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Introduction: Modeling on infectious diseases is significant to facilitate public health

policymaking. There are two main mathematical methods that can be used for the

simulation of the epidemic and prediction of optimal early warning timing: the logistic

differential equation (LDE) model and the more complex generalized logistic differential

equation (GLDE) model. This study aimed to compare and analyze these two models.

Methods: We collected data on (coronavirus disease 2019) COVID-19 and four other

infectious diseases and classified the data into four categories: different transmission

routes, different epidemic intensities, different time scales, and different regions, using

R2 to compare and analyze the goodness-of-fit of LDE and GLDE models.

Results: Both models fitted the epidemic curves well, and all results were statistically

significant. The R2 test value of COVID-19 was 0.924 (p < 0.001) fitted by the GLDE

model and 0.916 (p < 0.001) fitted by the LDE model. The R2 test value varied between

0.793 and 0.966 fitted by the GLDE model and varied between 0.594 and 0.922 fitted by

the LDE model for diseases with different transmission routes. The R2 test values varied

between 0.853 and 0.939 fitted by the GLDE model and varied from 0.687 to 0.769

fitted by the LDE model for diseases with different prevalence intensities. The R2 test

value varied between 0.706 and 0.917 fitted by the GLDE model and varied between

0.410 and 0.898 fitted by the LDE model for diseases with different time scales. The

GLDEmodel also performed better with nation-level data with the R2 test values between

0.897 and 0.970 vs. 0.731 and 0.953 that fitted by the LDE model. Both models could

characterize the patterns of the epidemics well and calculate the acceleration weeks.
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Conclusion: The GLDE model provides more accurate goodness-of-fit to the data than

the LDEmodel. The GLDEmodel is able to handle asymmetric data by introducing shape

parameters that allow it to fit data with various distributions. The LDE model provides an

earlier epidemic acceleration week than the GLDE model. We conclude that the GLDE

model is more advantageous in asymmetric infectious disease data simulation.

Keywords: infectious diseases, logistic differential equation model, generalized logistic differential equation

model, curve fitting, goodness-of-fit

INTRODUCTION

Starting in December 2019, coronavirus disease 2019 (COVID-
19) outbreak has spread widely around the world (1, 2). On
March 11, the WHO declared COVID-19 as a global pandemic
(3). Up to now, the total number of confirmed cases has reached
338,164,251, including 55,67,277 deaths, which causes a severe
disease burden in many countries and regions around the world.

In addition to COVID-19, a variety of emerging infectious
diseases in recent years, such as severe acute respiratory
syndrome (SARS), influenza A virus subtype H1N1 (A/H1N1),
Ebola virus disease (EVD), Middle East respiratory syndrome,
and avian influenza, also pose serious threats to human health
and life safety (4–6). Since the SARS outbreak in 2003, the
government, research institutions, and public health departments
have fully realized the importance of rapid identification and
early intervention in infectious diseases (7, 8). In the following
years, China’s public health system has undergone a series of
adjustments. Early prevention and control strategies of the
epidemic were gradually improved through the implementation
of various prevention and control measures, which have also
greatly improved the prevention and control of infectious
diseases in China (4, 9). However, with the rampant emergence of
new infectious diseases such as COVID-19, the global infectious
disease prevention and control situation remain grim and poses a
serious threat to the global economy and national wellbeing (10).

Currently, the development of epidemic response strategies
is usually based on traditional epidemiological and empirical
methods. However, these methods are difficult to meet public
health requirements, such as assessing the effectiveness of
prevention and control measures, when there are significant
uncertainties in the epidemiology of infectious diseases,
including unknown or readily mutable epidemic pathogens,
unclear transmission characteristics, long and complex
pathogenesis, and low reproducibility in most cases. Therefore,
when analyzing epidemics, we need an effective tool to repeatedly
simulate the transmission routes of infectious diseases and to
rapidly predict epidemics in different severity states for the

Abbreviations: LDE, logistic differential equation; GLDE, generalized logistic

differential equation; COVID-19, coronavirus disease 2019; SARS, severe acute

respiratory syndrome; A/H1N1, influenza A virus subtype H1N1; EVD, Ebola

virus disease; SIR, susceptible-infective-removed; SEIAR, Susceptible-exposed-

infective-asymptomatic-removed; HFMD: hand, foot, and mouth disease; AHC:

acute hemorrhagic conjunctivitis; CDC, The Center for Disease Control and

Prevention;WHO,World Health Organization; LRMS: the least root mean square;

R2, the coefficient determination.

purpose of prediction and early warning. In this context, the
phenomenological model is particularly important for disease
transmission modeling to estimate transmission potential at an
early stage, predict the epidemic trajectory in the short term, and
forecast the final epidemic size (11).

