation Status Validation With
Targeted Bisulfite Sequencing
The characteristics of the ESCC patients are shown in
Supplementary Table 5 In order to give a robust characterization
of the methylation status of these 6 CpG sites as well as the
four genes, we applied the targeted bisulfite sequencing method,
which was based on the next generation sequencing (NGS)
platforms. Because the NGS platforms could generate millions
of reads with length > 200 bp, we then designed to test four
genomic regions for the four candidate tumor suppressor genes
for validation (Table 2). In the quality control process, we found
that the bisulfite conversion rate (C to T ratio in non-CpG
loci) of our samples were higher than 98%, and no significant
difference was found between the tumor and adjacent control
tissues (Figure 2A). Besides, we used the LINE-1 methylation
status as technical control and showed that our study was
robust and reliable (Figure 2B). In addition, the samples and
the CpG sites with high missing rates were also filtered out
as described in Patients and Methods. After quality control,
163 samples remained for further study. PCA analysis revealed
that a significant distinction between ESCC samples and control
samples (Supplementary Figure 2). Differential methylation
analyses were conducted for the four genomic regions, suggesting
a major difference between the ESCC and adjacent control
tissues (Figures 2C–F). A logistic regression model was then
applied, and showed significant hyper-methylation status of the
six selected CpG sites in the ESCC tissues (Table 1, cg20295442,
p = 5.10 × 10−3; cg20912169, p = 2.10 × 10−3; cg22383888,
p = 3.30 × 10−9; cg04550052, p = 2.50 × 10−4; cg04698114,
p = 1.10 × 10−6; cg12973591, p = 3.30 × 10−5). To better
characterize the methylation status of the four genomic regions
as well as the four candidate genes, we averaged the methylation
status of all the CpG sites in each genomic region and conducted
the DMR analysis with the same approach. We found all these
4 genes are significantly differentially methylated between ESCC
and normal samples (Figure 3). Based on the mean methylation
status of the four genomic regions, the prediction ability of
each region separately was evaluated through logistic regression
without adjustment for age, gender and other covariates. The
sensitivity of each region ranges from 29 to 69%, while the
specificity ranges from 77 to 94%, and the AUC ranges from
0.64 to 0.78 (Table 2). Of these four candidates, EOMES showed
the highest sensitivity (0.69) and AUC (0.78), while the ADHFE1
showed the best specificity (0.94). Moreover, in the logistic model
taking all of the four regions as predictors, we obtained the
sensitivity of 66% and specificity of 87%, as well as the AUC of
0.81 (Supplementary Figure 3).

The Prediction Performance of the
Diagnosis Panel in Different
Classification Models
Several machine learning methods, including logistic regression
model, random forest, support vector machine (SVM),
neural network (NN), Naïve Bayes (NB), linear discriminant
analysis (LDA), mixture discriminant analysis (MDA), flexible
discriminant analysis (FDA), and gradient boosting machine
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FIGURE 1 | Flow diagram of the study design. Candidate tumor suppressor genes were selected based on literature screening, and their methylation status in ESCC
and adjacent control tissues were tested with the ESCC methylation data from the TCGA/GEO datasets. Moreover, the PBMC and PBL methylation datasets from
healthy controls from GEO database were also included for further confirmation. Finally, due to the limitations of the multiplex PCR design, four of the six candidate
tumor suppressor genes were then selected and validated with targeted bisulfite sequencing in an independent Chinese Han ESCC patients.

(GBM) following with fivefold cross validation were utilized for
ESCC classification based on the targeted bisulfite sequencing
regions (Table 3). It turned out that the GBM model achieved
the highest classification accuracy among all machine learning
methods in train stage, whose sensitivity, specificity and accuracy
were 82.6, 85.6, and 84.0%. The Naive Bayes model achieved
the best specificity (91.6%) in the train stage. In the test
stage, the random forest and Naive Bayes performed with the
best sensitivity (72.8%) and specificity (91.0%), respectively.
In addition, the linear discriminant analysis and flexible

discriminant analysis model both achieved the best accuracy
(73.5%).

The Diagnostic Ability in the ESCC
Subgroups
Previous studies have found several risk factors for the incidence
of ESCC, including age, gender, smoking status, and alcohol
status (Wang et al., 2007; Pandeya et al., 2009; Toh et al.,
2010). In order to explore the effects of these risk factors
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TABLE 2 | The mean methylation status of the 4 genomic regions in the validation datasets.

