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Shotgun sequencing of environmental DNA (i.e., metagenomics) has revolutionized the
field of environmental microbiology, allowing the characterization of all microorganisms
in a sequencing experiment. To identify the microbes in terms of taxonomy and
biological activity, the sequenced reads must necessarily be aligned on known microbial
genomes/genes. However, current alignment methods are limited in terms of speed and
can produce a significant number of false positives when detecting bacterial species or
false negatives in specific cases (virus, plasmids, and gene detection). Moreover, recent
advances in metagenomics have enabled the reconstruction of new genomes using de
novo binning strategies, but these genomes, not yet fully characterized, are not used
in classic approaches, whereas machine and deep learning methods can use them as
models. In this article, we attempted to review the different methods and their efficiency
to improve the annotation of metagenomic sequences. Deep learning models have
reached the performance of the widely used k-mer alignment-based tools, with better
accuracy in certain cases; however, they still must demonstrate their robustness across
the variety of environmental samples and across the rapid expansion of accessible
genomes in databases.

Keywords: machine learning, deep learning, metagenomic, whole genome shotgun, classification, taxonomic
annotation, functional annotation

INTRODUCTION

The study of the microbial environments has benefited from the sequencing revolution, where
technology improvement decreased the DNA sequencing cost and increased the number of
sequenced nucleic bases. For approximately 20 years (depending on how we define the term
metagenomics), it has allowed the decryption of the microbial composition of a huge variety of
environments (Bahram et al., 2021). In the present publication, we use the term metagenome
to refer to the directly sequenced DNA of one environment, without any prior amplification.
This implies that a metagenome is a sample extracted from the total DNA of genomes, cut into
fragments of hundreds to thousands base pair (bp) lengths. The fragments can be paired-end
or not, depending on the technology used (Escobar-Zepeda et al., 2015). The DNA sample is
then analyzed to answer the ambitious questions: “who is here?” and “what are they doing?” A
variety of bioinformatic tools and software have been developed to annotate the sequences into
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taxonomic and functional categories. They can be grouped
into two categories: (i) alignment-based methods that infer
taxonomy/functions based on similarity of sequences along
reference databases such as BLAST (Altschul et al., 1990) and
DIAMOND (Buchfink et al., 2014), (ii) k-mer–based approaches
such as kraken2 (Wood et al., 2019) and CENTRIFUGE (Kim
et al., 2016). However, these technologies suffer from dependence
on prior knowledge and are not able to annotate sequences
absent from the databases (at least with no resemblance).
A good criterion to compare results between software will be
to evaluate the capacity to annotate the sequenced reads to a
taxonomy/functional entity, but because the annotation depends
on the technology used, the choice of the associated parameters,
or the intrinsic factors of the studied environment (Figure 1),
the comparison is not feasible without a unique benchmark.
Moreover, another aspect that affects the rate of annotation (e.g.,
the capacity to annotate the sequenced reads) is the level of
analysis, which might be in terms of taxonomy, rank (species to
domain), functions, and gene/pathway. The more the annotation
is specific (threshold of similarity and level of analysis), the
more the rate of annotation will be low. Nevertheless, to obtain
interpretable information, having a detailed annotation in terms
of taxonomy and functions will help to interpret the generated
data. The trade-off has to be set according to the studies and their
scientific questions (Inkpen et al., 2017).

In the last few years, new methods have emerged to
analyze metagenomics data based on machine and deep learning
approaches. These methods attempt to acquire the capacity
to distinguish complex patterns among large datasets to make
accurate predictions on future datasets that will be analyzed
using the trained models (Greener et al., 2021). In metagenomic
experiments, unsupervised or supervised models are widely
used to make classification or clustering of samples based on
annotation matrices. Current common approaches in the field
are General Linearized Models to differentiate the microbial
composition of samples, Principal Components Analysis to
reduce data dimension and visualize data in an unsupervised way
(Calle, 2019), and feature selection methods to define microbial
signatures (Erickson et al., 2012; Loomba et al., 2017; Zhong
et al., 2019). Learning and prediction of disease status of patient-
related metagenomic samples have been rarely explored, but a
successful application has been proposed using more than 2,400
metagenomic samples from clinical metagenomic studies (Pasolli
et al., 2016). In this review, we do not attempt to expose all the
machine learning methods and use cases existing in the literature,
but we will try to unravel the issue of annotation that to meets the
machine and deep learning model requirements, exploring how
it was applied in metagenomics annotation. Table 1 summarizes
models and tools reviewed in the following article.