Since the end of the 20th century, mathematical models have
been widely used in the reproduction of the new features of the
dynamics of the epidemic, simulating, predicting, early warning,
and the formulation of public health strategies (12–16), such
as the logistic differential equation (LDE) model, autoregressive
integrated moving average model, and transmission dynamic
model. Due to the lack of strict mechanistic explanation of
transmission and disease etiology (such as incubation period,
latent period, and infectious period), the application of the
logistic models in human epidemiology is not as extensive as that
of transmission dynamic models such as susceptible-infective-
removed (SIR) and susceptible-exposed-infective-asymptomatic-
removed (SEIAR) models (1, 2, 17). However, its simplicity,
low parameter requirements, and ability to visualize and rapidly
reflect the prevalence of an epidemic have given it a place in
the study of mechanistic models (18, 19), especially considering
the urgency and severe consequence of the COVID-19 pandemic
for public health management and decision-making. In the
context of COVID-19, the LDE model was used to explain
the epidemic (20–22). Studies have demonstrated that the LDE
model can show differences in key disease dynamic parameters
before and after interventions in China (17) and can determine
when the rate of epidemic growth decreases (2). The generalized
logistic differential equation (GLDE) model has also been used
in practical applications (1, 21, 23–26). For example, studies
have used the GLDE model to make simple predictions of the
transmission potential and end time of the COVID-19 pandemic,
which suggests it is a valuable tool for characterizing the
transmission dynamics of COVID-19(19) and the effectiveness
of interventions (27).

Our research team has previously applied the LDE model
to quantify epidemics into early, medium, and late stages
and to predict and warn of other infectious diseases such
as hand, foot, and mouth disease (HFMD) (28), influenza
A (H1N1) (28, 29), infectious diarrhea (30), and mumps
(31). As mentioned in our research (32), although the results
show good fitness, there were limitations. The LDE model
requires data symmetry and is not suitable for long-term
fitting. However, the actual data are asymmetric and the fitting
curve is “narrower and taller” or “broader and shorter” than
the actual curve when using the LDE model. The GLDE
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model adds shape parameters based on the LDE model to
compensate for these drawbacks. Therefore, we intend to use
COVID-19 data from Wuhan City to compare and analyze the
advantages and disadvantages of these models in simulating
infectious diseases and to generalize and validate them in
other diseases.

MATERIALS AND METHODS

Data Sources
We collected COVID-19 data. To further generalize and test
the models, we also collected data on the other four diseases,
which include influenza, mumps, HFMD, and acute hemorrhagic
conjunctivitis (AHC). Transmission routes of these diseases were
via respiratory, intestinal, and contact, respectively. Most of
the data of incidence were collected from the National Health
Commission of the People’s Republic of China, and some were
from published studies or WHO.

1) COVID-19: Daily COVID-19 data for Wuhan, China, from
December 2, 2019 to March 16, 2020, were cited from a
previous study by our team (33).

2) Other diseases: (A) Transmission via the respiratory
tract: COVID-19, influenza, and mumps were used as
examples in this paper. We collected the national-level
influenza surveillance data published by WHO for China
from the 1st week of 2001 to the 46th week of 2015.
The influenza data included five subtypes: A(H1N1)
seasonal, A(H1N1pdm09), A(H3N2), B (Victoria lineage),
B (Yamagata lineage), and the sum of influenza A and
B. We also collected national-level influenza surveillance
data published by WHO for Argentina, Australia, China,
Germany, South Africa, and the United States of America
from the 1st week of 2015 to the 52nd week of 2019, and
we used the total number of influenza-positive viruses.
Daily data of mumps for Yichang City, from January
1, 2004 to December 31, 2016, were collected from the
National Health Commission of the People’s Republic
of China.

b) Transmission via intestinal: We took the HFMD of
two regions in China as an example. The weekly
HFMD data from the 1st week of 2009 to the 52nd
week of 2016 in Xi’an City, China were collected
from the National Health Commission of the People’s
Republic of China. The weekly HFMD data from the
1st week of 2009 to the 52nd week of 2017 in Changsha
City, China, were collected from our team’s previous
study (34).

c) Transmission via contact: AHC was taken as an
example. The daily reported AHC data from September
1, 2010 to September 21, 2010 in Hunan Province,
China, were collected from our team’s previous
study (35).

We compared and analyzed the goodness-of-fit and early
warning of the LDE and GLDE models through COVID-19 data.
To further generalize and test, we also classified other disease
data into four categories from different perspectives: different

TABLE 1 | Disease types and areas at different levels.

Group Disease Areas

Different transmission routes Respiratory COVID-19 Wuhan City

Influenza China

Intestinal HFMD Xi’an City and

Changsha City

Contact AHC Hunan Province

Different outbreak sizes Outbreak Influenza A school of

Changsha City

Epidemic Changsha City

Pandemic China

Different time scales Day Mumps Yichang City

Week

Month

Different areas Influenza American, Argentina,

Australia,

China, Germany

and South Africa

transmission routes, different epidemic intensities, different
time scales, and different areas to analyze the advantages and
disadvantages of the models (Table 1). The research framework
is shown in Figure 1.

Epidemic Intensity Definition Based on
Scales of Cases
We classified the influenza data as three epidemic intensities:
outbreak, epidemic, and pandemic according to the definition
from The Centers for Disease Control and Prevention
(CDC) (36).

Epidemic refers to an increase, often sudden, in the number
of cases of a disease above what is normally expected in that
population in that area.

Outbreak carries the same definition of epidemic but is often
used for a more limited geographic area.

Pandemic refers to an epidemic that has spread over
several countries or continents, usually affecting a large number
of people.

