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iable selection method for
vibrational spectroscopic data analysis†

Jixiong Zhang, a Hong Yan,a Yanmei Xiong,a Qianqian Li b and Shungeng Min*a

Wavelength selection is a critical factor for pattern recognition of vibrational spectroscopic data. Not only does it

alleviate the effect of dimensionality on an algorithm's generalization performance, but it also enhances the

understanding and interpretability of multivariate classification models. In this study, a novel partial least squares

discriminant analysis (PLSDA)-based wavelength selection algorithm, termed ensemble of bootstrapping space

shrinkage (EBSS), has been devised for vibrational spectroscopic data analysis. In the algorithm, a set of subsets

are generated from a data set using random sampling. For an individual subset, a feature space is determined

by maximizing the expected 10-fold cross-validation accuracy with a weighted bootstrap sampling strategy.

Then an ensemble strategy and a sequential forward selection method are applied to the feature spaces to

select characteristic variables. Experimental results obtained from analysis of real vibrational spectroscopic data

sets demonstrate that the ensemble wavelength selection algorithm can reserve stable and informative

variables for the final modeling and improve predictive ability for multivariate classification models.
1. Introduction

Vibrational spectroscopic methods in combination with pattern
recognition techniques have been widely exploited in different
application domains including food science,1 petrochemicals2

and pharmaceuticals.3,4 A sample is generally characterized with
hundreds or even thousands of wavelength variables and some of
the variables may contain irrelevant and/or redundant informa-
tion for classication modeling. To deal with spectroscopic data
sets that have a large number of wavelength variables, selection
of a smaller number of informative features is important to
reduce the problem of dimensionality so that the performance of
the models can be increased for interpretative purposes.5,6 This
feature selection can be achieved by either replacing the original
data domain by a smaller one or by selecting only the most
important variables in the original domain.

As one of the most popular recognition techniques in chemo-
metrics, partial least squares discriminant analysis (PLS-DA)
provides a solution to the problem of irrelevant and redundant
inputs.7 The PLD-DA method is a projection-based tool which in
principle should ignore the variables space spanned by irrelevant
or noisy variables. However, excessive variables and small objects
can spoil the PLS-DA results, because PLS-DA has trouble in
searching the proper size of variable subspace in high dimensional
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tion (ESI) available. See DOI:
data.8,9 To data, much effort has been made to improve the
performance of PLS-DA, and variable selection has been shown to
be one of the most effective ways because there is a close connec-
tion between PLS dimension reduction and variable selection.10

A number of algorithms for variable selection in the PLS-DA
model have been proposed.5,11–22 In general, these methods can
be classied into three categories and include lter, wrapper
and embedded techniques.23 Wrapper is the most commonly
used technique, because this technique is easy to implement
and the interaction between the feature subset search and the
classier is considered. In wrapper methods, a search proce-
dure in the space of the possible feature subset is dened and
various subsets of features are generated and evaluated. The
evaluation of a specic subset of features is obtained by a PLS-
DA model. Examples of such methods are backward variable
elimination PLS-DA,21 moving window PLS-DA22 and articial
intelligent algorithm based PLS-DA.6,16,17,19 Recently a boot-
strapping strategy coupled with model population analysis was
used to search for an optimal variable subset in PLS regression
models.24 In this algorithm, various variable subspaces are
generated by the weighted bootstrap sampling (WBS) method.
Variables with larger absolute values of PLS regression coeffi-
cients are extracted and given a higher sampled weight using
model population analysis. Whole variable space shrinks
gradually until it becomes an optimal variable subset. A similar
approach was also used in a study on spectral interval combi-
nation optimization.25

In the case of the wrapper variable selection methods guided
by a random search, however, a common problem is that they
have a high risk of randomicity,26 given that the probability of
nding a suitable model may sometimes happen by chance
This journal is © The Royal Society of Chemistry 2019
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(due to random correlations). Clearly, the stability and reli-
ability of selected results needs to should be strengthened.27