Genomic
Regiona

No. CpG sitesb CpGsite
Included

Gene McaMc McoMc P-valued log10(OR)e 95% CIe Sensf Specf AUCf

chr8:67344610-
67344805

24 cg20295442,
cg20912169

ADHFE1 0.24 0.15 1.70 × 10−3 2.20 1.00–3.72 0.29 0.94 0.64

chr3:27764697-
27764940

8 cg22383888 EOMES 0.38 0.24 2.90 × 10−9 3.88 2.51–5.51 0.69 0.77 0.78

chr16:51184268-
51184468

18 cg04550052,
cg04698114

SALL1 0.37 0.19 3.90 × 10−7 2.41 1.51–3.51 0.53 0.90 0.74

chr7:93519367-
93519503

13 cg12973591 TFPI2 0.28 0.13 3.40 × 10−6 3.82 2.26–5.89 0.50 0.91 0.71

aGenomic region represents the genomic coverage of the reads with targeted bisulfite sequencing, and the genomic coordinates shown here is based on the hg19 version
of the genome. bNo. CpG sites represents the number of the CpG sites in each region. cMcaM represents the mean methylation percentage of the cases in each region,
which consisting of several CpG sites, while the McoM represents the mean methylation percentage of the controls in each region. dP value is calculated through the
Wilcoxon rank-sum test following with FDR (false discovery rate) adjustment for multiple correction. eOR and 95% CI were conducted through logistic regression. fSens,
sensitivity; while Spec, specificity; AUC, area under curve. The sensitivity, specificity as well as the AUC were both with a logistic regression prediction model without
adjustment for gender, age and smoking status and alcohol status.

FIGURE 2 | Quality control and the methylation status of these four candidate genomic regions. (A) Represent the bisulfite conversion rate calculated by using the
number of transformed C to T divided by the number of C of non-CpGs in each sample. (B) Represent the methylation status of the technical control LINE-1, which
has been shown to be hypo-methylated in several different kinds of tumors. (C–F) Represents the CpG sites in regions covering ADHFE1, EOMES, SALL1, TFPI2,
respectively. The x axis represents actual position of each CpG sites in the hg19 reference genome. The y axis represents the mean methylation percentage in the
ESCC tumor tissues as well as the normal tissues for each of the CpG sites.

on the ESCC diagnosis, we conducted the subgroup analyses.
Similarly, the mean methylation percentage of each genomic
region was utilized. To explore the diagnostic ability in the
young/old samples, we first divided the samples according to the
median age of our patients. No significant difference between the
sensitivity, specificity and the AUC between the two subgroups
(Supplementary Table 6). The AUCs in the two subgroups was
0.82 and 0.80 for the young and old subgroups, respectively
(Supplementary Figures 4A,B). When it comes to the gender,

the difference was still quite limited (AUC: 0.79 vs. 0.82 for male
and female subgroups, Supplementary Table 7). Similarly, no
significant difference of the diagnostic performances was found
between smoker/non-smoker subgroup analysis (Supplementary
Table 8). However, when concentrating on the effect of alcohol
use, we found that the non-alcohol use subgroup showed
obviously higher AUC than that of the alcohol use subgroup (0.84
vs. 0.77 respectively, Supplementary Table 9). The significant
difference in the diagnostic performance between the alcohol use

Frontiers in Genetics | www.frontiersin.org 6 September 2018 | Volume 9 | Article 356

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00356 September 4, 2018 Time: 9:43 # 7

Wang et al. Epigenetic Biomarkers in Esophageal Cancer

FIGURE 3 | The mean methylation status of each genomic region in tumor and normal tissues. (A–D) Represent the mean methylation status of the genomic regions
covering ADHFE1, EOMES, SALL1, TFPI2, respectively. Each point represents mean methylation percentage in a genomic region of a sample. The boxplot showed
the overall methylation percentage of different groups in each genomic region. P-value is calculated through the Wilcoxon rank-sum test and the
Benjamini-Hochberg procedure was applied for multiple test correction.

and non-alcohol use subgroup indicates that alcohol use may
contribute to the epigenetic changes in ESCC as well as to the
pathogenesis of ESCC (Supplementary Figures 4C–H).