CHALLENGES IN METAGENOMIC
ANNOTATION

Taxonomic annotation of bacteria is complex and, because
the microorganisms do not possess sexual reproduction, the
definition of bacterial species is based on a laboratory experiment

result to define a species, e.g., DNA–DNA hybridization of two
bacterial genomes must be greater than or equal to 70% to be
grouped in the same species (Wayne et al., 1987). However, this
leads to high DNA heterogeneity functions in the species group.
Breitwieser et al. (2019) collected information that demonstrated
the difference in average nucleotide identity between different
species, revealing the difficulty to classify them using DNA
genomic sequences. Moreover, the microbial diversity is very
large and not yet recovered. It has been estimated that we
only accessed, using culture-based approaches, 0.001–1% of
the total bacterial diversity present on earth (O’Leary et al.,
2016). This emphasizes that genomes in reference databases
do not cover the total diversity in the metagenomic samples.
Finally, the emergence of assembly and de novo metagenomic
reconstruction of genomes from metagenomic data, also called
metagenomic assembled genomes (MAGs), has unveiled the
numerous uncultured microorganisms in multiple environments
(Qin et al., 2010; Lee et al., 2017; Delmont et al., 2018; Kroeger
et al., 2018; Pedron et al., 2019). Because the genomes are not
yet cultured, they can represent multiple genomes, and their
taxonomy affiliation cannot be connected to known species.
They are generally named with an identifier, e.g., (Genus) sp.
(identifier) (for instance, Bacillus sp. M35), or are proposed
with the species name preceded by the term “Candidatus.”
MAG permitted the acquisition of yet uncultured genomes,
but integrating MAG into metagenomic classifiers is complex
because they may not be regular genomes and they are not fully
integrated into the taxonomy.

Metagenomic data are also a source of functional information
and, using reference databases, can be annotated to understand
what the potential functions are that could reflect their ecological
role in the studied environment. As there is a link between
DNA sequences and functions, we can be more confident of
the annotation process based on alignment, but the sequence
similarity threshold to be confident is always a questionable point
that will impact the annotation process (Treiber et al., 2020).
Depending on the function, a different similarity percentage
will be required to identify reads as a function. Moreover, the
choice of the database can change the level of analysis and
the interpretation. In addition, there are no official functional
categories and a variety of databases has emerged, each with
its own specificities (Table 2) (Caspi et al., 2014; Lombard
et al., 2014; Kanehisa et al., 2016; Huerta-Cepas et al., 2019;
Gene Ontology Consortium [GOC], 2021; Mistry et al., 2021;
The UniProt Consortium et al., 2021). These non-standardized
annotations alter our capacity to compare tool accuracies.

APPLICATION OF MACHINE LEARNING
TO METAGENOMIC CLASSIFICATION

Characterization of the Metagenomic
Annotation Process in Terms of Machine
and Deep Learning
We represent here the machine learning process by characterizing
the input, output, and the type of classification and model used
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FIGURE 1 | Factors that influence the capacity of sequence annotation. Parameters, defined in the sequencing and bioinformatic processes, are tunable by the
users. Intrinsic factors are some characteristics of the environment studied that influence the rate of annotation, by definition they are not tunable. The cursors
indicate where the annotation rate will be the highest. A low sequence identity cutoff for assignment increases the annotation rate, but the trade-off will be a higher
detection rate of false positives. Precision of the annotation refers to the degree of annotation examined (for taxonomic assignment, it corresponds to the taxonomic
range used for the analysis, for the functional annotation to the metabolic/anabolic level: genes, short biosynthetic pathways, and global pathways).

in the framework. The theoretical process of annotation can be
analyzed as a multiclass classification problem, where a huge
number of reads (input) must be uniquely classified into a wide
variety of taxonomic ranks (output), meaning that it cannot be
labeled in two different classes for one read. This is a supervised
problem where the models are trained using a ground truth
reference, i.e., true values are used to compare with the output of a
machine learning model (Greener et al., 2021). In metagenomics
in general, this ground truth is difficult to obtain because the
metagenomic data are the fruit of complex and unresolved
microbial phylogeny, as explained previously.