In several notable papers that are concerned with ensemble
methods in machine learning,28–31 a set of classiers whose indi-
vidual decisions are combined in some way (typically by weighted
or unweighted voting) has been shown to provide improved clas-
sication accuracy. Inspired by this, we havemade the assumption
that an ensemble of variable selection methods may be used to
extract the most informative and signicant variables and to
reduce the stochastic risk. In fact, there have been some reports on
the use of ensemble methods for variable selection in chemo-
metrics. For instance, Han et al.32 developed a method using an
ensemble of Monte Carlo uninformative variable elimination to
improve the stability and reliability of selected variables, and
Zheng et al.26 used an improved version of a voting genetic algo-
rithm (GA) to overcome the stochastic risk of a GA.

In this study, a new PLSDA-based wavelength selection
algorithm, termed ensemble of bootstrapping space shrinkage
(EBSS), is proposed to select stable feature variables for pattern
recognition of vibrational spectroscopic data. First, some
theoretical background for EBSS is introduced (Section 2).
Then, to demonstrate the effectiveness of EBSS, the proposed
algorithm was applied to four publicly available vibrational
spectroscopic datasets (Section 3). The results of EBSS were
compared with those obtained from single bootstrapping space
shrinkage (BSS), GA-PLS-DA and sparse-PLS-DA (s-PLS-DA)
(Section 4). Concluding remarks are given in Section 5.
2. Theory
2.1 PLS-DA

The theory and properties of the PLS-DA have been described
elsewhere,33,34 hence only a short overview of the PLS-DAmethod,
which is based on the PLS2 algorithm, is given here. Usually, the
PLS-DA model is formulated as a regression equation:

Y ¼ XB (1)

where the independent variables are space X of size N � P and
the regression coefficients are B of size P� J. N, P and J stand for
the numbers of samples, variables and classes, respectively. The
Y matrix (N � J) of dependent variables contains information
about class memberships of the objects; each row, yT, in the Y
matrix has the following structure:

yTj

�
1 if object belongs to class j

0 otherwise
(2)

where yj is the jth column in Y. j is also the class number, where
j ¼ 1, 2, ., J. The dummy Y matrix therefore has a structure
where each row sums to unity.

Once the regression coefficients B are obtained, the prediction
of dependent variables on a new set of objects can be done by

Ytest ¼ XtestB (3)

However, the predicted values are real numbers and
a conversion to class memberships is needed. In this study, the
This journal is © The Royal Society of Chemistry 2019
class membership of each unknown sample is assigned as the
column index of the largest absolute value in the corresponding
row of the Ytest matrix.5
2.2 BSS

The BSS is a basic predictor of EBSS, and it is also a modied
version of BOSS.24 The BSS procedure can be summarized in the
following steps:

For an independent variables space X with size N � P
(contains N samples, P variables).

Step 1: the weighted bootstrap sampling (WBS) method24 is
applied to the whole variable space to generate M (e.g., 1000) vari-
able subspaces. In each variables subspace, the repeated variables
are excluded to remain unique. Note that the initial number of
replacements in WBS is equal to P, and the initial sampling weight
of each variable is set to 1/P. According to the bootstrap theory, the
number of selected variables in each subset is about 0.632P.

Step 2: individual variable subspace is evaluated to deter-
mine its accuracy value using a PLS-DA algorithm and 10-fold
cross validation is performed for extraction of the best variable
subspaces (10%) with the highest accuracy.

Step 3: the appearance frequency of each variable in the best
variable subspaces is counted and the sampling weight of
variable p can then be updated as follows:

wp ¼ fp

kbest
(4)

where fp represents the frequency of variable p in the best
variable subspaces, kbest is the number of the best variable
subspaces where p ¼ 1, 2, ., P. Let w ¼ [w1, w2, ., wp] and
normalize the w.

Step 4: the number of replacements in WBS is updated and
the value is determined by the average number of variables
selected in the previous step. According to bootstrap theory, the
number of variables in a new subset is about 0.632 times the
previous one. Thus, variable space shrinks step by step.