Model Development
The LDE Model

The LDE model was mainly used to describe population growth
in the early stage and gradually was applied to the medical field
(22). The differential equation is in Equation (1) (32), and its
general solution is in Equation (2),

dn

dt
= rn(1−

n

N
) (1)

n =
N

1+ e−rt−c
(2)

where n is the cumulative number of cases, N is the upper line
of the cumulative cases, r is the growth rate coefficient, and c is
the constant generated when solving the LDE. dn/dt is the ratio
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FIGURE 1 | Research framework. GLDE, Generalized logistic differential equation; LDE, logistic differential equation; **p < 0.01; ***p < 0.001; EAW, epidemic

accelerate week; WRW, warning remove week.

of cumulative cases to time, which represents the change rate of
cumulative cases n of infectious diseases at time t, and can also
represent the model characteristics of new cases over time.

This model has three parameters, r, n, and N. The parameter
values of r andN determine the specific shape of the model curve,
and accurate parameter estimation will greatly improve fitting.
According to the initial and critical conditions set, the critical
valueN at both ends of the LDE is known, and only the parameter
r is unknown. However, in practical applications, the value of
N is difficult to obtain because of the limitation of conditions;
therefore, parameter estimation is sometimes required.

As the disease develops and immune barriers are built up in
the population, the epidemic gradually reaches a stable state and
the number of new cases gradually decreases until the epidemic
is over. Therefore, the logistic model curve presents a “slow–fast–
slow” trend, which shows an S shape. The point where the LDE
model curve changes from slow to fast is called the inflection
point. Doing the third-order derivation over Equation (2) to
make the new equation equal to zero, and the result is Equation
(3), whereas t1 in Equation (4) is the inflection point of the curve
of the LDE model, that is epidemic accelerate week.

t = −c± 1.317/r (3)

t1 = −c− 1.317/r (4)

The GLDE Model

The LDE model requires data to be symmetrical, but data in
some cases do not meet this requirement. Half a century ago, one
classical logistic model was extended to allow S-shape to have
more flexible curvature in the case of the asymmetric growth
curve, so as to establish Richards’ curve, that is, the GLDE model

(37). After applying four parameters to the LDE model, there
were five types of the GLDE model. The GLDE model with shape
parameters can fit case data of various distribution types, so of
interest in this study was the type of shape parameter introduced.
The differential equation is in Equation (5), and the general
solution is in Equation (6).

dn

dt
=

rn

λ

[

1−
( n

N

)λ
]

(5)

n =
N

(

1+ e−rt+c
)
1
λ

(N, λ, r〉0) (6)

By calculating the first and second derivatives of the general
solution of the GLDE and letting it be 0, we can obtain the
unique inflection point. The growth rate of the GLDE model
curve decreases with a decrease in nt, and the rate of decrease
is related to the shape parameter λ. At first, the curve shape
is concave, and the growth rate accelerates; after the inflection
point, the curve is convex, the growth rate declines and finally
tends to saturation. The GLDE model curve has four parameter
values, r, n, N, and λ, and the shape of the curve is determined by
the values of r, N, and λ.

As can be seen from the equation, when the shape parameters
fall within the range of (0,1), the distribution is skewed to the left;
when they are >1, the distribution is skewed to the right, and
when they are equal to 1, the graph is symmetrically distributed,
that is, the general logistics distribution.

Doing the third-order derivation over Equation (6) to make
the new equation equal to zero, and the result is in Equation (7),
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TABLE 2 | Definitions and sources of model parameter.

Parameter Description Value Range Method

r Growth rate

coefficient

- ≥0 Model fitting

n Cumulative

number of cases

- ≥0 Actual data

N Upper line of the

cumulative cases

- ≥0 Model fitting

λ Shape parameter - ≥0 Model fitting

c Constant - ≥0 Solving differential

equations

whereas t1 in Equation (8) is the inflection point of the curve of
the GLDE model, that is epidemic accelerate week.

t = −
c− ln ( 3±

√
5

2 λ)

r
(7)

t1 = −
c− ln ( 3−

√
5

2 λ)

r
(8)

Parameter Estimation
As shown in Table 2, there were five parameters, where r is the
growth rate coefficient, n is the cumulative number of cases,
N is the upper line of the cumulative cases, λ is the shape
parameter, and c is the constant generated when solving the
differential equations.

The corresponding parameters r, N, and λ are obtained by
model fitting (see Supplementary File 1).

Model Fitting
Model fitting was performed on the number of cases. From the
plots of the LDE model, the epidemic data in accordance with
the LDE model, the plot of the number of cases over time should
have a single-wave shape. Therefore, before fitting, the data must
be divided into different segments, each consisting of a wave.
The division of the data cycle could be determined according
to the transmission characteristics of the diseases. For diseases
with an obvious time cycle, it could be segmented according to
their epidemic cycles. However, most infectious diseases did not
have a specific cycle, or the cycle was not constant over time due
to changes in influencing factors. Therefore, it was difficult to
segment data according to a certain period of time.

Therefore, based on the assumptions of the LDE model and
the characteristics of the curves, we segmented the period during
the epidemic season (the interval between the first trough and
the next trough). When two peaks with large intervals or fine
tail segments appear, we removed these segments and fit only
the peaks of the data. For data where peaks had bifurcations, we
could choose whether to perform segmentation based on the size
of the bifurcation. We compared the differences in the results
by fitting the disease data of different disease types, different
epidemic intensities, different time scales, and different areas
to verify whether the two models can be used to fit the data

of different types of epidemics and to explore their respective
applicable conditions when dividing the “slow–fast–slow” period
for infectious disease progression.

Epidemic Accelerate Time Prediction
The epidemic accelerate weeks of influenza data in each country
were calculated by Equations (5) and (8), respectively. The
epidemic accelerate time in 2019 was predicted according to the
corresponding median from 2015 to 2018 and then compared to
the reality to analyze the predicting effects.