The machine learning model input sensu stricto will be
millions of metagenomic reads and the output will be the category
(or categories) to which the read belongs. To evaluate the
classification performance, all the publications presented in this
review used the same or equivalent metrics. These metrics are
precision, which is the capacity of good assignation when there
is an assignation, and recall (sensitivity), which is the number of
reads correctly classified compared to the total number of reads
to classify. All other possible metrics used in the literature are
variants of these two metrics or their concatenation (F1-score,
accuracy, use of taxonomic rank instead of reads count as unit
of measure, etc.).
Precision

# correct reads classified
# reads classified

Recall
# correct read classified

# reads in datasets

Machine learning and deep learning models finally produce
the output, which is the final classification of reads into
categories and the associated probabilistic/confidence value.
Applied to metagenomics, the confidence value is used to define
a threshold of assignation of reads. These thresholds are defined
by the authors and impact the model accuracy. A parallel with
alignment-based method is the percentage of similarity required
to annotate a read to its hit in the database.

Naive Bayes Classification Model
One of the first approaches of machine learning classifiers on
nucleotide signatures was the application of naive Bayes (NB)
models on 28 genomic data present in the genomic databases
in 2001 (Sandberg et al., 2001). This work was the foundation
for the development of the application of NB classification on
shotgun metagenomic data by Rosen et al. (2008), who trained
their classifier using 635 microbial genomes to construct k-mer
frequency profiles of the genomes, then tested the classification of
simulated fragments and metagenomic reads into different classes
(strain, species, and genus).

The term “naive” in NB refers to the fact that the Bayes
theorem assumes that the values of a particular feature are
independent of the value of any other feature, which simplifies
the problem and gives a starting point to estimate the degree of
complexity of the problem, here, the metagenomic classification.
The genomes were divided into 25-, 100-, and 500-bp length, and
3-, 6-, and 9- to 15-mer fragments were used to train the model.
A total of 63,500 fragments were isolated to test the accuracy
of the models. The log-likelihood score for each sequence was
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TABLE 1 | Summary of the articles and models reviewed.

Publication Machine/deep
learning category

Models tested Training
input

Tested input Real
applications
input

Output Encoding scheme Parameters Hyper-
parameters

Best model
selected

NBC: the naive
Bayes
classification
tool web server
for taxonomic
classification of
metagenomic
reads (Rosen
et al., 2011)

Machine learning
Supervised
classification

Naive Bayes Genome
sequence
from DB
(25, 100,
and
500 bp)

Genome sequence
from DB (25, 100,
and 500 bp)
Metagenomic data

Metagenomic
reads

Strain–species–
genus
classification

Compositional
vectors (“Target
encoding” like)

NA k-mer size (3,
6, and 9–15)

Naive Bayes

Accurate
phylogenetic
classification of
variable-length
DNA fragments
(McHardy et al.,
2007)

Support vector
machine

Linear or Gaussian
SVM

Genome
sequence
from DB (1,
5, 10, and
15 kb)

Genome sequence
from DB (25, 100,
and 500 bp)
Metagenomic
assembled data

Contigs
(assembled
metagenomic
data)

Genus to domain
classification

Compositional
vectors (“Target
encoding” like)

Misclassification cost
Gaussian/linear kernel

k-mer size (2–6)
Input length (5,
10, 15, and 50
kb)

5–6-mer-size
Gaussian SVM

Large-scale
machine
learning for
metagenomics
sequence
classification.
(Vervier et al.,
2016)

Support vector
machine

Linear SVM Genome
sequence

Genome sequence
affiliated to the
same species as
trained. Simulated
reads with
sequencing error
model introduction

Metagenomic
reads

Rank flexible
classification of
metagenomic reads

Compositional
vectors (“Target
encoding” like)

Squared loss function
Stochastic gradient
descent

k-mer size (4,
5, and 6)
Quantity of
input data

Linear SVM
classifier with
rank-flexible
classification

Deep learning
models for
bacteria
taxonomic
classification of
metagenomic
data (Fiannaca
et al., 2018)

Deep neural
network (DNN)

Convolutional
neural network
(CNN)
Deep belief network
(DBN)

Simulated
reads of
16S RNA
sequences

Simulated reads of
16S RNA
sequences

16S amplicon
reads or
metagenomic
reads

Domain to genus
classification

One hot encoding # hidden unit
# hidden layers
# kernel
# kernel size
# Pooling size

k-mer size (3–7) CNN

DeepMicrobes:
taxonomic
classification for
metagenomics
with deep
learning (Liang
et al., 2020)