Step 5: steps 1–4 are repeated until the average number of
variables in the new subspaces equals the number of selected
latent variables. The subspace with the best accuracy during the
iteration is selected as the optimal variable set.
2.3 EBSS

The core idea of the EBSS algorithm is illustrated in Fig. 1. First,
a set of subsets are generated from data set using random
sampling. For an individual subset, a feature space is deter-
mined by BSS. Then an ensemble strategy and a sequential
forward selection method are applied to the candidate feature
spaces to select characteristic variables. The EBSS procedure
can be summarized by the following steps:

Step 1: the data set is divided randomly into a training set T
and a validation set V. T consists of 67% of the data with V being
the remainder. A feature space F is selected from T using the
BSS method.

Step 2: repeat step K times to give feature spaces F1, ., FK.
Step 3: extract R the most common recurring variables from

the K feature spaces based on eqn (4) (Section 2.2).
RSC Adv., 2019, 9, 6708–6716 | 6709



Fig. 1 The core idea of the EBSS algorithm.
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Step 4: the nal discriminant feature space Fd is determined
by running PLS-DA on training sets using from 1 to R of the
most recurring variables and 10-fold cross-validation.

Step 5: a PLS-DA is constructed from Ti using Fd. Running
the validation set Vi down this PLS-DA gives an accuracy rate ai
Table 1 Parameters for the GA-PLA-DA

Population size
Maximum number of generations
Generation gap
Crossover rate
Mutation rate
Maximum number of variables selected in the
chromosome
Fitness value

Table 2 Characteristics of the data sets

Data set Scan
No. of training
samples N

Olive oils FTIR 82 3
Red wines FTIR 30 1
NIR tablets NIR 211 9
Raman tablets Raman 82 3

Table 3 Validation set accuracy (aave � astd%)
a

Data set Type PLS-DA BSS

Olive oil FTIR 93.2 � 2.2 94.7 �
Red wine FTIR 59.3 � 14.3 60 �
NIR tablet NIR 88.9 � 2.5 87 �
Raman tablet Raman 85.8 � 5.7 81.4 �
a aave � astd: average accuracy rate � standard error over 20 repeats.

6710 | RSC Adv., 2019, 9, 6708–6716
(Fd, Vi), where i¼ 1,., K. The average accuracy rate aave (Fd) and
standard error astd (Fd) over the K repeats are computed and
recorded.

In this study, K is set to 20, R is set to 30 (for Raman data, R is
set to 60).

2.4 Overview of the compared methods

2.4.1 GA-PLS-DA. The GA-PLS-DA algorithm is a variable
selection method of the PLS-DA based on the GA strategy. In the
GA approach, a feature space is represented as a binary string (a
chromosome) of length P, with a one or zero in position p
denoting the presence or absence of variable p. Note that P is the
total number of variables. A population of chromosomes is
generated. Individual chromosome are evaluated to determine
the tness value, which determines how likely it is for the chro-
mosome to survive and reproduce into next generation.35 There
are many different versions of the GA that perform reproduction,
crossover, etc. in different ways. The algorithm applied in this
study is based on the Genetic Algorithm Optimization Toolbox,36

which has several basic steps: (1) binary coding of the variables;
(2) initiation of population; (3) performance evaluation of indi-
viduals; (4) selection of individuals; (5) recombination; (6)
mutation; (7) reinsertion and (8) step 3 to step 7 are repeated
until a maximum number of generations is reached. The
parameters of the GA used in this study are listed in Table 1.