Statistical Methods
Berkeley Madonna 8.3.18 software was used in the simulation of
these models. Microsoft Excel 2019 software (Microsoft Corp,
USA) was used for entering and managing related data and
related mapping. The differential equation solving method was
used with a fourth-order Runge-Kutta method with a tolerance
of 0.001. The model convergence method was the least root mean
square (LRMS) of the simulated data and the actual data. IBM
SPSS Statistics for Windows, version 21.0 was used to calculate
the coefficient of determination (R2) and p-values as the criterion
to analyze and compare the goodness-of-fit of curves,

R2 =
S2y′

S2y
(9)

where the S2y′ is the variance of the fitted value, the S2y is the

variance of the actual value.When p< 0.05, the closerR2 was to 1,
the better the goodness-of-fit of the model. The example data and
Berkeley Madonna code are given in Supplementary Files 2, 3.

RESULTS

The fitting graphs showed that both models fitted the case data
well, and the GLDE model was more suitable for the actual data.
We performed LRMS analysis on the results of the two models
separately and found that all results were statistically significant
(p < 0.05). However, the R2 calculated using the GLDE model to
fit the data was higher (Table 3, Figure 2).

COVID-19

The fitting diagram of COVID-19 in Wuhan city of the two
methods is shown in Figure 3. The first wave of the COVID-19
pandemic in Wuhan lasted 106 days, and the cases showed an
overall single-peak distribution so the data were not segmented.
The number of cases began to decline after January 26, and there
was an outlier on February 1. The R2 test value fitted by the LDE
model was 0.916 (p < 0.001) and the R2 test value fitted by the
GLDE model was 0.905 (p < 0.001).

According to Equations 5, 8, the epidemic acceleration time
of COVID-19 in Wuhan calculated by the LDE model and the
GLDE model was January 23 and January 24, respectively, and
the LDE model was slightly earlier than the GLDE model.
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TABLE 3 | The results of goodness-of-fit.

LDE GLDE

R2 P R2 P

COVID-19 0.916 <0.001 0.924 <0.001

Influenza A H1N1 seasonal 0.855 <0.001 0.905 <0.001

H1N1pdm09 0.883 <0.001 0.938 <0.001

H3N2 0.922 <0.001 0.966 <0.001

Total 0.913 <0.001 0.955 <0.001

Influenza B Victoria lineage 0.904 <0.001 0.911 <0.001

Yamagata lineage 0.917 <0.001 0.939 <0.001

Total 0.766 <0.001 0.947 <0.001

Hand, foot and mouth disease Changsha 0.840 <0.001 0.932 <0.001

Xi’an 0.876 <0.001 0.966 <0.001

Acute hemorrhagic conjunctivitis 0.594 <0.001 0.793 <0.001

Outbreak 0.687 <0.001 0.853 <0.001

Epidemic 0.769 <0.001 0.939 <0.001

Pandemic 0.744 0.001 0.915 <0.001

Day 0.410 <0.001 0.706 <0.001

Week 0.757 <0.001 0.902 <0.001

Month 0.898 <0.001 0.917 <0.001

Influenza American 0.953 <0.001 0.970 <0.001

Argentina 0.900 <0.001 0.942 <0.001

Australia 0.731 <0.001 0.922 <0.001

China 0.846 <0.001 0.897 <0.001

Germany 0.869 <0.001 0.931 <0.001

South Africa 0.799 <0.001 0.970 <0.001

OTHER DISEASES

Infectious Diseases With Different
Transmission Routes
The fitting diagram of A (H1N1) seasonal, A (H1N1pdm09),
A (H3N2), and the total number of influenza A infections
among respiratory infectious diseases are shown in Figures 4a–d.
The figure showed how disease peaks of different subtypes of
influenza differed. The A (H1N1) seasonal data from the 48th
week of 2010 to the 46th week of 2015 were 0. After abandoning
these data, the remaining data were divided into 14 segments
according to the epidemic curve. There were obvious fluctuations
in the two peaks in 2009 and 2010. The epidemic curve showed
that there were more cases in 2001 and 2005 than in 2009. The
highest number of cases per week was 355, and it appeared in
week 8 of 2009. The R2 test value fitted by the LDE model was
0.855 (p< 0.001), and the R2 test value fitted by the GLDEmodel
was 0.905 (p < 0.001). In the influenza A (H1N1pdm09) data,
the data from the 1st week of 2001 to the 17th week of 2009 were
all zero. Therefore, the fitting data starting from the 18th week
of 2009 were divided into eight segments. The epidemic curve
showed that the number of cases in 2009 reached maximum,
with an obvious wave peak. The highest number of cases per
week reached 5,383, which occurred in the 39th week of 2009.
At other times, the number of cases was low and sporadic. The
R2 test value fitted by the LDE was 0.883 (p < 0.001), and the

R2 test value fitted by the GLDE was 0.938 (p < 0.001). The
distribution of influenza A (H3N2) data showed that it could
be divided into 26 segments. The peaks in 2007 and 2012 were
different from the traditional peaks, and they were fluctuated,
with a small fluctuation at the peak. In 2001, from 36 weeks in
2005 to 36 weeks in 2006, and from 14 to 27 weeks in 2011, the
number of cases was relatively small, and the wave peak was not
distinct. The highest number of cases per week was 2,747, which
occurred in the fourth week of 2015. The R2 test value fitted by
the LDE model was 0.922 (p < 0.001), and the R2 test value fitted
by the GLDE model was 0.966 (p < 0.001). The distribution map
of the influenza A summary data showed that it could be divided
into 28 segments. The number of cases after the 28th week of
2009 increased significantly compared with before, and the peak
in 2012 was more flat; the highest number of cases per week was
7,280, which occurred in the 37th week of 2009. The R2 test value
fitted by the LDE model was 0.913 (p < 0.001), and the R2 test
value fitted by the GLDE model was 0.955 (p < 0.001).