Deep neural
network (DNN)

ResNet-like CNN,
CNN + LSTM,
Pool, CNN, LSTM,
LSTM +

ATTENTION

Simulated
reads from
MAGs
sequence

Simulated reads
from MAGs
sequence (training
excluded)
Simulated mock
communities of
isolates
Simulated reads
from absent
species

Metagenomic
reads

Genus/species
reads classification

One hot encoding
K-mer embedding

# size of CNN filters
# residual block
# LSTM dimension
# FC layers
# FC units
Type of pooling
# window size of
pooling
Pooling stride
# attention rows
Penalization coefficient
Batch size Learning
rate and decay
L2 regularization
Activation function
Optimizer

k-mer length
and
redundancy

k-mer
embedding +

LSTM +

ATTENTION

(Continued)

Frontiers
in

M
icrobiology

|w
w

w
.frontiersin.org

4
M

arch
2022

|Volum
e

13
|A

rticle
811495

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-811495 March 8, 2022 Time: 14:52 # 5

Mathieu et al. Learning in Metagenomic Annotation

TA
B

LE
1

|(
C

on
tin

ue
d)

P
ub

lic
at

io
n

M
ac

hi
ne

/d
ee

p
le

ar
ni

ng
ca

te
g

o
ry

M
o

d
el

s
te

st
ed

Tr
ai

ni
ng

in
p

ut
Te

st
ed

in
p

ut
R

ea
l

ap
p

lic
at

io
ns

in
p

ut

O
ut

p
ut

E
nc

o
d

in
g

sc
he

m
e

P
ar

am
et

er
s

H
yp

er
-

p
ar

am
et

er
s

B
es

t
m

o
d

el
se

le
ct

ed

A
fa

st
an

d
ac

cu
ra

te
fu

nc
tio

na
l

an
no

ta
to

r
an

d
cl

as
si

fie
r

of
ge

no
m

ic
an

d
m

et
ag

en
om

ic
se

qu
en

ce
s

(S
ha

rm
a

et
al

.,
20

15
)

M
ac

hi
ne

le
ar

ni
ng

su
pe

rv
is

ed
cl

as
si

fic
at

io
n

co
up

le
d

to
al

ig
nm

en
tm

et
ho

d

N
ai

ve
B

ay
es

ia
n

cl
as

si
fie

r,
R

an
do

m
Fo

re
st

(R
F)

,
A

da
B

oo
st

,
M

ul
tic

la
ss

cl
as

si
fie

r
an

d
Li

b-
S

V
M

P
ep

tid
es

fro
m

eg
gN

O
G

da
ta

ba
se

s

G
en

om
es

S
im

ul
at

ed
m

et
ag

en
om

ic
re

ad
s

R
ea

lm
et

ag
en

om
ic

re
ad

s

G
en

om
ic

/
m

et
ag

en
om

ic
re

ad
s

Fu
nc

tio
na

l
an

no
ta

tio
n

of
pr

ed
ic

te
d

ge
ne

s

C
om

po
si

tio
na

l
ve

ct
or

s
of

am
in

o
ac

id
co

m
po

si
tio

n

#
fe

at
ur

es
#

tr
ee

N
A

R
an

do
m

fo
re

st
+

R
A

P
se

ar
ch

2

D
ee

pA
R

G
:a

de
ep

le
ar

ni
ng

ap
pr

oa
ch

fo
r

pr
ed

ic
tin

g
an

tib
io

tic
re

si
st

an
ce

ge
ne

s
fro

m
m

et
ag

en
om

ic
da

ta
(A

ra
ng

o-
A

rg
ot

y
et

al
.,

20
18

)

D
ee

p
ne

ur
al

ne
tw

or
k

(D
N

N
)

D
ee

p
ne

ur
al

ne
tw

or
k

(D
N

N
)