The Association Between Gene
Expression and Methylation of the
Candidate Genes
It is widely accepted that the gene methylation could regulate
the gene expression level and further affect the physiological
activities. To assess the associations between gene expression
and methylation of these four candidates, we conducted

the study to demethylase the human esophageal squamous
carcinoma cell line (CaES-17) with 5-aza-2′-deoxycytidine and
quantified the gene expression of these candidate genes. We
found three of these four genes (EOMES, SALL1 and TFPI2)
shown a significant up-regulation after 5-aza-2′-deoxycytidine
treatment, while ADHFE1 showed a slight up-regulation yet the
statistic test was not quite significant (Figure 4). In summary,
our results validated the inverse correlations between gene
expression and methylation of these four genes, and suggesting
that abnormal methylation change of these genes might be
involved in ESCC carcinogenesis mediated by gene expression
change.

Frontiers in Genetics | www.frontiersin.org 7 September 2018 | Volume 9 | Article 356

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00356 September 4, 2018 Time: 9:43 # 8

Wang et al. Epigenetic Biomarkers in Esophageal Cancer

TABLE 3 | Diagnosis accuracy, sensitivity and specificity of different classification models with fivefold cross-validation.

Methods Train Test

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Logistic Regression 0.683 0.873 0.773 0.645 0.830 0.732

Random Forest 0.726 0.739 0.732 0.728 0.741 0.734

Supporting Vector Machine 0.635 0.907 0.764 0.599 0.881 0.731

Naive Bayes 0.539 0.916 0.718 0.532 0.910 0.709

Neural Network 0.701 0.841 0.768 0.667 0.794 0.726

Linear Discriminant Analysis 0.617 0.906 0.754 0.594 0.894 0.735

Mixture Discriminant Analysis 0.618 0.868 0.736 0.564 0.843 0.695

Flexible Discriminant Analysis 0.616 0.907 0.754 0.594 0.894 0.735

Gradient Boosting Machine 0.826 0.856 0.840 0.699 0.728 0.713

The mean methylation percentage of each genomic region was considered as the independent variable for constructing the models, which means that all of the models
were based on these five independent variables without adjustment for gender, age, smoking status and alcohol status. Sensitivity, specificity and classification accuracy
were the mean value in fivefold cross-validations with 1,000 replications.

FIGURE 4 | Gene expression change of candidate genes after the treatment
of 5-aza-2′-deoxycytidine. The expression profiles of these four genes before
and after 5-Aza treatment in CaES-17 cell line was shown. The RNA
quantification was conducted at three replicates for each gene and the
GAPDH mRNA levels were used as an internal standard. The 2−11Cq

method was used to analyze the relative changes in these four genes. The
Student’s t-test was carried out to test the differential expression after the
5-Aza treatment. ∗ Indicates P < 0.05, ∗∗ indicates P < 0.01 while ∗∗ indicates
P < 0.001.

DISCUSSION

In this study, 4 out of 65 candidate tumor suppressor genes
(ADHFE1, EOMES, SALL1, TFPI2) were found to be hyper-
methylated in ESCC tissues while hypo-methylated in the
adjacent control tissues as well as the peripheral blood samples,
and were further validated in an independent 94 pairs of ESCC
and adjacent control tissues from Chinese Han population.

Of these four candidate genes, alcohol dehydrogenase,
iron containing 1 (ADHFE1) encodes hydroxyacid-oxoacid
transhydrogenase, which is responsible for the oxidation
of 4-hydroxybutyrate in mammalian tissues (Kardon et al.,
2006). ADHFE1 promoter hyper-methylation was found in

colorectal cancer (CRC) and the alcohol could down-regulate the
expression of ADHFE1 through hyper-methylation and further
induce the proliferation of CRC cells (Tae et al., 2013; Moon
et al., 2014). Meanwhile, Xi et al. also identified that ADHFE1
was one of the target genes of differentially expressed miRNAs
in esophageal adenocarcinomas (Xi and Zhang, 2017).