2.4.2 Sparse-PLS-DA. A s-PLS-DA method combines vari-
able selection and classication in a one-step procedure. The s-
50 chromosomes
100
0.95
0.75
0.01
50

accuracy of 10-fold cross-validation of PLSDA

o. of test samples No. of features No. of classes

8 570 4
4 842 4
9 404 4
8 3401 4

GA-PLS-DA s-PLS-DA EBSS

2.6 93.6 � 3.1 95.1 � 3.1 96.6 � 3.2
13.4 60.4 � 9.4 66.8 � 9.6 71.1 � 10.2
3.6 86.4 � 3.4 88.3 � 2.9 89.3 � 3.2
4.2 80.4 � 4.7 78.8 � 4.9 89.3 � 5.1

This journal is © The Royal Society of Chemistry 2019



Table 4 The number of selected variables (nave � nstd)
a

Data set Type PLS-DA BSS GA-PLS-DA s-PLS-DA EBSS

Olive oil FTIR 570 34 � 33 29 � 10 69 � 22 8
Red wine FTIR 842 43 � 34 33 � 15 52 � 31 21
NIR tablet NIR 404 46 � 21 44 � 8 59 � 18 20
Raman tablet Raman 3041 58 � 22 60 � 8 77 � 19 40

a nave � nstd: average number of selected variable � standard error over
20 repeats.
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PLS-DA algorithm used in this study was proposed by Ewa
Szymanska et al.,18 details of which are provided elsewhere.11,18

There are two parameters to be considered in the s-PLSDA: the
number of latent variables and the number of selected variables
for each latent variable. In this study, the maximum number of
latent variables was set to 10 and the number of selected vari-
ables for each latent variable was also set to 10. The variables
with the best prediction ability were recorded.
2.5 Algorithm evaluation

The EBSS algorithm was evaluated by the procedure as
described in Section 2.3. For BSS, GA-PLS-DA and s-PLS-DA,
each algorithm was evaluated, independently, in the following
way:
Fig. 2 Variables selected by the different methods for the olive oil data:

This journal is © The Royal Society of Chemistry 2019
Step 1: the data set was randomly divided into a training set
T and a validation set V. T consisted of 67% of the data, and V
the remainder.

Step 2: a feature space F was selected from T using the
variable selection method. A PLS-DA model was constructed
from T using F. Running the validation set V down this PLS-DA
gave the accuracy rate a (F, V).

Step 3: steps 1 and 2 were repeated 20 times giving feature
spaces F1,., F20 and accuracy rates a1 (F1, V1),., a20 (F20, V20).
The average accuracy rate aave and the standard error astd over
the 20 repeat were computed and recorded.

For all of the algorithms the optimal number of latent variables
for PLS-DA model was determined by 10-fold cross-validation, the
data set was mean-centered before modeling.16

3. Data sets and experimental
condition
3.1 Data sets

3.1.1 IR data of olive oils. The olive oil data set was
downloaded from http://asu.ifr.ac.uk/example-datasets-for-
download/. The website contains digitized IR spectra for 120
authenticated extra virgin olive oils samples which originated
from four producing countries corresponding to four different
classes of olive oil.1 The spectra in this dataset were recorded
within the range 799–1897 cm�1.
BSS (a), GA-PLS-DA (b), s-PLS-DA (c) and EBSS (d).

RSC Adv., 2019, 9, 6708–6716 | 6711



Fig. 3 Effect of number of variables selected by EBSS on the accuracy
for the olive oil data.
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3.1.2 IR data of red wines. This data set was downloaded
from http://www.models.life.ku.dk/Wine_GCMS_FTIR. The
data represent the FT-IR spectra for 44 red wine samples
prepared exclusively from 100% the Cabernet Sauvignon grapes
and harvested in four different geographical regions,37 i.e., the
four classes of wine originated from four different regions.
Fig. 4 Variables selected by the different methods for the red wine data

6712 | RSC Adv., 2019, 9, 6708–6716
3.1.3 NIR and Raman data of pharmaceutical tablets. NIR
and Raman spectra were downloaded from: http://
www.models.life.ku.dk/Tablets. The samples were grouped into
four different categories of tablets, each category containing
different amounts of active substance.38 The NIR spectra of the
tablets were recorded in the range 4000–14 000 cm�1, Altogether
there were 310 samples. Raman spectra were collected in the range
200–3600 cm�1. Altogether there were 120 samples.