U
ni

P
ro

t
ge

ne
s

w
ith

si
m

ila
rit

y
ag

ai
ns

t
A

R
D

B
ge

ne
s

S
ho

rt
ge

ne
fra

gm
en

ts
N

ov
el

A
R

ge
ne

s

G
en

es
M

et
ag

en
om

ic
re

ad
s

A
nt

ib
io

tic
re

si
st

an
ce

ge
ne

s
pr

ed
ic

tio
n

M
at

rix
of

di
ss

im
ila

rit
y

ag
ai

ns
t

A
R

ge
ne

s

N
A

N
A

D
ee

p
ne

ur
al

ne
tw

or
k

(D
N

N
) obtained, and the class with the highest score was attributed

to the sequence. They compared their results at the strain level
using BLAST as a gold standard procedure and, as a result, found
similar results to BLAST in terms of accuracy (i.e., capacity of
correct assignation). Their optimal k-mer length was between 9-
and 15-bp lengths, depending on the length of the genomes to be
detected. On the basis of these promising results, the researchers
implemented a web service of their tool (Rosen et al., 2011) and
added viral and fungal models (Rosen and Lim, 2012). However,
in a 2017 benchmark study of 11 classifiers, the NB classifier was
evaluated using simulated metagenomic data and experimental
metagenomic mock communities, obtaining one of the lowest
precision and recall in the benchmark (using three precision
levels: strain, species, and genus) (McIntyre et al., 2017), hence
showing the limitations of NB models. The low accuracy can
be explained by the simplicity of the model itself or by the fact
that the model did not integrate new genomes present in the
tested datasets.

Support Vector Machine Models
Support Vector Machine (SVM) models are another
supervised learning methodology applied to metagenomic
read classification. SVMs compute the distance between the
points of the datasets and try to find the hyperplane that
represents the largest separation between two classes, generally
using maximum margin as loss function (Han et al., 2017). Such
hyperplane is determined by a kernel function (e.g., linear and
Gaussian) (Steinwart and Christmann, 2008). In comparison to
NB models, SVM models can handle the non-linearities of the
data and take into account the interactions between data inputs.
To our knowledge, the first use in metagenomics was in 2007,
when McHardy et al. (2007) developed a multiclass SVM model
to analyze the sequence composition of assembled metagenomic
contigs to classify them into taxonomic ranges. As input training,
they used the complete genome sequences of 340 organisms. In
case of incomplete genomes, they arbitrary joined the contigs
to obtain one sequence per genome. Different parameters were
tuned to optimize the model. First, the DNA sequences were
transformed into compositional vectors, as a target-encoding–
like method, and then they counted the occurrence of k-mer
patterns and chose the most appropriate k-mer size for a specific
output class (e.g., 5 mers for genus to class levels and 6 mers for
phylum and domains levels). The Gaussian and linear kernels
were compared with benchmark approaches. The Gaussian
kernel gave better results using cross validation. Then, the
binary function for class determination of SVM was turned into
multiclass using an “all vs. all” technique (i.e., performing each
pair of comparison one vs. all), and the contigs are assigned
to a class using a voting mechanism. To train and test the
model, the genome sequences were divided into training and test
data of a defined length (1, 5, 10, and 15 kb, according to the
mean length of contigs retrieved in metagenomic assembling).
Training data and test data came from the same genomes, but
sequences sampled in training datasets were excluded from
the testing datasets. Using these data, they defined the capacity
of prediction using the class outputs from genus to domain
taxonomic ranges, according to the length of the contig. In terms
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TABLE 2 | Functional databases and their characteristics.

Functional
databases

CAZy Pfam KEGG eggNOG GO Terms MetaCyc UniProt

Base unit Carbohydrate-
Active

Enzymes

Protein domain Ortholog gene Ortholog gene Vocabulary Small-molecule
metabolism

Protein

Grouping family Protein family
and sub-families

Family Module
pathway
disease

Pathway Ontology
GO:

Biological
process

Molecular
function

Metabolic
pathway

NA

of gene level, the sensitivity of the classifier was close to 90% for
the long fragments, whereas the 1-kb fragments had a very low
sensitivity percentage, close to 0. The authors tested their tools
on real assembled data from different metagenomes and used as
ground truth the taxonomic annotation made by state-of-the-art
alignment-based tools from 2007 in the corresponding studies,
making it difficult to consider as exact reality. The model was
then implemented into a dedicated web server to annotate
metagenomes (Patil et al., 2012).