The fitting graphs of B (Victoria lineage), B (Yamagata
lineage), and the total number of B types are shown in
Figures 4e–g. B (Victoria lineage) influenza data, which could
be divided into eight segments according to the epidemic curve,
showed that cases began to appear in the 20th week of 2008. The
highest number of weekly cases reached 1,041, which occurred
in week 8 of 2012. The R2 test value fitted by the LDE model
was 0.904 (p < 0.001), and the R2 test value fitted by the GLDE
model was 0.911 (p < 0.001). The B (Yamagata lineage) influenza
data, which could be divided into 12 segments according to the
epidemic curve, with four obvious peaks, showed that the cases
appeared in week 20 of 2008. Among them, the 2014 and 2015
peaks were different from the traditional peaks, and all were
serrated, that was, had two peak values. The highest number of
cases per week reached 1,055, which occurred in week 10 of 2015.
The R2 test value fitted by the LDE model was 0.917 (p < 0.001),
and the R2 test value fitted by the GLDE model was 0.939 (p <

0.001). The distribution map of the influenza B summary data
showed that it could be divided into 17 segments, among which
four relatively dense peak groups appeared after 2010. In contrast
to the traditional wave peaks, they were serrated. The highest
number of cases per week was 2,630, which occurred in week 8
of 2012. The R2 test value fitted by the LDEmodel was 0.766 (p<

0.001), and the R2 test value fitted by the GLDE model was 0.947
(p < 0.001).

The fitting diagrams of HFMD in Xi’an city and Changsha
City among enteric diseases are shown in Figures 4h,i, and the
epidemic curves showed that the two cities annually presented
double seasonal peaks. The epidemic curve of HFMD in Xi’an
City could be divided into 14 segments. From 2009 to 2015, the
peak in the first half was significantly higher than in the second,
and the two peaks in 2016 were not significantly different. The
highest number of cases per week reached 2,013, which occurred
in week 23 of 2015. The R2 test value fitted by the LDEmodel was
0.876 (p < 0.001), and the R2 test value fitted by the GLDE was
0.966 (p < 0.001). The epidemic curve of HFMD in Changsha
City could be divided into 19 segments. The distribution in
2015 differed from other years, not being an obvious bimodal
distribution. Moreover, the first peaks in 2010, 2014, and 2016
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FIGURE 2 | Number of cumulative cases and R2 of logistic and generalized logistic differential equation models. COVID-19, coronavirus disease 2019; HFMD, hand,

foot, and mouth disease; AHC, acute hemorrhagic conjunctivitis; **p < 0.01; ***p < 0.001.

FIGURE 3 | Curve fitting results of logistic and generalized logistic differential equation models of COVID-19.
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FIGURE 4 | Curve fitting results of logistic and generalized logistic differential equation models. (a) A (H1N1) seasonal, (b) A (H1N1pdm09), (c) A (H3N2), (d) A (Total),

(e) B (Victoria lineage), (f) B (Yamagata lineage), (g) B (Total), (h) HFMD of Changsha, (i) HFMD of Xi’an, (j) AHC, (k) Outbreak, (l) Epidemic, (m) Pandemic, (n) Day,

(o) Week, and (p) Month. HFMD, Hand foot and mouth disease; AHC, Acute hemorrhagic conjunctivitis.

differed from the traditional wave peak, all being serrated. The
highest number of cases per week reached 2,163, which occurred
in week 17 of 2014. The R2 test value fitted by the LDEmodel was
0.840 (p< 0.001), and the R2 test value fitted by the GLDEmodel
was 0.932 (p < 0.001).

The fitting diagram of AHC in contact infectious diseases is
shown in Figure 4j, and the data were not segmented. The R2 test
value fitted by the LDE model was 0.594 (p < 0.001), and the R2

test value fitted by the GLDE model was 0.793 (p < 0.001).

Infectious Diseases With Different
Epidemic Intensities
The fitting graphs of the outbreak, epidemic, and pandemic
are shown in Figures 4k–m. The outbreak data fitting results
showed that the goodness-of- fit of the GLDEmodel (R2 = 0.853,
p < 0.001) was better than that of the LDE model (R2 = 0.687,
p < 0.001). The epidemic data were fitted with the flu data of
Changsha City as an example, and the epidemic curve could be
divided into seven segments. The R2 test value fitted by the LDE
model was 0.769 (p < 0.001), and the R2 test value fitted by
the GLDE was 0.939 (p < 0.001). The pandemic data contained
the 2009 and 2010 influenza data of China as an example, and the
epidemic curve could be divided into four segments. The R2 test

value fitted by the LDE model was 0.744 (p < 0.001), and the R2

test value fitted by the GLDE model was 0.915 (p < 0.001).