An overview of the characteristics of the different data sets is
given in Table 2. For each data set, 67% of samples were
randomly selected for the training set and those remaining were
used as a validation set.24

3.2 Experimental conditions

All computations were performed in MATLAB (Version 2016a,
MathWorks, Inc.) on a personal computer (Intel Core i7-7700
3.6 GHz CPU and 8 GB RAM). MATLAB codes for s-PLS-DA
were acquired courtesy of Ewa Szymanska. The GA-PLS-DA,
BSS and EBSS algorithms were realized with home-made
codes which are available upon request.

4. Results and discussion

Table 3 gives the validation set accuracies for the different
methods. The data in bold denote the best performance on each
data set.
set: BSS (a), GA-PLS-DA (b), s-PLS-DA (c) and EBSS (d).

This journal is © The Royal Society of Chemistry 2019



Fig. 5 Effect of number of variables selected by EBSS on the accuracy
for the red wine data.
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As Table 3 shows, EBSS gives the best performance relative
to the other methods for all datasets. The number of selected
variables for each method is given in Table 4. It can be seen
that the EBSS method used fewer variables than the other
methods.
Fig. 6 Variables selected by the different methods for the NIR tablet da

This journal is © The Royal Society of Chemistry 2019
4.1 Olive oil data set

For the olive oil data set, the accuracy was improved from 93.2%
in the case of PLS-DA to 96.6% for the EBSS method. Other
variable selection methods also show better classication
performance than the full range PLS-DA (BSS: 94.7%, GA-PLS-
DA: 93.6%, s-PLS-DA: 95.1%), which demonstrates the benet
of conducting variable selection.

The selected wavenumber variables are displayed in Fig. 2. In
each subgraph the x-axis represents the wavenumber variables
and the y-axis represents the frequency of each variable selected
by the algorithm aer 20 repeat operations. Instability of the
selected sets of informative variables can be found when using
BSS and GA-PLA-DA given that these selection methods are
guided by a random search. The stability of variable selection
performed with s-PLS-DA was better than those for BSS and GA-
PLS-DA. For EBSS, eight variables were selected to discriminate
between four classes. The eight wavenumbers were 966.8,
1003.4, 1123.1, 1125.0, 1126.9, 1194.1, 1628.6 and 1665.3 cm�1

(see Fig. 2d).
The eight wavenumbers were determined by running PLS-DA

using 1 to 30 as the most recurring variables (see Section 2.3). In
each iteration, 67% of the data was split off as a training set.
Then nVAR, the number of variables selected was varied from 1
to 30. For each value of nVAR, a PLS-DA model was constructed
ta: BSS (a), GA-PLS-DA (b), s-PLS-DA (c) and EBSS (d).

RSC Adv., 2019, 9, 6708–6716 | 6713



Fig. 7 Variables selected by the different methods for the Raman tablet data: BSS (a), GA-PLS-DA (b), s-PLS-DA (c) and EBSS (d).
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on the training set using 10-fold cross-validation and then the
accuracy of cross-validation was recorded. Twenty iterations
were done, and the accuracy values were averaged over 20
repetitions. Fig. 3 is a plot of the accuracy of cross-validation vs.
nVAR. The result is fascinating. The cross-validation accuracy
increases from nVAR ¼ 1 to nVAR ¼ 8. Beyond about nVAR ¼ 8
the accuracy remained constant, i.e., adding more variables did
not improve accuracy.
4.2 Red wine data set

This data set had only 44 as the total number of samples with BSS
giving a validation set accuracy of 60% and GA-PLS-DA had an
accuracy of 60.4%. The s-PLS-DA had an accuracy of 66.8%,
which was a 12.6% improvement comparedwith 59.3% using full
range PLS-DA. The EBSS method gave an accuracy of 71.1%, an
improvement of 19.9%. These results illustrate that variable
selection is necessary to improve the separation ability, and that
PLS-DA may not be a good choice for small samples datasets.39