Another SVM-based approach was recently developed in 2016
by Vervier et al. (2016), where an SVM model supports the
expansion of genome sequences data availability. The authors
highlighted the limit of compositional vectors approach (k-mer
profile of 4, 5, and 6) for SVM model training, because the size
of genome sequences is in millions of bases and the genomes
available in databases increase exponentially. To overcome the
problem, they optimized their model using a stochastic gradient
descent, which allowed the optimization of the gradient using
only one term at each step. To construct the training and test
datasets, they selected three different quantities of genomes to
evaluate the impact of genome numbers on the model prediction
accuracy. Considering that certain alignment classifiers develop
a lower common ancestor approach that allows classification of
reads at different taxonomic levels, the authors built a rank-
flexible approach that chooses the most adapted level to classify
the reads based on the maximum score obtained with each of
different rank-specific models. If a read is rejected at a specific
taxonomic level, then it can be classified in upper levels if the
score achieved the required threshold for the upper level. These
thresholds are tunable parameters that can be optimized by taxon
or set globally. The models were then tested on the remaining
genomes available affiliated to the same species as the genome
sequences in the training set. Moreover, they developed simulated
reads that contained errors in sequencing bases, which was the
first publication for machine learning classification to take into
account this bias. In summary, it appeared that despite promising
results on the tested genomes, especially in comparison to the
NBC classifier methods, the evaluation on simulated data turned
in favor of a better alignment method like kraken (Wood and
Salzberg, 2014), which was less sensitive to sequencing errors and
produced less false positive results.

Deep Neural Network Models
Deep learning approaches are more sophisticated than classic
machine learning. They may facilitate the use of large amount

of microbial genomic data available in 2022 and can take into
consideration the interdependencies of input data. Deep learning
refers to a category of machine learning based on artificial
neural networks that generally adds more layers (hidden layers)
and more units in a layer to extract more complex features
from the raw input (Goodfellow et al., 2016). However, deep
learning encompasses a large variety of networks, and, due to
the complexity of deep leaning algorithms, each model has a
high number of tunable parameters. A schematization of deep
neural networks (DNNs) and functions are presented in Figure 2,
showing the main steps and associated vocabulary. An important
concept in the deep learning process is the backpropagation,
which allows the model to correct parameters based on the
error of the network’s output. Using a gradient descent algorithm
with a defined learning rate and decay, the process finds the
optimal weight for each neuron in each layer that minimizes
the error of classification (Figure 2). Learning rate and decay
are empiric hyper-parameters that must be defined during the
model optimization.

One of the first applications of deep learning models
on metagenomic classification was the use of convolutional
neural networks (CNNs) and deep belief networks (DBNs) to
annotate 16S fragments (Fiannaca et al., 2018). Amplicon-based
metagenomics was out of scope of our review but, because they
applied their model to whole genome metagenomic shotgun,
we review here their model and performance. The two types of
networks were compared to the 16S ribosome database project
(RDP) classifier, a NB classifier for 16S data (Wang et al.,
2007), which demonstrated that the CNN model had the best
accuracy. The benchmark has its limitations because it has not
been compared to alignment classifiers specialized in shotgun
metagenomic data.

In 2020, Liang et al. (2020) analyzed different deep learning
architectures for metagenomic taxonomic classification and
developed a model to classify metagenomic reads based on
bidirectional long short-term memory (LSTM) plus a self-
attention mechanism, called DeepMicrobes. The input data
used for training were taxonomically characterized MAGs from
human gut metagenomes that were transformed into simulated
metagenomic reads with the HiSeq 2500 Illumina sequencing
error model. To evaluate the optimal parameters, the evaluation
test inputs were other simulated reads from same MAGs, using
another random seed of the ART simulator. Different parameters
were tested such as the encoding of the input data, different DNN
models, and the addition of a self-attention mechanism (a full
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FIGURE 2 | Schematization of deep learning models. The encoded input represents a metagenomic DNA sequence or k-mer that will be transformed using the
activation function in the hidden layers. Each gray circle in the hidden layers represents a cell that will communicate its output with the other cells. As mentioned in
the text, LSTM models possess a “forget” gate that selects relevant information. The final output of the hidden layers is the classification with a predicted probability
for an input to be in one of the categories. During the training, the probability is encoded by the SoftMax function, whereas, for the final testing, the argMAX function
is used, a most understandable function that gives probabilities between 0 and 1.