Infectious Disease From Different Time
Scales
We used two methods to fit the mumps data from Yichang City
with time scales of days, weeks, and months. The results are
shown in Figures 4n–p. When taking days as the time scale, it
could be divided into 21 segments according to the epidemic
curve. Among them, there weremore cases in 2006 and 2013 with
the highest number of daily cases being 56, which occurred on 13
May 2013. The R2 test value fitted by the LDE model was 0.410
(p < 0.001), and the R2 test value fitted by the GLDE model was
0.706 (p < 0.001). When taking weeks as the time scale, it could
be divided into 21 segments according to the epidemic curve.
The highest number of weekly cases was 208, which occurred
in week 19 of 2013. The R2 test value fitted by the LDE model
was 0.757 (p < 0.001), and the R2 test value fitted by the GLDE
model was 0.902 (p < 0.001). When the month was taken as the
time scale, it could be divided into 15 segments according to the
epidemic curve. The highest number of monthly cases was 686,
which occurred in May 2013. The R2 test value fitted by the LDE
model was 0.898 (p < 0.001), and the R2 test value fitted by the
GLDE model was 0.917 (p < 0.001).

Frontiers in Public Health | www.frontiersin.org 8 March 2022 | Volume 10 | Article 813860

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Li et al. GLDE Model to Control COVID-19

Infectious Diseases in Different Areas
The fitting diagram of influenza in each country is shown
in Figure 5. Influenza data in Argentina were divided into 5
segments according to the epidemic curve. The highest number
of weekly cases was 1,072, which occurred in week 22 of 2016.
The R2 test value fitted by the LDE model was 0.9 (p < 0.001)
and the R2 test value fitted by the GLDE model was 0.942 (p <

0.001). Influenza data in Australia were divided into 6 segments
according to the epidemic curve. The highest number of weekly
cases was 1,002, which occurred in week 26 of 2019. The R2 test
value fitted by the LDE model was 0.731 (p < 0.001) and the
R2 test value fitted by the GLDE model was 0.922 (p < 0.001).
Influenza data in China were divided into 8 segments according
to the epidemic curve. The highest number of weekly cases was
8,426, which occurred in week 3 of 2019. The R2 test value
fitted by the LDE model was 0.846 (p < 0.001), and the R2 test
value fitted by the GLDE model was 0.897 (p < 0.001). Influenza
data in Germany were divided into 5 segments according to the
epidemic curve. The highest number of weekly cases was 292,
which occurred in week 9 of 2018. The R2 test value fitted by
the LDE model was 0.869 (p < 0.001), and the R2 test value
fitted by the GLDE model was 0.931 (p < 0.001). Influenza data
in South Africa were divided into 6 segments according to the
epidemic curve. The highest number of weekly cases was 197,
which occurred in week 24 of 2019. The R2 test value fitted by
the LDE model was 0.799 (p < 0.001) and the R2 test value fitted
by the GLDE model was 0.875 (p < 0.001). Influenza data in
America were divided into 6 segments according to the epidemic
curve. The highest number of weekly cases was 26,386, which
occurred in week 5 of 2018. The R2 test value fitted by the LDE
model was 0.953 (p < 0.001), and the R2 test value fitted by the
GLDE model was 0.97 (p < 0.001).

The results showed that the goodness-of-fit of the GLDE
model was all better than that of the LDE model in each country,
and the cumulative cases and the R2 values of the goodness-of-fit
test are shown in Figure 6.

Determination of the Early Warning Week
The parameters were plugged into Equations 5, 8 to calculate each
country’s annual epidemic acceleration week. The last segment
data of the United States and China in 2019 were not a complete
wave, and it was not possible to calculate the warning week, so
it was omitted. The epidemic acceleration weeks of influenza
in each country are shown in Figure 7. There was only one
incidence peak (in winter) in two countries (United States and
Germany). There was only one incidence peak (in summer) in
two countries (Argentina and South Africa), and there was also a
small peak (in autumn) in South Africa in 2018. There was only
one incidence peak (in autumn) in Australia, and there was also
a small peak (in winter) in 2018. In addition to the winter peak,
there was also a summer peak in 2015 and 2017 in China, and
there was only one winter peak in the other years. The parametric
test results showed that the calculated t-test statistic was −0.236
with a corresponding p-value of 0.025, and the difference was
statistically significant, rejecting the assumption that the EAW
calculated by the LDE and GLDE models was the same. So, it can

be considered that EAW calculated by the LDEmodel was earlier
than the GLDE model.

According to the corresponding median from 2015 to 2018,
the epidemic acceleration time in 2019 was predicted. Because
the data were divided according to the epidemic curve of the
disease, the specific starting time of the epidemic in each year
was different, which may affect the prediction of the epidemic
accelerate week, so we excluded prediction values that were not
in the actual year. For example, in Australia, the number of cases
started to increase later in 2019 late than in other years; and in
China, the number of cases began to increase in late 2018 and
reached relatively high in early 2019, and these two predicted
values differed greatly from the actual values, so they were
omitted. The specific numerical value of the epidemic accelerate
week of each country are shown in Supplementary File 4.