Fig. 4 shows the selected variables for the different
methods. The BSS, GA-PLS-DA and s-PLS-DA methods
produced different feature spaces in each repeat. In total, 21
wavenumber variables were selected by EBSS. The selected
variables are also listed in the Appendix (Table 5). The way that
was used to reserve the 21 variables was the same as that for
6714 | RSC Adv., 2019, 9, 6708–6716
the olive oil dataset. Fig. 5 is a plot of the accuracy of cross-
validation vs. nVAR. The accuracy values increased from
nVAR ¼ 1 to nVAR ¼ 10, a small drop occurred from nVAR ¼ 11
to nVAR ¼ 14, then the accuracy gradually increased and
remained constant beyond about nVAR ¼ 21.
4.3 Tablet data sets

The EBSS method gave better performance than full range PLS-
DA for both the NIR and Raman tablet data sets. For the NIR
tablet data set, the EBSS model had an 89.3% validation accu-
racy based on only 20 selected variables (Fig. 6d). For the Raman
tablet data set, the EBSS model was found to have an 89.3%
validation accuracy and the total number of selected variables
was 40 (Fig. 7d). From Fig. 6 and 7, it can also be observed that
the wavelengths selected by BSS, GA-PLS-DA and s-PLS-DA for
the NIR and Raman data sets were labile.

Fig. 8 shows the effect of the number of selected variables on
the accuracy of cross-validation. For the NIR tablet data, the
accuracies steadily increased from nVAR¼ 1 to nVAR (e.g., about
20), and then remained constant (see Fig. 8a). For the Raman
tablet data, the number of selected variables was varied from 1
to 60. Again, the accuracies showed a steady increase from nVAR
¼ 1 to nVAR ¼ 40, and then remained constant (see Fig. 8b).
This journal is © The Royal Society of Chemistry 2019



Fig. 8 Effect of selected variables on the accuracy for the tablet data sets: (a) NIR and (b) Raman.
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As the above results demonstrated, the EBSS method was
superior to GA-PLS-DA, BSS and s-PLS-DA in terms of performance.

5. Conclusion

A method termed EBSS, which feature contains bootstrap
sampling and an ensemble strategy, has been proposed to select
characteristic variables for pattern recognition of vibrational
spectroscopic data. The results suggest that the new EBSS
algorithm can reserve more stable and informative variables for
the nal modeling and provide better performance than those
obtained from GA-PLS-DA, BSS and s-PLS-DA.

The investigations also suggest that EBSS can be an alter-
native method for rapid classication problem solving with IR,
NIR and Raman spectroscopic data. There are many important
potential application areas for the EBSS method, such as in
biotechnology, food science and medicine, where there is an
increasing interest in using atomic and molecular spectros-
copies for rapid screening purposes. A challenge is to identify
a stable and small number of wavelengths and incorporate
into low-cost and accurate instruments tailored to solving
specic screening problems.

Appendix
Table 5 Selected variables for the four different data sets using EBSS

Data set Wavenumber (cm�1)

Olive oil 966.8, 1003.4, 1123.1, 1125.0, 1126.9, 1194.1, 1628.6,
1665.3

Red wine 956.0, 1114.1, 1202.8, 1222.0, 1237.5, 1279.9, 1303.0,
1499.6, 1518.9, 1526.6, 2313.0, 2347.7, 2525.0, 2733.2,
2737.1, 2798.7, 3666.1, 4167.3, 4444.8, 4556.6, 4919.0

Tablet
(NIR)

7429.2, 7436.9, 7444.6, 7691.5, 7976.9, 7992.4, 8023.2,
8030.9, 8061.8, 8069.5, 8100.4, 8154.4, 8169.8, 8200.6,
8347.2, 8941.2, 10 198.7, 10 214.1, 10 353.0

Tablet
(Raman)

3575, 3514, 3345, 3192, 3048, 3047, 2826, 2816, 2666,
2279, 2058, 2056, 1957, 1955, 1954, 1858, 1840, 1839,
1838, 1703, 1701, 1699, 1556, 1477, 1356, 1395, 1196,
1194, 1193, 1191, 1190, 993, 989, 983, 982, 639, 632, 597,
540, 449

This journal is © The Royal Society of Chemistry 2019
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