EOMES belongs to the TBR1 (T-box brain protein 1)
sub-family of T-box genes, encoding a transcription factor
which is necessary for the embryonic development. It has
been reported that EOMES promoter methylation could serve
as a promising biomarker for the prediction of occurrence,
recurrence and prognosis of bladder cancer (Reinert et al.,
2011, 2012; Kim et al., 2013). In addition, EOMES has also
been confirmed to have potential anti-cancer functions through
siRNA experiments, and was regarded as a candidate tumor
suppressor gene for human hepatocellular carcinoma (Gao et al.,
2014). Spalt like transcription factor 1 (SALL1) encodes a
zinc finger transcriptional repressor, which has recently been
identified as a tumor suppressor gene, whose expression was in
positive correlation with CDH1 and associated with the survival
of patients in breast cancer (Wolf et al., 2014). In addition,
SALL1 hyper-methylation has already been confirmed as the
diagnostic biomarker for breast cancer and other epithelial
cancers, especially for the colorectal cancer (Hill et al., 2010).

Tissue factor pathway inhibitor 2 (TFPI2) encodes a member
of the Kunitz-type serine proteinase inhibitor family, and was
found to be down-regulated in 75% of esophageal carcinomas
and in most esophageal carcinoma cell lines (Ran et al., 2009).
Moreover, Jia et al. (2012) have found that the TFPI2 is
frequently methylated in esophageal cancer with a progression
tendency, and the restoration of TFPI2 expression could inhibit
the invasion, migration, colony formation and proliferation in
KYSE70 cell line. Therefore, multiple studies have incorporated
TFPI2 into the DNA methylation-based diagnostic panel for
ESCC early diagnosis (Corrie et al., 2009; Tsunoda et al., 2009).
Similarly, Chettouh et al. (2017) also showed that the methylation
status of TFPI2 promoter could detect Barrett’s esophagus when
applied to Cytosponge samples (Chettouh et al., 2017). Moreover,
Liu et al. also revealed that celecoxib, which was reported to
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induce promoter demethylation and reactivate expression of
some metastasis-suppressor genes in lung cancer cells, could
demethylate the methylation status of TFPI2 in vivo and up-
regulate the gene expression as well as inducing the apoptosis of
cancer cells (Liu et al., 2016). Therefore, the DNA methylation
status of TFPI2 may also be implicated in ESCC treatment.

The accurate early diagnosis of cancer is a great challenge
due to the cancer heterogeneity. In our study, we selected four
candidate tumorigenesis genes and applied the targeted bisulfite
sequencing method to explore the methylation status of our
candidate CpG sites as well as their adjacent genomic regions,
thus yielding a robust estimation of the methylation status of the
candidate genes. With the fast development of NGS technology,
the targeted bisulfite sequencing method is becoming more and
more popular for methylation detection because of high accuracy,
high-throughput and cost-effective. In the past studies, we found
the single DNA methylation biomarker usually cannot provide
enough prediction power in cancer diagnosis. According to
our results, the panel consisting of these four candidate genes
could distinguish the ESCC tumors with higher specificity and
sensitivity compared with single biomarker.

In summary, a panel with four genes was identified and
achieved a fair good accuracy in classifying ESCC from normal
tissues. However, according to diagnosis performance, our
prediction model still has more space to be improved when
we introduce more biomarkers. Multi-omics datasets, including
genomics, epigenomics and proteomics, which could provide
biomarkers in different biological layers, could contribute to
the accurate non-invasive diagnosis of ESCC in the future. In
addition, the diagnostic ability of our panel was only validated
in ESCC samples but not in EAC samples due to our limited
samples, and further studies based on EAC samples should be
conducted.

CONCLUSION

Integrated analysis of public literatures and multiples high-
throughput DNA methylation microarray datasets were
conducted and discovered four tumor suppressor genes
(ADHFE1, EOMES, SALL1, TFPI2) as the candidate biomarkers
for ESCC diagnosis. All four tumor suppressor genes were
then successfully validated in an independent cohort including
94 pairs of ESCC and adjacent control tissues. Moreover,
the EOMES showed the highest sensitivity (0.69) and AUC
(0.78), while the ADHFE1 showed the best specificity (0.94).
Methylation profiles of ADHFE1, EOMES, SALL1, TFPI2 could
be an effective methylation-based assay (Sensitivity = 0.66,

Specificity = 0.87, AUC = 0.81) for the ESCC diagnosis with
high specificity.
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