DISCUSSIONS

Feasibility Analysis of Models
The curves of the LDE model are sigmoidal or antisigmoidal
(increasing or decreasing). When the second and third
derivatives of themodel equation are solved, two inflection points
and one peak point can be obtained. The two inflection points
divide the LDE model curve into the growth, rapid growth,
and slow growth phases, which respectively correspond to the
beginning, peak, and end of peak periods of the epidemic curve
(29). The LDE model is suitable for symmetric data and has been
widely used in various infectious disease prevention, control, and
early warning studies (28, 29, 38, 39). The curves of the GLDE
model are similar to those of the LDE model and can be divided
into the same three periods. However, due to the introduction of
shape parameters, the GLDEmodel is suitable for symmetric data
and can be used to fit asymmetric data. Currently, some studies
use the GLDE model for data fitting (38).

Advantages and Disadvantages Analysis of
the Models
From the perspective of model derivation, in theory, both models
can be used to predict the development trend of infectious
diseases, but the applicable conditions are different and there
are advantages and disadvantages in the fitting of epidemic
data. The LDE model is simple, understandable, and the second
derivative can be used to determine the early warning time.
However, it has several disadvantages, for example, the model’s
inflexibility, poor fit of asymmetric or fine-tailed distribution
data, and unsuitability for long-term prediction. The GLDE
model can be used for epidemic data of different distribution
types by introducing shape parameters, but the calculation of
epidemic inflection points is more complex. The comparison of
the LDE and GLDE models is shown in Table 4.

The Difference of Model Fitting Results
Both LDE and GLDE models fitted the epidemic curve of the
COVID-19 well, and correlations between fitting data and actual
data were found (R2> 0.9, p < 0.05), and the goodness-of- fit
of the GLDE model was better than that of the LDE model. The
COVID-19 epidemic curve was asymmetrical, and the GLDE
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FIGURE 5 | Curve fitting results of logistic and generalized logistic differential equation models in different areas. (a) American, (b) Argentina, (c) Australia, (d) China,

(e) Germany, and (f) South Africa.

FIGURE 6 | Number of cumulative cases and R2 of logistic and generalized logistic differential equation models in different areas. ***p < 0.001.

model added shape parameters tomake it more suitable for fitting
such data.

Observing the epidemic curves of infectious diseases with
different transmission routes, we found that the regularity of the
epidemic curve of influenza in respiratory infectious diseases was
not distinct. There were many abnormal values and abnormal
peaks. In enteric diseases, the peaks of HFMD were relatively
uniform and had a notable regularity, with double seasonal peaks
in spring and early winter (40–43). Among contagious infectious
diseases, the AHC peak was also slightly different from the
traditional peak.

There were significant outliers in A (H1N1) seasonal 2006,
A (H1N1pdm09) 2009, and the total number of influenza cases

in 2006, B (Yamagata lineage), 2010, and 2011. Only the outlier
segmentation point of B (Yamagata lineage) in 2011 was used,
and the other outliers were at their peak. The goodness-of-
fit test showed that both methods could be used to data fit
the outliers and, except for the LDE model in the form of B
(Yamagata lineage) in 2011, the GLDEmodel fitted the remaining
exceptions better. The derivation process of the LDE and GLDE
models indicates that the models are highly stable. Individual
values do not affect the overall shape of the disease epidemic
curve due to long-term dispersal fluctuations. Therefore, the
appearance of individual outliers does not affect the fit. Due to
shape parameters being introduced, the GLDE may better fit the
emergent outliers.
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FIGURE 7 | The epidemic acceleration week of logistic and generalized logistic differential equation models in different areas. (a) American, (b) Argentina,

(c) Australia, (d) China, (e) Germany, and (f) South Africa.
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TABLE 4 | Comparison of logistic differential equation (LDE) and generalized

logistic differential equation (GLDE).

LDE GLDE

Similarity a) Both are sigmoidal or antisigmoidal (increasing or

decreasing);

c) The curve can be divided into the growth, rapid

growth, and slow growth phases;

d) Both can be used to predict the development trend of

infectious diseases;

e) Both can be used to determine the early warning time;

f) Neither model fitted well for scattered data (flat data

with no obvious peaks);

g) Both are based on epidemiological data analysis

without considering the characteristics and the

climatic condition of the disease

.

Application condition Data satisfying symmetry

distribution

Data of various distribution

types

Input Cumulative cases Cumulative cases

Formula d/dt(n) = r*n*(1-n/N); d/dt(n) = r*n*(1-(n/N) **λ)/l;

Output r,N r,N,λ

Advantages a) Simple;

b) Understandable.

a) Suitable for fitting long-

term epidemic data;

b) Greater flexibility;

c) Better fitting accuracy.

Disadvantages a) Inflexible;

b) Poor fit to asymmetric or

fine-tailed

distribution data;

c) Not suitable for

long-term forecasting.

a) More complicated to

calculate of epidemic

inflection points;

b) May be an

overfitting problem.

For data with a bifurcated peak, if it was not obvious, we
ignored the bifurcation point and directly fit the entire segment,
such as the thirteenth segment of A (H1N1) seasonal data. If it
was obvious, we used the bifurcation point to segment, such as
in the sixth and seventh segments of A (H1N1). The test results
confirmed that with the two methods, the data could be fitted,
but the GLDEmodel fitted better. This may be because the GLDE
model introduces shape parameters that can be used for irregular
data fitting.