list of parameters is listed in Table 1). In total, approximately
30 parameters and hyperparameters were tested for each model,
depending on if it can be tunable for the model or not
(Table 1). As mentioned, the selected model was embedding-
based recurrent self-attention model, with a batch size of 2,048,
a training learning rate of 0.001 with a decay rate of 0.05,
and Adam as stochastic gradient descent optimizer. During the
comparison of DNN models with benchmark approaches, the
authors emphasized that the one-hot encoding may be the reason
why some of the models tested, ResNet like CNN, hybrid DNN,
and seq2species (a deep learning model for 16S metagenomic
annotation in preprint since 2019), have a low accuracy and
low confidence in prediction. In contrast, k-mer embedding
encoding gave better results, and an explanation made by the
authors was that it considered that reverse-complementary DNA
strands were the same. The results showed that the bidirectional
LSTM model performed better. LSTM are recurrent neural
networks, developed to process sequential data. In recurrent
neural networks, the information generated by the treatment of
the input goes sequentially into different cells, but this design
suffers from short term memory. Therefore, LSTM models have

been developed to overcome this limitation. They possess internal
states that learn to keep the relevant information and forget
non-relevant data from one step to the next. This facilitates
the use of long sequences as input. Finally, a self-attention
mechanism was added to enable the model, to keep information
at the sequence level. It enables the model to analyze the
dependency of k-mers, by calculating a coefficient of relation
between k-mers of a same sequence. It allows the model to focus
on specific regions of the DNA sequence and the comparison
of sequences with different read lengths. In fine, it increased
the precision/recall score of the tested input. The best model
was then compared to 2020 state-of-the-art classifiers: kraken2
(Wood et al., 2019), Centrifuge (Kim et al., 2016), Kaiju (Menzel
et al., 2016), and CLARK-S (Ounit and Lonardi, 2016). As they
mentioned, because there is no real metagenomic dataset that can
serve as ground truth, one possibility is to simulate metagenomic
samples by taking isolated sequencing reads. They thus created
mock community and compared their results at the genus level
because some classifiers did not contain related genomes in their
native database. Globally, the DeepMicrobes model performed
better than the different tools in terms of precision, recall, and

Frontiers in Microbiology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 811495

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-811495 March 8, 2022 Time: 14:52 # 8

Mathieu et al. Learning in Metagenomic Annotation

estimation of abundance of the genus level. One limitation of
this article is the lack of comparison on the species level, as
this information provides key insight into biological interactions.
However, with the two best competitors, kraken2 and Kaiju,
they obtained good results for abundance estimation at the
species level even if less reads were classified. Kraken2 accuracy
might have been improved by the fact that it can support larger
databases than the native small database, allowing the detection
of more species. To justify this key point of database dependency,
they analyzed the detection of 121 genomes where species are
absent from all databases of all tools and demonstrated that
their model proposed less false positive results. Going through
the literature highlighted that k-mer embedding encoding was
already proposed for metagenomic classification (Menegaux and
Vert, 2019), in a study that compared their model to the already
described SVM model (Vervier et al., 2016) and burrows wheeler
alignment (BWA) alignment tool (Li and Durbin, 2009). The
model was not explicitly detailed, and it was based on a one-layer
neural network and implemented in FastText software.1 Because
the benchmark was not compared to most efficient tools, the
obtained results were difficult to evaluate.

APPLICATION OF MACHINE LEARNING
TO FUNCTIONAL ANNOTATION AND
OTHER SPECIFIC CASES

Machine learning models have not been yet fully applied
on metagenomic functions. The only article that mentioned
the utilization of machine learning models was the WOODS
program, which developed a two-step pipeline, a first step of
machine learning classification, and a second step of alignment
annotation (Sharma et al., 2015). The machine learning step
acts as pre-filter to align the reads against a specific functional
category of genes. The alignment tool selected was RAPsearch2
(Zhao et al., 2012), and the functional database was eggNOG3
(Huerta-Cepas et al., 2019). The genes were regrouped into 22
functional categories, and different machine learning models
were evaluated. Random forest was the best model to classify the
test data, and the global pipeline achieved good results compared
to the BLAST reference. However, the model was developed on
complete ORF or amino acid sequences with a length larger
than 500, and this makes the software useful only for assembled
metagenomic data. For non-assembled metagenomic reads, this
leads to the direct use of RAPsearch2.