In addition, there were many flat data with no obvious peaks
in the influenza data, and the results of the goodness-of-fit tests
showed that neither model fitted well for such scattered data.
The sixth segment data of A (H1N1) seasonal cannot be fitted
with the GLDE model, and the 8th and 10th segments data of
B (Yamagata lineage) cannot be fitted with the LDE model. This
may be because the assumption provided by the LDE model was
that the data should be continuous and the data characteristics
should be distributed. The “0” value often appeared in scattered
data; therefore, the LDE and GLDE models were less commonly
used for fitting scattered data. This is why outbreak, epidemic,
and pandemic data were chosen when fitting data from different
epidemic intensities. The test results also showed that the GLDE
fitted well. The epidemic curve showed that the data of the
three epidemic intensities were asymmetrically distributed and
that the model better fitted asymmetrical distribution data after
introducing the shape parameters.

When the same data were integrated into different time scales,
the fitting results showed that both models produced the best

goodness-of-fit using monthly data, rather than weekly and daily
data. When observing the epidemic curve, we found that the
monthly data distribution was smoother, which indicated that the
data distribution somewhat affected the fitting. In addition, the
GLDE model fitted better than the LDE model at different time
scales. We speculate that the GLDE is more suitable for data with
flat fluctuations after the introduction of the shape parameters.

When fitting cases data in different countries, the GLDE
model fitted better than the LDE model. The pattern of
the epidemic curves of influenza differed among countries,
which was associated with different climatic environments,
geographical conditions, population density, different traditions,
and preventive and control measures (23).

In summary, although the logistic model is simple and rough,
it accurately fits the disease data and describes the epidemic
dynamics. The LDE andGLDEmodels can be used to fit epidemic
data at different levels. The GLDE model fits the actual data
more accurately than the LDE model, and the same result can be
seen in Pelinovsky’s research (23). The approximation accuracy
increased significantly using the GLDE model than the LDE
model, including the data for which the simple LDE model was
not suitable. Studies (44, 45) also found that the introduction
of the shape parameter within the GLDE model significantly
improved the adjustment compared with the LDE model. Due
to the significant contribution of the shape parameter, the GLDE
model can not only better approximate the dynamics of data
but can also capture the real data better. As the LDE model
has limitations regarding the requirements for a skewed data
distribution, in addition, over a long period, the parameters are
not stable due to the interference factors changing, which render
the LDE model unsuitable for fitting long-term epidemic data.
The GLDE model is more suitable for fitting various distribution
data and has better goodness-of-fit than LDE model, and this
improvement is partly due to the additional parameter based on
the LDEmodel. In fact, it is the result of the general statistical rule
that the increase of the number of approximate curve parameters
leads to the increase of the coefficient of determination (23).
Therefore, the GLDEmodel may have the problem of overfitting.
In practical application, we need to select an appropriate model
based on the specific distribution of data. For asymmetrically
distributed disease data, the GLDE model demonstrates greater
flexibility and better fitting accuracy.

The Difference of Determination of the
Early Warning Week
The epidemic acceleration time of COVID-19 in Wuhan city
calculated by the LDE and GLDE models was January 23 and
January 24, respectively. The actual time of lockdown of Wuhan
was January 23, and the calculation result of the LDE model was
closer to reality. The LDE model can accurately calculate the
epidemic accelerate time and then determine the critical time
of the epidemic, which has important reference significance for
relevant departments to take prevention and control measures,
especially in major public health events.

Both LDE and GLDE models can well characterize the
patterns of influenza epidemics in different countries and
calculate the annual acceleration weeks. In general, The EAW
calculated by the LDEmodel is slightly earlier than that calculated
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by the GLDE model. The advantages and disadvantages of the
LDE and GLDE models in early warning need further study.

The fitting principle of logistic models is simple, and the
calculation efficiency is high (46). The current COVID-19
pandemic is a scenario for such models that are of obvious
significance (44). It can provide a rapid and timely description
of epidemic dynamics in the early stage, using simple indicators,
when the epidemiological characteristics of the diseases are
unclear (2). When other factors become widespread, such as the
difference between public health interventions and input cases
abroad, the transmission of infectious diseases may complicate
the research methods, and the logistic models may not be
enough (47). However, it is still an important tool in modeling
epidemics as it accurately estimates the critical points of the
epidemic, allowing public health workers and managers to better
understand the whole process of epidemic development and
formulate scientific prevention and control measures (48).

Combined with the actual data of COVID-19 data and
other infectious diseases, a comparative study was conducted
using the LDE and GLDE models for infectious disease
epidemic simulation and early warning. The scope of our study
included infectious diseases with different transmission routes
(respiratory tract transmission, enteric transmission, and contact
transmission), different epidemic intensities (outbreak, epidemic,
and pandemic), different time scales (day, week, andmonth), and
different areas. Using R2, an indicator that reflects the goodness-
of-fit, we found that the GLDE model provided a more accurate
fit of data than the LDE model. Through the parametric test,
we found that the LDE model provided earlier early warning
week than the GLDEmodel. Therefore, we have reason to believe
that the GLDE model is more advantageous in asymmetric
infectious disease data simulation, however, its advantages of
quantification in the middle and late stages of the epidemic,
prediction, and early warning need to be further studied. In
practice, we can choose appropriate models for disease prediction
and early warning according to the region and the severity of
the disease.

CONCLUSION

The GLDE model provides more accurate goodness-of-fit to the
data than the LDE model. The GLDE model is able to handle

asymmetric data by introducing shape parameters that allow it
to fit data with various distributions. The LDE model provides
the earlier epidemic acceleration week than the GLDE model.
We conclude that the GLDE model is more advantageous in
asymmetric infectious disease data simulation.
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