Machine learning has also been applied to a specific
functional case, the detection of antibiotic resistance gene (ARG).
The screening of antibiotic resistance (AR) determinants in
microbiome is a hot topic of research, as the increase of microbial
resistance is a worldwide concern (Zaman et al., 2017; Nathan,
2020). To retrieve ARGs in microbiome, the analysis of shotgun
metagenomic data is one of the most exhaustive ways, bypassing
the culturing step. However, to retrieve these genes researchers
are dependent on alignment tools and related databases. As
alignment-based methods are not perfect and can produce false
positive results (AR can be derived from non-ARG such as

1https://fasttext.cc/

efflux pump) and false negative results (no detection of genes
variants from databases), applying learning models can be an
efficient way to detect these genes. This was tested by Arango-
Argoty et al. (2018) they proposed a new tool named DeepARG
that contains two deep learning models to retrieve 30 classes
of antibiotic determinants in metagenomic reads or full gene
sequences, respectively. The model took as input a dissimilarity
matrix based on the alignment bitscore of reads/genes mapped to
an ARG database. Although the tool was also based on alignment
score, the accuracy of ARG classes prediction compared to the
alignment-based method was improved. This was explained by
the fact that the deep learning model application did not require
a set general threshold of similarity (i.e., percentage of similarity),
instead allowing adaptation of the threshold function to the AR
classes (done in the training part). The proposed model may have
been tuned with different combinations of parameters, but the
article did not mention the different tests performed.

To analyze the pertinence of machine learning applications
in functional metagenomic screening, the development of a
methodology that analyzes the sequences by itself (with k-mer
embedding for instance) and not a global score of dissimilarity
matrix remains to be evaluated. Sequence identity threshold in
functional screening is not extensively documented, although it
is a critical key point of the functional annotation. A common
threshold to assess the function is 30% of sequence similarity,
even if a common value for different functions is highly critical
(Pearson, 2013). HUMAnN3 (Beghini et al., 2021), a recent
functional annotation pipeline, sets the identity threshold to 50%
yet advises the user to configure the settings. LSTM models
developed for taxonomic annotation, which allow the models
to focus on specific parts of the sequences, may be a promising
candidate to identify and annotate functional data.

CONCLUSION

Machine learning has been applied because the beginning of
metagenomic annotation, but the increase of available microbial
genomic data in databases leads to the obsolescence of the first
models, too simple to accommodate the size and complexity of
the data. Their accuracy was reduced in comparison to k-mer–
based tools in the reviewed benchmark. Because the integration
of genomic data is feasible in deep learning models, two models
have been published for taxonomic annotation. The first one was
not compared with enough benchmarks to conclude on their
progress, and the second named DeepMicrobes demonstrated
good performance, even compared to state-of-the-art alignment-
based classifiers. The tool highlighted the benefit of k-mer
embedding for the input treatment and the use of networks
such as LSTM that learns important long-range interactions and
“forgets” information not discriminant to build the model. The
comparisons to the other tools were mostly achieved at the genus
level, but a benchmark to the species level would have been of
interest in terms of interpretation. In functional annotation, deep
learning technologies have been applied to specific questions, or
to build a model for pre-classification, but remain to be studied
for a full functional annotation. Because no real microbiomes are
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known without the prism of metagenomic tools, the benchmarks
in metagenomic annotation are based on simulated data or mock
communities that present a reduced diversity. This leads the
benchmarks to be case specific, and the tools developed to be
overfitted to the generated data. Moreover, the data available in
databases represent a low percentage of the overall microbial
diversity, leading to the construction of models specific to what
is known in databases. Specific machine learning algorithms have
been proposed to answer these specific cases, as active learning
that allows the selection of relevant data from the training set to
improve the models and not overfit to the data. Active learning
may be a framework that facilitates the building of models with
high accuracy, by selecting certain data of the input to train the
models (Settles, 2009). Despite the possibility of biases due to the
targeted sampling, it may overcome the pitfalls of metagenomics
(i.e., database orientation to certain bacterial species, the use
of reconstructed genomes with no taxonomic annotation, and
the deletion of non-informative sequences). Finally, as bacterial
genome sequences in databases are still in expansion, current
developed models have to be regularly tested/updated to remain
up to date. All programs developed and commented in this
article provide useful information to build the most adapted
annotation framework. Because in the field of metagenomics

data availability and computational resource accessibility increase
at a relatively high rate, current models may become obsolete
and new models will be constructed. This must be done based
on already developed algorithms and the use of successful
tested parameters.
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